水轮发电机组振动原因分析
- 格式:docx
- 大小:29.60 KB
- 文档页数:3
水轮发电机组振动原因和处理措施分析水轮发电机组振动会让水轮发电机组正常运行产生问题,会让水轮机组出现故障。
本文首先对水轮发电机组振动带来危害作出简要阐述,然后对水轮发电机组振动原因进行分析,之后结合笔者在新庄水电站工作的实际情况,提出几点水轮发电机组振动处理措施,希望可以对业内起到一定参考作用。
标签:水轮发电机组;振动原因;处理措施前言:在水电站中,水轮发电机组的安全运行可以保证水电站经济效益,如果水轮发电机组因为振动出现故障情况,那么就会对水轮发电机组运行平稳性与发电效益造成不利影响。
水力原因、机械原因与电气原因均有可能导致水轮发电机组出现振动情况,进而产生运行故障。
一、水轮发电机组振动带来危害在水电站中,水轮机占有核心地位,水轮机组可以转化水势能为机械能,在水电厂中,水轮发电机组的安全运行可以保证其供电安全性、供电优质性和供电经济性,这和电网运行的稳定性、安全性具有直接关系,这对于水电厂的社会效益与经济效益具有决定作用。
在水轮机组的运行中,水力原因、机械原因与电气原因均会造成水轮发电机组振动情况,据统计,现阶段,水轮发电机组大约有80%事故与故障和振动有关。
水轮发电机振动会带来五点主要危害:(1)會让机组零部件出现疲劳损坏区,该区主要出现在金属和焊缝之间,长期运行会让损害程度加重,可能会有裂缝出现,导致机组报废;(2)发电机组部分紧固部件会出现松动甚至断裂情况,会让连接部件出现振动情况,减少其使用寿命;(3)水轮发电机振动会让机组旋转部分磨损程度加剧;(4)水轮机组共振会对厂房以及多种设备造成影响;(5)水轮机组振动会让尾水管中形成涡流脉动压力,此压力可能会让水管壁开裂,可能会对尾水设备正常使用造成影响。
二、水轮发电机组振动原因(一)水力原因在水力方面,水轮发电机组振动的主要原因是水轮机会受到动力水压的干扰,这种水力原因往往是具有较大随机性、很难进行控制的。
如果水轮机处于非设计环境工作,或是处于过度运行状态,那么由于不理想水流状况,机组部分组件会产生振动加速,出现断裂情况。
水电站机组振动的原因及解决措施研究随着社会的进步,居民的用电量日益升高,同时也对用电质量提出了更高的要求,这就刺激了电力行业的飞速发展,但同时也暴露了较多的问题,其中最为常见的就是水电站机组振动问题。
这一问题不仅影响着设备正常使用,甚至还会对使用人员的生命安全造成严重威胁。
本文的研究内容即为水电站机组振动的原因及解决措施。
标签:水电站;机组振动;原因;解决措施水轮发电机在工作中如果发生振动,不仅会导致某些部件发生弹性形变或塑料形变出现裂纹、断裂,还会导致部件之间的连接松动,导致部件的使用寿命更短。
严重时甚至还会对整个水电站机组的安全运行造成严重威胁。
但这一问题在实际使用期间难以避免,所以需要采取有效的措施进行改善。
分析水轮机组的结构可以发现,组成部分主要是旋转和固定两部分,水轮发电机在运行期间,其中某部分发生异常,就会导致出现机组振动。
比较常见的振动是旋转部分的振动。
对振动问题采取有效措施进行控制后,可以使机组的运行具备更高的稳定性和可靠性[1]。
1、水利因素造成水电站机组振动的原因1.1水力不平衡水流同时具有动能和势能,在蜗壳的作用下形成环流,经均匀分布固定导叶、活动导叶片到转轮上,将其激活进行旋转。
当导水叶叶片和流量通道受各种因素的影响出现较大的形状差异时,水流作用到转轮后,因为成对称失衡,出现不平衡横向力,转轮从而发生振动,当运行处于无负载和低负荷状态时,振动尤为强烈。
1.2尾管的低频率水压脉冲在非设计工况条件下,水轮机运行时在出口处转轮受到脱流漩涡和旋转水流等因素的影响,尾水管内引发水压脉动并出现大型涡带,并以固定频率在管内转动,引起低频压力脉动。
水流流经管道后,压力脉动会导致转子,蜗壳,压力管等发生剧烈的振动[2]。
1.3空腔汽蚀水流通过水轮机时,受到流速,流向的影响,流道发生改变,增加流速后水流中出现气泡,气泡一旦进入高压区并溃灭,出现的情况即为空腔汽蚀。
这一情况会对机组的推力轴承和顶盖造成剧烈的垂直振动。
水轮发电机组异常振动的原因分析及应对措施摘要:水轮发电机组运行中出现异常振动是不可避免的,掌握引起机组异常振动的振源的类型、特征、危害以及振动规律等,对机组不同的异常振动进行分析、判断,迅速、准确地消除引起机组异常振动的振源或采取有效措施减小振动,确保机组安全、稳定、可靠、经济运行。
本文主要对水轮发电机组的剧烈振动原因及应对措施进行了探讨。
关键词:振动原理异常振动原因分析应对措施1 水轮发电机组振动原理在机组运转的状态下,在水轮机作为其原动力的前提下,水能的作用能够直接有效激发水轮发电机组振动,还能够间接维持机组振动。
流体、机械、电磁三者是相互影响相互作用的,由于气隙在不对称的状态下,由于发电机定子与转子之间的磁拉力不平衡的情况,当流体激起机组转动部分振动时会造成机组转动部分的振动,而发电机的磁场和水轮机的水流流场也会受到转动部分的运动状态的影响。
2 水轮发电机组异常振动的危害旋转机械的振动是难以避免的,如果可以把振幅控制在允许范围之内,就可以保证机组安全、正常的运行,但是如果是剧烈的振动,必然会不利于机组的安全运行,其主要表现为:机组的各个连接部件出现松动,所有静止部件和转动部件之间产生摩擦甚至是扫膛而损坏;导致零部件和焊缝疲劳,形成裂缝甚至出现断裂;尾水管低频压力脉动可使尾水管壁出现裂缝,当发电机或电力系统固有频率与其频率一致的时候,会发生共振,造成机组出现剧烈振动,有可能会导致发电机组从电力系统中解列,甚至会损坏厂房和水工建筑物。
3 水轮发电机组常见异常振动的原因分析及应对措施3.1 机械因素造成的剧烈振动的原因及应对措施机械因素引起的振动是指由机械部位摩擦力和惯性力以及其他力造成的振动,其特征是振动频率相当于机组旋转频率或是机组转动频率的几倍。
引起振动的机械因素主要是导轴承缺陷、机组轴线不正、转子质量不平衡等。
(1)振动的原因分析1)转子质量不平衡:因为转子质量的不平衡,转子的中心会对轴心产生偏心距,当轴以角速度开始旋转的时候,因为失衡质量受到离心惯性力的影响,在轴上出现弓状回旋,此类的振动也被称为振摆。
对于水轮发电机组振动的原因及处理方法的研究水轮发电机组振动是指水轮机在运行时产生的振动现象。
水轮发电机组振动的原因主要包括以下几个方面:水力因素、结构因素以及操作因素。
首先,水力因素是水轮发电机组振动的主要原因之一、由于水轮机是通过自然水流将水流动能转化为机械能的装置,因此水流的流动状况直接影响水轮机的运行情况。
当水流入口流速过快或者过慢时,会导致水流输运不平稳,产生激烈的水力冲击,从而引起水轮机的振动。
此外,当水轮机在运行中遇到水涡、水柱等突状流场时,也容易引起振动。
其次,结构因素也是水轮发电机组振动的一个重要原因。
水轮机的结构决定了其在运行时的刚度和稳定性。
若水轮机的结构强度不足,或者存在设计缺陷、制造缺陷等问题,都会引起水轮机的振动。
此外,水轮机的附件、导流罩、导叶等也会对水轮机振动产生直接或间接的影响。
最后,操作因素也会对水轮发电机组振动产生影响。
例如,水轮机的启停过程中,由于操作不当或者控制系统故障等原因导致的运行不稳定性,都会引起水轮机振动。
此外,水轮机的维护保养不到位,如轴承磨损、机械连接松动等问题也会导致水轮机振动的发生。
针对水轮发电机组振动问题,可以采取以下处理方法来解决:首先,优化设计和制造工艺。
在水轮机的设计和制造过程中,应充分考虑各种因素对振动的影响,采用合理的结构设计和制造工艺,提高水轮机的刚度和稳定性。
其次,加强水力调节。
通过合理调节水流的流速和流量,减少水轮机在工作过程中的水力冲击和流场扰动,从而降低水轮机的振动。
再次,完善控制系统。
加强水轮机的控制系统,提高水轮机的运行稳定性,避免因操作不当或控制系统故障导致的振动问题。
最后,加强维护保养。
定期对水轮机进行维护保养,检查轴承、机械连接等关键部件的磨损情况,及时处理和修复,确保水轮机的正常运行。
综上所述,水轮发电机组振动是由水力因素、结构因素以及操作因素等多方面因素引起的。
在处理水轮机振动问题时,需要充分考虑各种因素的影响,并采取相应的措施来解决问题,从而确保水轮机的正常运行和发电效率。
水轮发电机组的振动原因
1.静平衡问题:在水轮发电机组运行时,水轮及配重的质量分布不均
匀或者水轮不平衡,会导致转子在高速旋转时产生离心力,进而引起振动。
2.动平衡问题:动平衡是指水轮转子系统在运转时的动态平衡状态,
即转子在高速旋转时受到离心力的作用,导致转子产生起伏振动。
这通常
是由于转子的构造不均匀或者受到外部冲击等原因引起的。
3.涡轮进水不平衡:水轮是以涡轮原理进行能量转化的机械装置,当
水流进入涡轮时,若水流分布不均匀,会导致水轮不平衡,进而引起振动。
4.轴承问题:水轮发电机组的振动还与轴承磨损和润滑不良等相关。
当轴承磨损或润滑不良时,轴承的摩擦力增加,会导致转子的转动阻力增大,从而引起振动。
5.转子失衡:转子失衡是指转子的质量分布不均匀,导致转子在高速
旋转时无法达到完全平衡的状态。
这通常是由于制造过程中的误差或者腐
蚀磨损等原因引起的。
以上是水轮发电机组振动的几个主要原因,除此之外,还可能存在其
他因素,如水轮叶片的积垢和腐蚀、发电机组机械部件的磨损等。
为了减
少振动对发电机组的影响,需要通过定期检修和保养、科学的设计和制造
以及合理的调试来确保整个发电机组在运行中的平衡和稳定。
同时,还需
要采取相应的振动监测和控制措施,及时发现并解决振动问题,以保证发
电机组的安全运行和提高发电效率。
水轮发电机组振动原因分析概述振动是机器运行中不可避免的现象。
在水轮发电机组中,振动不仅会影响设备的性能和寿命,还会影响发电厂的生产效率和安全。
因此,深入分析水轮发电机组振动原因,采取有效措施减少振动,对于保障发电厂的正常运行和机组的长期稳定运行至关重要。
模型分析水轮发电机组振动主要有几种类型:•稳态振动:指机组长期处于一种稳定的运行状态,此时振动频率和振幅相对稳定。
水轮发电机组稳态振动主要由质量不平衡和未正确安装转子引起。
•暂态振动:指振动频率和振幅在短时间内发生变化,可能是由于负载突变或冲击引起的。
暂态振动对机组疲劳损伤影响较大,长期存在可能造成机械故障。
•横向振动:指机组的振动方向与转子轴线垂直,造成机组运转不稳定。
常见的横向振动原因包括转子偏心、轴承失效等。
•纵向振动:指机组的振动方向与转子轴线平行,较为严重时可能会造成转子碰撞和轴承故障等机械故障。
除了以上几种常见振动类型,水轮发电机组还可能出现多种组合振动。
振动原因分析1. 转子偏心转子偏心是指转子在旋转时轴向偏移,导致振动频率和振幅增大。
主要原因包括转子装配不良、轴承表面磨损不均、轴箱挠曲、转子重量不均等。
针对此问题,我们可以采取如下解决措施:•调整轴承的安装平面和支撑面,以保证轴承安装的精度。
•整体调平转子,保证转子在旋转时轴向偏移量小于要求。
•检查轴承并进行必要的维护、清洁和润滑。
2. 支承失效支承失效是指轴承在运转中失效,产生异常振动。
支承失效常见原因包括轴承老化、过载运转、润滑不良等。
中长期的解决措施为定期维护和更换轴承。
短期的解决措施包括监控轴承温度和压力,确保轴承正常运行。
3. 质量不平衡质量不平衡是指转子及其附属部件质量分布不均,引起机组振动。
这种振动通常是稳态振动,振动频率与机组的物理结构有关。
当不存在其他明显的故障时,质量不平衡经常是导致振动的根本原因。
解决措施包括:•对机组进行动平衡校对来修正在机组内部的重量分配不均(即转子杂散质量)。
水轮机振动的原因是什么?消除振动的主要措施有那些?答:水轮机运行中出现振动是常见的现象,但不允许超过下表规定值:立式水轮机各部位允许振动值:序号额定转速(r/min)测量部位100及以下100-250 250-325 325--750振动标准值(mm)1、带推力轴承支架的水平及垂直振动0.14 0.12 0.10 0.082、带导轴承支架的振动水平0.14 0.12 0.10 0.083、定子铁芯部分外壳水平振动0.14 0.12 0.10 0.08水轮机振动是由机械和水力两方面的因素引起的。
(1)机械方面的因素有:1)由于主轴弯曲或挠曲、推力轴承调整不良、轴承间隙过大、主轴法兰连接不紧和机组中心不准引起空载低转速时的振动。
2)因转轮等旋转件与静止件相碰引起振动激烈并伴有音响。
3)转动部分重量不平衡引起的,随速度上升振动增大而与负荷无关,这是常见的,特别是焊补转轮或更换桨叶后更容易发生,这类振动的特点是振动频率也水轮机转频一致,发电机上、下机架及导轴承横向振动的振幅与转速的平方成正比。
对机械原因引起的的振动,只要查清振动原因,采取相应的措施,如通过动平衡,调整轴线或调整轴瓦间隙等,就能消除。
(2)水力方面的因素有:1)尾水管中水流涡带所引起的压力水脉动诱发的水轮机振动。
混流式水轮机在偏离最优工况运行时,尾水管中将出现涡带,由此引起水轮机振动,并伴有响声,常发生在30%--60%额定负荷范围内。
强烈的涡带可能引起厂房振动;若由涡带引起的尾水管中的低频压力脉动频率与引水管固有频率接近,则可能引起引水管强烈振动;如果压力脉动频率和水轮机的转频接近,则可能引起功率摆动,如狮子滩等电站军存在涡带引起的振动,常在转轮出口附近的尾水管上部装十字架补气装置,或轴心补气,还有采取加长泄水锥或加同轴扩散形内层水管段;近年来,一些大中型电站在尾水管入口处加装导流瓦和导流翼板等都可使涡带引起的振动减轻或消失。
2)卡门涡列引起的振动。
水轮发电机组振动原因分析及措施摘要:本文首先对水轮发电机组产生振动的原因进行了分析,并归纳了机组振动的特点,最后针对水轮发电机组产生振动的原因提出了相应的处理措施。
关键词:水轮发电机组;原因;处理方案引言对于水力发电站而言,水轮发电机组是不可缺少的构成内容,其运行的稳固性是确保水电站可以顺利运转的重要因素,但是,水轮发电机组是由各种机械设备组成的,有些部件还需要进行运转,设备在运作过程中运都不可避免的会存在振动,而且在实际运行的过程中,能对机组稳定性产生影响的因素有很多,如电网、水文、气候、制造、安装和时间等等,因此机组很可能会出现机组振动超标现象。
所以,要在采取恰当的技术举措把机组的振动尽可能地降低,且把其管控在相应的范围内,来确保机组运转的长效、稳健性。
可是如何将机组振动控制在合理范围内,保证机组安全稳定运行,这个问题需要引起重视,并采取适当的方法进行解决。
1 水轮发电机组的振动原因1.1 机械原因一般情况下,由机械因素引发的振动存在一个共同点:机组的振动频率一般等于转频或者是转频的几倍。
能够引起水轮发电机组振动的机械原因主要分为以下几点:(1)转子质量偏心或安装偏心。
当磁力下线通过转子与定子的间隙时,在它们之间会因磁力线自身存在缩短倾向而形成拉力,即磁拉力。
如果电机的转子制造时出现问题而出现质量偏心情况,或者在安装转子时没有按照要求进行装配而偏离中心,以及因长期运行主轴磨损而导致使转子偏心,转子都会受到不均衡的磁拉力,这样会对转子的动力特性产生影响,导致水轮发电机组产生振动现象。
(2)转子“抖动”。
具体而言,转子“抖动”是说水轮发电机组在运转的时候,导轴承产生松动亦或空隙不恰当、刚性未达标,而且机组的运行不牢固、润滑工作没有达到要求时,导轴承和转轴间产生硬性摩擦,致使轴承向相反的方向转动,进而形成水平方向的振动。
1.2 电磁原因引起的振动(1)转子绕组短路。
当一个的磁电动势因短路而减少时,与它相对的那个磁电动势并未产生改变,为此便会产生一个和转子反方向转动的和轴线同向的不均衡磁拉力,进而导致转子发生振动。
水电站水轮发电机机组振动问题分析处理方法的探讨水轮发电机机组的振动问题是水电站运行过程中常见的问题之一,如果不及时处理,会影响机组的正常运行甚至造成设备损坏。
为了解决这个问题,需要对振动问题进行分析,并制定相应的处理方法。
需要对振动问题进行分析。
水轮发电机机组的振动问题主要表现为机组整体的振动或者某些具体部位的振动。
振动源可以是机组本身的结构问题、转子的不平衡排布、轴承故障、机组与基础之间的不协调等。
振动的强度和频率可以通过振动传感器和分析仪器进行监测和测量,根据振动的特征可以初步确定振动的原因和位置。
针对振动问题,可以从以下几个方面进行处理:1. 结构改进:针对机组本身的结构问题,可以通过结构改进措施来降低振动。
比如增加机组的支撑结构,提高整体刚度;加装减振装置,如减震器、减振块等;优化机组的布置,避免共振点的出现。
2. 平衡调整:对于转子的不平衡排布导致的振动问题,可以进行平衡调整。
通过对转子进行动平衡调整,使得转子在高速旋转时不会产生不平衡力矩,从而减小振动。
3. 轴承维护:轴承故障也是机组振动的常见原因之一。
定期对轴承进行润滑和维修保养,及时更换老化的轴承,可以有效降低振动。
4. 基础加固:机组与基础之间的不协调也会引起振动。
基础的加固可以通过增加基础的支撑结构,增加基础的刚度和稳定性来实现。
5. 实时监测和控制:通过安装振动传感器和监测仪器,可以实时监测机组的振动状态。
当振动超出预设范围时,可以及时进行相应的控制措施,如降低机组负荷、停机检修等,避免振动问题的进一步扩大。
值得注意的是,不同的振动问题可能需要采用不同的处理方法,因此在实际应用中,需要结合具体情况进行综合分析和处理。
预防机组振动问题的发生也是十分重要的,可以通过定期检查和维护、加强设备管理等手段来减少振动问题的出现。
水轮发电机机组振动问题的分析和处理需要从结构改进、平衡调整、轴承维护、基础加固和实时监测等方面入手,通过综合运用各种处理方法,可以有效降低机组的振动,保障机组的正常运行。
水轮发电机组异常振动原因分析及处理摘要:轮发电机组运行中的各部位振动和摆度是机组运行健康状况的最直接反映,良好的振动和摆度对机组长期的安全稳定运行具有重要意义,将其幅值限制在规程规范要求的限值之内,是确保机组能长期安全、稳定运行的基本要求。
大修机组和新装机组在启动调试过程中,时常会遇到机组的振动和摆度超标异常情况,虽然水轮发电机组振动和摆度异常的原因主要归结有机械因素、电磁因素和水力因素三个方面,但这三个方面又都包含很多不同的具体原因,不同方面的具体原因的故障现象有些还是相似的,在实际中,往往还存在多个不同因素共同起作用。
关键词:水轮发电机组;异常震动;处理措施引言要找到机组振动和摆度异常的真实原因,往往需要对这些原因进行逐一仔细排查,往往需花费大量人力、物力和时间。
同时,由于现场试验手段及各种条件限制,逐一排查各种振动和摆度异常的原因并不现实,为此,如何尽快缩小排查范围、快速找到机组振动异常的原因就显得尤为重要。
1水轮发电机组异常振动原因(1)机械因素引起机械不平衡的常见原因主要有:转子质量不平衡、水轮机质量不平衡、轴承缺陷、机组轴线不正等。
机械不平衡一般表现为振动频率与转速一致,且和转速平方成正比。
根据表1数据,机组在空转状态下,机组各部位振动和摆度数据优良,各振动和摆度频率也以转速频率为主,其他频率成分很小,长时间空转运行机组各部位瓦温也正常。
因此,由于机械不平衡引起机组振动过大的可能性很小,可暂不考虑是由机械因素引起的机组振动过大。
(2)电磁因素引起电磁不平衡的常见原因主要有:转子绕组短路、空气间隙不均匀、定转子椭圆度超标等。
电磁不平衡一般表现为振动随励磁电流增大而明显增大。
机组投入励磁,发电机机端电压为25%Ue(Ue为机端额定电压)时,机组的各部振动和摆度都出现较明显的变化。
机组上导摆度呈下降趋势,摆度值由88μm降至54μm,下导摆度和上导摆度则有轻微波动,无规律可循。
从机组各部位振动和摆度频谱分析,上机架水平、上导摆度和定子水平振动仍然以转频为主。
水力发电机组振动产生的原因及处理方法[摘要]水力发电机组振动故障会严重破坏水电站的稳定运行。
本文介绍了水力发电机组振动产生的主要危害,探讨了电气原因、水力因素及机械原因造成的水力发电机组振动及处理方法。
[关键词]水力发电机组;主要危害;振动产生的原因;处理方法水轮发电机组作为水电站的核心组成部分,它的安全稳定运行关乎整个水电站的经济效益和运行效益。
水力发电机组产生振动主要有机械振动、水力振动和电磁振动,不同的振动故障产生的原因也不尽相同。
因此,科学掌握水力发电机组振动产生的原因,提高机组运行效率具有重要的意义。
1、水力发电机组振动产生的主要危害水力发电机组振动产生的主要危害有以下几个方面。
①尾水管中形成的涡流脉动压力会使尾水管壁产生裂缝现象,严重时会导致整体尾水设施遭到破坏。
②振动会引起机组零部件金属和焊缝之间疲劳破坏区形成并扩大,其机能减弱。
随着裂纹的扩大,产生裂缝,最后造成断裂而报废。
③磨损程度较大、轴剧烈振动,使轴与轴瓦温度升高,容易烧坏轴瓦,发电机转子振动过大,增加滑环电刷磨损程度,造成电刷火花不断增大。
④发电机组振动过大,使得发电机各连接部件产生松动,这样会使得转动部分与相对静止部分产生相对摩擦,进而可能出现扫膛而损坏机器。
2、电气原因导致的水力发电机组振动及处理方法2.1三相负荷因素引发的振动及处理。
在实际水电生产过程中,发电机组经常会出现三相负荷不对称问题,即发电机定子单向接地或者两相短路时,便会出现三相负荷不对称问题。
当负荷不平衡时,三相绕组会产生负序电流,产生负序旋转磁场。
一旦负序磁场正对发电机纵轴时,较小气隙会增大转子间作用力。
一旦负序磁场正对发电机横轴时,较大气隙会减小转子间作用力。
因此负序磁场造成定转子间作用力忽大忽小,便会造成定子机座与转子出现振动问题。
针对此种问题,需要设置发电机阻尼绕组来减小负序电流,在负序旋转磁场切割转子时,电阻中安装的漏电抗很小的阻尼绕组便可以产生较大感应电流,对负序磁场进行削弱,从而减少产生的负序电流,避免出现振动问题。
研究水力发电厂水轮发电机组振动和摆度过大原因及处理方法摘要:水轮发电机组的发展与我国的经济发展水平有着极大的关联。
受我国许多水力发电站恶劣环境的影响,小型水轮发电机组根本无法满足实际需求,并且其带来的问题也很多。
随着单机容量的增加,使用高容量、大功率的发电机组成为国内外水力发电的主要趋势。
水力发电最常见的问题是水轮机振动异常,其会对发电机组的正常运转造成影响,导致零件损坏甚至断裂,严重危及人身安全。
振动时间过长还可能出现共振现象,导致整体设备出现故障,影响正常运行。
及时找出原因并合理解决至关重要,可有效保证水力发电厂的安全稳定。
关键词:水轮发电机组振动;处理;方法水轮发电机组振动是水电站常常出现的普遍现象,当水轮发电机组在运行过程当中出现振动的时候,其是将水轮机作为其原动力,水能的主要作用是可以激发与确保水轮发电机组振动,同时,其还可以利用间接的方法激发与维持水轮发电机组的振动。
需要注意的是,水轮机本身所具有的特点对于水轮发电机组振动的产生有着至关重要的作用。
从其结构方面来看,其主要由两个部分组合而成,分别是转动与固定,一旦水轮发电机组的任意部件存在着质量问题,将会直接导致水轮发电机组的大幅度振动。
实际上,水轮发电机组振动为旋转机械比较常见的一种现象,如果采取合理有效的措施来对振动进行控制,则可以有效的确保水轮机组的正常稳定运行。
一、水轮发电机组振动所带来的危害当水轮机组出现剧烈振动的时候,将会造成以下方面的问题:①其会使得原本牢固的部件变得松动,在严重的情况下,会发生断裂的问题,进而造成使用寿命的缩短;②导致机组的各个部件出现金属与焊缝的疲劳,久而久之,损害现象将会变得越来越严重,最终导致裂缝的出现,影响其正常使用,最终报废;③水轮机组的共振,比如机组设备和厂房的共振,会导致厂房与设备的损坏;④在其出现剧烈振动的情况下,还会导致机组旋转之间的摩擦系数提高;⑤其会导致尾水管当中出现涡流脉动压力,在严重的时候,尾水管壁会在压力的作用下崩裂,导致尾水设备无法正常使用。
水轮发电机组振动原因分析
水轮发电机组在运行过程中会产生一定的振动,这些振动会影
响机组的安全运行和寿命。
因此,分析水轮发电机组的振动原因对
于提高机组的运行质量和安全性具有重要意义。
首先,水轮发电机组一般由水轮机、发电机和轴系组成,该系
统的振动可能来自以下几个方面:
1.水轮机叶轮不平衡。
叶轮的设计、制造和安装质量是影响水
轮机振动的主要因素之一,制造不精确或安装不到位都会导致叶轮
的不平衡,从而引起水轮机的振动。
2.水轮机进水管道或出水管道存在泄漏或压力波动。
水轮机进
水或出水管道的泄漏或压力波动会引起整个水轮发电机组的振动,
尤其是在水轮机高速旋转时影响更为明显。
3.水轮机进水口、导叶或叶片损坏。
水轮机进水口、导叶或叶
片的损坏都会对水流的流向和强度造成影响,进而引起水轮机振动。
4.发电机不平衡。
发电机转子的平衡等质量问题容易导致转子
的不平衡,进而引起整个水轮发电机组的振动。
5.轴系安装不当。
轴系的安装质量对于水轮发电机组的振动影
响很大。
如果轴系的对中度、扭矩传递等参数调整不当,会导致轴
系的振动,从而影响水轮发电机组的运行质量。
以上是水轮发电机组常见的振动原因。
解决这些问题需要从前
期的设计和制造环节着手,同时,对于已经投入使用的水轮发电机组,要定期进行检查和维护,确保机组的正常运行和安全性。
1。
水轮发电机组如何进行振动分析?水轮发电机组振动是水力发电站存在的一个存在广泛问题,有预设、制作、装置、查看修补、运转等方面的原因。
运行中的机组不同程度都存在着振动,电站规则振动值必需在规定范围内,当振动超越规则的允许值时,就会影响机组的安全运转和机组的生计的年限,需趁早找出原因并采纳处理方法消弭。
设备振动是一个复杂的问题,但从振动的原因来看,一般有机械、水动力及电磁等方面的原因。
振迪检测结合与客户协作实践谈谈水轮发电机组运转中的振动问题,水轮发电机振动由于机组机械局部的惯性力、磨擦力及其它力的搅扰导致的振动叫做机械振动。
引起水轮发电机振动的要素有三点:转子质量平衡、机组轴线不正、导轴承短缺等。
1、转子质量平衡:由于转子质量平衡,转子重心与轴心萌发一个正距。
当主光轴旋转时,由于失衡质量离心惯性力的效用,主光轴将萌发屈曲变型。
轴变型越大,振动也越严峻。
在制作时,要实施转子的静均衡、动均衡尝试,使平衡分量尽有或许小,除根这种振动的原因。
2、轴线不正:水轮发电机机组轴线不正会引动两种方法的振动:弓状回旋。
由于转子、转轮几何中心脱离正路旋转中心,运转中会萌发横向及纵向振动,直接形成回旋对推力轴承、导轴承均构成要挟,还能增大离心惯性力,两者都使波幅增大。
从运转视点剖析,一般显露出来在投运年数较长,各导轴承空地大,没能趁早修正,仍是检修质量欠好等工作状况下。
额外一种是摆振。
在动水压力下,推力轴承处产生摆振。
为此,在装置和查看修补时必须找正轴线,调试各导轴承的空地在允许范围内。
对新投入生产的机组,一般不会由于轴线不正而引动猛烈振动,但对于运转时期后的机组,由于某种原因使轴线改变,如推力头与轴适宜不严紧、卡环翘棱均压缩、推力头与镜板间的垫变型或毁伤等,都会引动机组振动。
3、水轮发电机导轴承短缺:当导轴承松驰、刚性不充足、运转不稳而润滑油欠好时,会产生磨擦,引动逆向弓状回旋,即横向振动力。
导轴承空地过小,会把转动轴的振动传给支座和根底,导轴承空地过大,转动轴振动大。
水轮发电机组运行中的振动分析前言水轮发电机组振动是水电站存在的一个普遍问题,有设计、制造、安装、检修、运行等方面的原因。
运行中的机组不同程度都存在着振动,电站规定振动值在某一允许范围内,当振动超过规定的允许值时,便会影响机组的安全运行和机组的寿命,需及时找出原因并采取措施消除。
同时水轮发电机组的振动是一个复杂的问题,但从振动的原因来看,一般有机械、水力及电磁等方面的原因。
本章结合实践谈谈水轮发电机组运行中的振动问题。
一机械振动由于机组机械部分的惯性力、摩擦力及其他力的干扰造成的振动叫做机械振动。
引起机械振动的因素有:转子质量不平衡、机组轴线不正、导轴承缺陷等。
1 转子质量不平衡由于转子质量不平衡,转子重心与轴心产生一个偏心距。
当主轴旋转时,由于失衡质量离心惯性力的作用,主轴将产生弯曲变形。
轴变形越大,振动也越严重。
在制造时,要进行转于的静平衡、动平衡试验,使不平衡重量尽可能小,从根本上消除这种振动的原因.2 轴线不正机组轴线不正会引起两种形式的振动,弓状回旋.由于转子、转轮几何中心偏离旋转中心,运行中会产生横向及纵向振动,直接形成回旋对推力轴承、导轴承均构成威胁,还能增大离心惯性力,两者都使振幅增大。
从运行角度分析,一般出现在投运年限较长,各导轴承间隙大,没能及时修复,或者检修质量不良等情况下。
3摆振在动水压力下,推力轴承处发生摆振。
为此,在安装和检修时必须找正轴线,调整各导轴承的间隙在允许范围内。
对新投产的机组,一般不会由于轴线不正而引起剧烈振动,但对于运行一段时间后的机组,由于某种原因使轴线改变,如推力头与轴配合不严密、卡环不均匀压缩、推力头与镜板间的垫变形或破坏等,都会引起机组振动。
4导轴承缺陷当导轴承松动、刚性不足、运行不稳而润滑不良时,会发生摩擦,引起反向弓状回旋,即横向振动力。
导轴承间隙过小,会把转轴的振动传给支座和基础,导轴承间隙过大,转轴振动大。
适当的导轴承间隙,才有可能同时保证转轴与支座的振动均在允许范围内。
水轮发电机组运行中剧烈振动的原因及处理措施摘要:电力在推动社会经济发展当中发挥了十分关键的作用,因此,通过有效的对策,确保发电厂内部机电设施的正常运转是十分关键的。
为了提升机电设施运行的稳定程度,一定要强化设施的日常管理工作,详尽的探讨发电设施运行当中面临的振动情况,通过具备针对性的对策开展处置。
关键词:水轮发电机组;剧烈振动;原因与处理对策引言水轮发电机组在运行当中时常会由于多种不相同的因素产生剧烈的振动,振动将会破坏导叶以及转轮,进而对于水电站的经济效益带来影响,乃至会对于水电站的稳定性以及安全性带来威胁。
所以,分析水轮发电机组振动的具体原因是十分关键的。
本篇文章就水轮发电机组运行当中产生的剧烈振动原因以及处理对策开展了简要的分析。
1.水轮发电机组振动简述从水轮发电机组的构成而言,重点是通过两部分构成的,即固定部分以及旋转部分。
在水轮发电机组运行当中,一些部分产生了问题,将会使得机组出现振动。
水力发电机组旋转部分出现振动的情况十分常见。
通过合理对策来管理水力发电机组的振动,能够高效的提升机组运行的可靠性以及稳定性。
假如水轮发电机组的振动十分严重,还没有办法使用合理对策将其限制在一定的范围当中,会使得一些零件产生松动,甚至会出现事故。
1.水轮发电机组振动的危害旋转机械的振动是无法避免的,假如能够将振幅限制在允许范围当中,就能够确保机组的正常以及稳定运行,然而假如是剧烈振动,一定会对于机组安全运行带来消极影响,其具体体现为:机组的每个连接部位产生松动,导致全部的转动部件以及静止部件出现摩擦乃至破坏;使得零部件以及焊缝产生疲劳,进而出现裂缝乃至产生断裂;尾水管低频压力脉动能够使得尾水管壁产生裂缝,如果发电机亦或是电力系统的频率与其频率相同的时候,将会出现共振,使得机组产生剧烈振动,或许会使得发电机组从电力系统当中解列,更甚者将会对于建筑物以及厂房带来损坏。
1.水轮发电机组运行当中剧烈振动的原因3.1因水力原因造成的强烈振动一旦此时的机组正处于一个非设计工况以及过渡工况情况之下运行,那么只要此时的水流情况出现一定的改变,机组的每一个构件的振动也会得到明显的增加。
水轮发电机组振动原因分析
水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。
在机组运转的状态下,流体一机械一电磁三部分是相互影响的。
例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。
因此,水轮机的振动是电气、机械、流体等多种原因引起的。
可见,完全按照这三者的相互关系来研究系统的振动是不够的。
鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。
1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。
但较大振动对机组安全是不利的,会造成如下危害:
务)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏;
b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂;
C )尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的白振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。
下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。
a )20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。
1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。
上机架振幅达022m m,水导轴承处振幅达020m m。
水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。
b )1997年2月天桥水电站4号机尾水管锥管段不锈钢衬板与普通钢衬板衔接处(高程8087m )以下约有23m 2普通钢板沿环向脱落。
其主要原因是由于叶片翼端间隙射流及尾水管涡带产生的低频水压脉动相互作用,引起锥管段钢板振动,焊缝疲劳破坏后被撕裂或脱落。
c )2000年11月天桥水电站1号机大修后,发生发电机推力瓦12 块被烧毁的严重事故,因推力瓦水平调整不好,轴系中心不正及调速系统失调所致。
d )2002年5月天桥水电站3号机大修检查发现尾水管弯管段垂直
于水流方向产生环状裂缝,其主要原因为尾水管低频水压脉动激起尾水
管壁振动,当振动频率接近尾水管的固有频率产生共振时,严重造成尾水管壁产生裂缝。
从以上几个实例看出,机组发生振动的原因主要是由于机械、水力、电气三方面的原因引起的,其它如调速系统失调、振荡的因素也有,但不甚严重也不常发生。