平面直角坐标系
- 格式:docx
- 大小:331.50 KB
- 文档页数:21
平面直角坐标系平面直角坐标系是平面上最常用的坐标系统之一,用于描述平面上的点和其它几何图形的位置。
它由两条相互垂直的直线组成,分别称为x轴和y轴,它们的交点被称为原点。
一、坐标系介绍坐标系是用来刻画空间中各点位置的系统,而平面直角坐标系是坐标系中的一种。
平面直角坐标系的构成:1. x轴:水平的直线,向右延伸为正方向,向左延伸为负方向。
2. y轴:垂直于x轴的直线,向上延伸为正方向,向下延伸为负方向。
3. 原点:x轴和y轴的交点,被称为坐标系的原点。
二、坐标的表示方法在平面直角坐标系中,每个点可以表示为一个有序数对,即(x, y),其中x表示横坐标,y表示纵坐标。
1. 横坐标:横坐标表示点在x轴上的位置。
在原点的右边为正方向,左边为负方向。
2. 纵坐标:纵坐标表示点在y轴上的位置。
在原点的上方为正方向,下方为负方向。
三、点的位置关系根据坐标系的定义,我们可以判断点的位置关系。
1. 同一直线上的点:如果两个点的横坐标相等,纵坐标不同时,它们在同一条直线上,且与原点的距离相等。
2. 垂直关系:如果两个点的纵坐标相等,横坐标不同时,它们在同一条垂直线上,且与原点的距离相等。
3. 斜率:直线斜率是用来描述直线的倾斜程度的,斜率为0表示水平线,无限大表示垂直线。
4. 象限:根据点的坐标正负关系,可以将平面分为四个象限。
第一象限:x>0,y>0;第二象限:x<0,y>0;第三象限:x<0,y<0;第四象限:x>0,y<0。
四、点、线和图形的表示方法在平面直角坐标系中,我们可以使用坐标来表示点、线和图形。
1. 表示点:一个点的位置可以使用有序数对(x, y)来表示。
如点A(2, 3)表示横坐标为2,纵坐标为3的点A。
2. 表示线段:线段由两个端点组成,可以使用两个点的坐标来表示。
如线段AB由两个点A(2, 3)和B(4, 5)表示。
3. 表示直线:直线的方程可以使用斜率截距形式或一般式来表示。
平面直角坐标系简介平面直角坐标系是数学中一种常见的坐标系,用于描述平面上的点的位置。
它由两条相互垂直且共同交于原点的直线构成,分别称为x轴和y轴。
通过x、y轴上的数值,可以确定平面上的每一个点的坐标。
坐标轴平面直角坐标系由两个垂直的坐标轴组成,分别是x轴和y轴。
x轴是从左到右水平延伸的直线,y轴是从下到上垂直延伸的直线。
两轴交于原点O,原点是坐标系的起点,它的坐标为(0, 0)。
坐标轴上的点的坐标是由数值决定的,正方向上的数值代表右移或上移,负方向上的数值代表左移或下移。
x轴上的正方向可以取右移,y轴上的正方向可以取上移。
在平面上的点的位置是通过坐标值的组合来表示的。
坐标值在平面直角坐标系中,每个点的位置都有唯一的坐标值来确定。
一个坐标值由两个实数(x, y)组成,x表示该点在x轴上的位置,y表示该点在y轴上的位置。
坐标值的顺序可以是(x, y)或者y,x。
根据坐标轴和原点的位置,可以将坐标值分为四个象限。
第一象限的点具有正的x和y值,第二象限的点具有负的x值和正的y值,第三象限的点具有负的x 和y值,第四象限的点具有正的x和负的y值。
坐标变换平面直角坐标系除了可以用来表示点的位置外,还可以进行坐标变换。
坐标变换包括平移、旋转、缩放和倾斜等操作,这些操作可以改变坐标轴的位置和方向,从而达到变换坐标的目的。
平移是将整个坐标系在平面上沿着一个方向移动一定的距离。
例如,将坐标系向右平移3个单位,则所有点的x坐标都会增加3个单位。
类似地,将坐标系向上平移2个单位,则所有点的y坐标都会增加2个单位。
旋转是将整个坐标系绕原点或者其他点旋转一定的角度。
例如,将坐标系逆时针旋转90度,则x轴会变为新的y轴,y轴会变为新的-x轴。
通过旋转,可以改变坐标系中点的位置。
缩放是将整个坐标系沿着x轴和y轴的方向分别进行比例缩放。
例如,对x轴进行2倍缩放,则所有点的x坐标都会乘以2,从而使整个坐标系在x轴方向拉长。
类似地,对y轴进行2倍缩放,则所有点的y坐标都会乘以2,从而在y轴方向拉长。
平面直角坐标系平面直角坐标系是数学中常用的坐标系之一,用于描述平面上点的位置。
它由两个互相垂直的坐标轴组成,分别称为x轴和y轴。
x轴是平行于地面的水平线,y轴是垂直于地面的竖直线。
两个轴的交点称为原点O,坐标轴上的单位长度分别称为单位长度,在坐标轴上的点用有序数对(x,y)来表示。
概念距离公式是平面直角坐标系中求两点之间距离的一种方法,它利用勾股定理的原理得出。
即:两点之间的距离等于横坐标的差的平方加纵坐标的差的平方再开平方根。
假设平面直角坐标系上有两点A(x1,y1)和B(x2,y2),则A和B之间的距离d可以表示为:d=√((x2-x1)²+(y2-y1)²)这个公式可以用来计算直线上两个点的距离,也可以用来计算任意两个点之间的距离。
中点公式是指在平面直角坐标系中,已知线段的两个端点的坐标,求线段的中点坐标的一种方法。
中点公式的原理是利用两点的坐标分别求出横坐标的平均值和纵坐标的平均值,得到线段的中点坐标。
假设平面直角坐标系上有线段的两个端点A(x1,y1)和B(x2,y2),则线段的中点M的坐标可以表示为:M=((x1+x2)/2,(y1+y2)/2)中点公式可以简单地通过将两个端点的横坐标和纵坐标进行平均来计算出线段的中点坐标。
通过概念距离公式和中点公式,我们可以在平面直角坐标系中方便地计算出两点之间的距离和线段的中点坐标。
这些公式在几何学、物理学和计算机图形学等学科中都有广泛的应用。
平面直角坐标系是数学中基础而重要的工具之一,它不仅可以用来描述几何图形和计算空间中的点、线、面,还可以应用于解决实际问题,如测量距离、计算速度等。
同时,平面直角坐标系还可以与其他数学概念和方法相结合,如向量、导数等,形成更加完整和强大的数学分析体系。
总之,平面直角坐标系是数学中重要的工具之一,概念距离公式和中点公式是在平面直角坐标系中求解距离和中点问题时常用的方法。
通过运用这两个公式,我们可以方便地计算出两点之间的距离和线段的中点坐标,以及应用到各种实际问题中。
平面直角坐标系在数学中,平面直角坐标系是一种用于描述平面内点的坐标系统。
它由两条互相垂直的直线(通常是水平的x轴和垂直的y轴)形成,它们相交于一个点,称为原点。
本文将介绍平面直角坐标系的基本概念、坐标表示和使用方法。
一、基本概念平面直角坐标系由两个轴组成,通常称为x轴和y轴。
这两个轴的交点就是原点,用O表示。
x轴向右延伸正无穷远,用正数表示;x轴向左延伸负无穷远,用负数表示。
y轴向上延伸正无穷远,用正数表示;y轴向下延伸负无穷远,用负数表示。
二、坐标表示平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
x和y分别称为点的横坐标和纵坐标。
三、使用方法在平面直角坐标系中,可以进行一些简单的计算和几何分析。
1. 距离计算可以通过坐标计算两点之间的距离。
假设点A的坐标为(x1, y1),点B的坐标为(x2, y2),则点A和点B之间的距离d可以通过以下公式计算:d = sqrt((x2-x1)^2 + (y2-y1)^2)2. 点的位置关系可以比较两个点的坐标来判断它们的位置关系。
例如,如果点A的横坐标等于点B的横坐标并且点A的纵坐标小于点B的纵坐标,那么可以说点A在点B的上方。
3. 垂直和平行关系可以通过判断两个直线的斜率(或是特殊情况下的截距)来确定它们的关系。
如果两条直线的斜率相同,那么它们是平行的;如果两条直线的斜率的乘积为-1,那么它们是垂直的。
四、坐标系拓展除了普通的平面直角坐标系,还有其他类型的坐标系可以应用于不同的数学和物理问题。
例如,极坐标系以点到原点的距离和该点与正x 轴的角度来描述点的位置。
其他坐标系还包括球坐标系、柱坐标系等。
总结:平面直角坐标系是用于描述平面内点的坐标系统。
通过横坐标和纵坐标的数值,可以表示点在平面中的位置。
在平面直角坐标系中,可以进行距离计算、点的位置关系判断以及直线的垂直和平行关系确定。
此外,还存在其他类型的坐标系,用于解决不同的数学和物理问题。
平面直角坐标系平面直角坐标系是解析几何中常用的坐标系,用于描述平面上的点和其它几何图形。
本文将详细介绍平面直角坐标系的定义、性质及应用。
一、定义平面直角坐标系由两个互相垂直的数轴(x轴和y轴)构成。
x轴水平放置,从左到右逐渐增大;y轴垂直于x轴,从下往上逐渐增大。
两条轴的交点称为原点,记作O。
平面直角坐标系将平面上的点与有序的实数对(x,y)一一对应。
二、性质1. 坐标轴性质:x轴上的点坐标为(x, 0),y轴上的点坐标为(0, y)。
2. 坐标线性质:对于坐标系内的一点P(x, y),以x轴和y轴为边,可以得到4个区域,分别对应第一象限、第二象限、第三象限和第四象限。
3. 距离计算公式:两点P1(x1, y1)和P2(x2, y2)之间的距离d可以通过勾股定理求得:d = √[(x2 - x1)² + (y2 - y1)²]。
三、应用平面直角坐标系在解析几何中有广泛的应用,常与方程、图形和向量等相关联。
1. 方程:通过坐标系可以解决一元和两元方程的问题。
对于一元方程,可以将其在坐标系中表示为一条直线,并求解其根;对于两元方程,可以表示为一条曲线,通过坐标系求解方程组的解。
2. 图形:通过坐标系,可以准确地表示和描述各种几何图形,如直线、抛物线、双曲线等。
在坐标系中,每个点都有唯一的坐标,因此可以使用坐标来确定图形上的点的位置。
3. 向量:向量是平面直角坐标系中的重要概念之一。
向量的起点可以任意选取,表示为一个有向线段,并通过坐标系表示其方向和大小。
向量可以进行加法、减法、数量积等运算,在物理学、工程学等领域有广泛的应用。
总结:平面直角坐标系是解析几何中最基本的坐标系之一,通过两个垂直的坐标轴构成。
它具有一些重要的性质,如坐标轴和坐标线的性质,以及距离计算公式。
平面直角坐标系在方程、图形和向量等方面有广泛的应用,能够准确地描述和解决各种几何问题。
平面直角坐标系平面直角坐标系是数学上常用的一种表示平面点位置的方法。
它由两条相互垂直的坐标轴组成,通常被称为x轴和y轴。
在平面直角坐标系中,每一个点可以由一个有序数对(x, y)来表示,其中x代表点在x轴上的位置,y代表点在y轴上的位置。
一、坐标轴和坐标平面平面直角坐标系以一个平面为基准面,通过在基准面上选择两条相互垂直的线段作为坐标轴,构成直角坐标系。
x轴和y轴分别与基准面的一个定点O相交于点O,被称为坐标原点。
二、坐标值在平面直角坐标系中,每一条坐标轴被划分为无限个等分,用来表示点在该轴上的位置。
任意一点的坐标值都是由该点在x轴和y轴上的投影决定的。
三、点的位置平面直角坐标系中的点可以分为四个象限:第一象限、第二象限、第三象限和第四象限。
第一象限位于x轴和y轴的正方向,第二象限位于x轴的负方向和y轴的正方向,第三象限位于x轴和y轴的负方向,第四象限位于x轴的正方向和y轴的负方向。
四、距离和斜率在平面直角坐标系中,可以通过坐标值计算两点之间的距离和斜率。
两点之间的距离可以通过使用勾股定理计算,而斜率则可以通过斜率公式计算,斜率公式为:m = (y2 - y1) / (x2 - x1),其中m为斜率,(x1,y1)和(x2, y2)分别为两点坐标。
五、图形的表示在平面直角坐标系中,不同的图形可以通过将点的集合按照一定规则进行连接而得到。
例如,直线可以由两个点确定,抛物线可以由若干个点确定,圆可以由一个点和半径确定等。
总结:平面直角坐标系是表示平面点位置的常用方法,通过坐标轴和坐标值可以准确地表示点在平面上的位置。
在平面直角坐标系中,可以计算两点之间的距离和斜率,同时可以通过连接点来表示不同的图形。
平面直角坐标系是数学中一个重要的概念,被广泛应用于几何学、代数学等领域。
平面直角坐标系平面直角坐标系是指利用两个垂直的数轴(x轴和y轴)来确定平面上的点位置的一种坐标系统。
它是数学中常用的一种工具,用于描述平面上的几何图形和解决各种问题。
在平面直角坐标系中,点的位置由两个数值(x,y)表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
一、坐标轴平面直角坐标系由两条互相垂直的坐标轴组成,分别是x轴和y轴。
坐标轴的交点称为原点,记作O。
x轴向右延伸为正方向,向左延伸为负方向。
y轴向上延伸为正方向,向下延伸为负方向。
x轴和y轴的单位长度可以任意选择,常用的单位长度是1。
二、坐标表示在平面直角坐标系中,每个点的位置都可以用一个有序数对(x,y)表示。
x表示点在x轴上的位置,可以是正数、负数或零。
y表示点在y轴上的位置,也可以是正数、负数或零。
由于存在四个象限,具体的位置表示可能是不同的。
三、象限划分平面直角坐标系将平面划分为四个象限,如下所示:第一象限:x轴和y轴的正半轴构成,x和y均为正数。
第二象限:x轴的负半轴和y轴的正半轴构成,x为负数,y为正数。
第三象限:x轴和y轴的负半轴构成,x和y均为负数。
第四象限:x轴的正半轴和y轴的负半轴构成,x为正数,y为负数。
四、坐标变换在平面直角坐标系中,可以进行坐标变换来描述图形的移动、旋转和缩放等操作。
常见的坐标变换包括平移、旋转和缩放。
平移:平移是将图形沿着x轴或y轴方向进行移动。
平移图形的x坐标和y坐标分别加上相应的平移量。
旋转:旋转是将图形绕着原点或其他点旋转一定角度。
旋转图形可以利用旋转矩阵进行计算。
缩放:缩放是将图形在x轴和y轴方向上进行拉伸或压缩。
缩放图形可以将图形的每个点的x坐标和y坐标分别乘以缩放因子。
五、应用领域平面直角坐标系被广泛应用于各个学科和领域中。
在几何学中,平面直角坐标系被用于描述图形的性质和计算图形的面积、周长等。
在物理学中,平面直角坐标系用于描述物体的运动轨迹和力的作用方向等。
在经济学和社会科学中,平面直角坐标系被用于建立数学模型和分析数据等。
平面直角坐标系1、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记作(a,b)。
2、平面直角坐标系:两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两轴的交点为平面直角坐标系懂得原点,建立了坐标系的平面叫做坐标平面。
3、坐标:对于平面直角坐标系上的某点A(x,y),x代表横坐标(即过点A作垂直于x轴的垂线与x轴相交的那点对应的数),y代表纵坐标(即过点A作垂直于y轴的垂线与y轴相交的那点对应的数)。
4、坐标的四个象限:两坐标轴正半轴之间的部分称为第一象限,x轴的负半轴和y轴的正半轴之间的部分为第二象限,x轴的负半轴和y轴的负半轴之间的部分为第三象限,x轴的正半轴和y轴的负半轴之间的部分为第四象限。
5、平面直角坐标系内的图像平移:设平面直角坐标系内的图像所对应的某点为P(x,y),若图像向左平移a个单位,则得到Q(x-a,y);若图像向右平移a个单位,则得到Q(x+a,y);若图像向上平移a个单位,则得到Q(x,y+a);若图像向下平移a个单位,则得到Q(x,y-a);注意:(1)四个象限内的点的坐标特征:若点A(a,b)在第一象限,则a>0,b>0;若点A(a,b)在第二象限,则a<0,b>0;若点A(a,b)在第三象限,则a<0,b<0;若点A(a,b)在第四象限,则a>0,b<0;(2)两坐标轴上的点的坐标特征:若点A(a,b)在x轴上,则a为任意实数,b=0;若点A (a,b )在y 轴上,则a=0,b 为任意实数;若点A (a,b )在原点上,则a=b=0;(3) 两坐标夹角平分线上的点的坐标特征:若点A (a,b )在第一、三象限的角平分线上,则a=b 或a-b=0; 若点A (a,b )在第二、四象限的角平分线上,则a=-b 或a+b=0;(4)点到坐标轴的距离:点P (x,y )到x 轴的距离为y点P (x,y )到y 轴的距离为x(5)平行于坐标轴的直线上的点的坐标特征:平行于x 轴的直线上所有的点的纵坐标相同;平行于y 轴的直线上所有的点的横坐标相同;(6)关于坐标轴及坐标原点对称的点的坐标特征:点P (x,y )关于x 轴对称的点的坐标为(x,-y )点P (x,y )关于y 轴对称的点的坐标为(-x, y )点P (x,y )关于原点对称的点的坐标为(-x,-y )点P (x,y )关于x y =对称的点的坐标为(y,x )点P (x,y )关于x y -=对称的点的坐标为(-y,-x )。
平面直角坐标系1.平面直角坐标系相关概念和性质1.1平面直角坐标系的相关概念1.1.1有序数对有序数对的定义:有顺序的两个数a与b组成数对,叫做有序数对.表示方法:由a、b组成的有序数对记作,两个数之间用分开. “有序”两个数的位置;“数对”是指有。
【答案】(a,b),逗号,不能交换,有两个数1.1.2 平面直角坐标系平面直角坐标系的概念:在平面内画两条、的数轴就构成了平面直角坐标系,通常把其中的一条数轴称为横轴或x轴,取向的方向为正方向;的数轴称为纵轴或y轴,取向的方向为正方向,两数轴的交点叫作;x轴和y轴统称为坐标轴.【答案】相互垂直,原点重合,水平,右,竖直,上,原点1.2平面直角坐标系内点的表示和应用1.2.1 象限的定义象限的定义:建立了平面直角坐标系之后,坐标平面被两条坐标轴分成Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分,每个部分称为,分别叫做 .【答案】象限,第一象限、第二象限、第三象限和第四象限1.2.2 各象限内点的坐标特征:点P(x,y)在第一象限⇔ x 0,y 0;点P(x,y)在第二象限⇔ x 0,y 0;点P(x,y)在第三象限⇔ x 0,y 0;点P(x,y)在第四象限⇔ x 0,y 0.【答案】>,>; <,>;<,<;>,<;1.2.3 利用坐标特征确定所在象限:x>0,y>0,点P(x,y)在第象限;x<0,y>0,点P(x,y)在第象限;x<0,y<0,点P(x,y)在第象限;x>0,y<0,点P(x,y)在第象限.【答案】一;二;三;四;1.2.4坐标与距离的关系:点P(x,y)到x 轴的距离是;点P(x,y)到直线y=m 的距离是;点P(x,y)到y 轴的距离是;点P(x,y)到直线x=n 的距离是;当P1P2平行于x 轴时,若P1(x1,y1)、P2(x2,y2)则|P1P2|= ,(y1=y2)当P1P2平行于y 轴时,若P1(x1,y1)、P2(x2,y2)则|P1P2|= ,(x1=x2)【答案】|y|,|y-m|;|x|,|x-n|;|x1-x2|;|y1-y2|1.2.5坐标轴上的点的坐标特征:点P(x,y)在x轴上⇔y= ,x为任意实数;可表示为(a,0)点P(x,y)在y轴上⇔x= ,y为任意实数;可表示为(0,b)2.点P(x,y)既在x轴上,又在y轴上⇔x= ,y= ,即点P坐标为 .【答案】0;0;0,0,(0,0);1.2.6两坐标轴夹角平分线上点的坐标特征:点P(x,y)在一、三象限夹角的平分线上⇔x y;点P(x,y)在二、四象限夹角的平分线上⇔x+y= .【答案】=;02.平面直角坐标系的应用2.1用坐标表示地理位置:2.1.1利用建立平面直角坐标系确定点的坐标:建立平面直角坐标系:先确定,然后画出和,建立平面直角坐标系,再确定它的横坐标及纵坐标。
平面直角坐标系什么是平面直角坐标系平面直角坐标系是一个二维的坐标系,由两条相互垂直的坐标轴所组成。
通常用来描述平面内的几何现象,常见于数学、物理、工程等领域。
坐标轴平面直角坐标系由两条互相垂直的坐标轴构成,称为X轴和Y轴。
X轴是水平方向的,与纵向的Y轴垂直。
它们通过坐标原点O相交,坐标原点是坐标系中最靠近两条轴交叉点的点。
轴上的点表示轴向的数值,点的位置与它所表示的数值有直接的对应关系,因此点与数值可以互相转换。
坐标系中的点在平面直角坐标系中,每个点的位置可以用它在X轴和Y轴上的坐标表示。
设点P的坐标为(x,y),表示点P在X轴上的坐标为x,在Y轴上的坐标为y。
P点在坐标系上的位置就是以O点为起点,延水平方向向右移动x个单位,再延竖直方向向上移动y个单位到达的点。
坐标系上的距离坐标系中的两个点之间的距离可以用勾股定理计算。
设两个点的坐标分别为A(x1,y1)和B(x2,y2),则它们之间的距离为$d = \\sqrt{(x_2 - x_1)^2 + (y_2- y_1)^2}$。
因此,坐标系中任意两个点都可以通过它们的坐标计算出它们之间的距离。
坐标系中的几何形状平面直角坐标系中可以用一些基本的几何形状来描述平面内的几何现象,例如:点一个点可以表示为一个坐标值(x, y)。
直线一条直线可以用斜率和截距表示。
斜率表示直线在坐标系中的倾斜程度,截距表示直线与Y轴的交点位置。
圆一个圆可以表示为圆心坐标和半径大小。
圆心坐标表示圆心在坐标系中的位置,半径表示圆的大小。
矩形一个矩形可以表示为两个对角点的坐标值。
一个对角点表示矩形的左上角或右下角,另一个对角点表示矩形的右上角或左下角。
坐标系中的变换在平面直角坐标系中,可以进行一些坐标变换来描述几何形状的变化。
例如:平移平移是指将一个几何形状沿着水平和竖直方向上移动一定的距离。
对于一个点(x,y),进行平移变换时可以表示为(x + a, y + b),其中a和b表示在水平和竖直方向上移动的距离。
平面直角坐标系平面直角坐标系,又称直角坐标系或笛卡尔坐标系,是在数学和物理学中常用的坐标系统之一。
它以两条相互垂直的数轴(通常是水平的 x 轴和垂直的 y 轴)作为基准,用来确定平面上的点的位置。
这个坐标系的引入,使得我们可以方便地表示、计算和研究平面上各个点的位置和关系。
一、坐标轴平面直角坐标系中的坐标轴通常是水平的 x 轴和垂直的 y 轴。
在坐标轴上,我们选取一个点作为原点(O),两条轴相交于原点,原点的位置被定义为坐标轴的交点。
二、坐标表示在平面直角坐标系中,每个点都可以用一个有序对 (x, y) 来表示。
其中,x 表示与 x 轴的水平距离,称为横坐标;y 表示与 y 轴的垂直距离,称为纵坐标。
三、象限划分平面直角坐标系将平面划分为四个象限,分别称为第一象限、第二象限、第三象限和第四象限。
在第一象限中,x 和 y 的值都为正;在第二象限中,x 的值为负,y 的值为正;在第三象限中,x 和 y 的值都为负;在第四象限中,x 的值为正,y 的值为负。
在坐标系中,我们可以通过坐标的正负值和象限来确定点所在的位置。
例如,点 (3, 4) 位于第一象限,点 (-2, 3)位于第二象限,点 (-5, -1) 位于第三象限,点 (4, -2) 位于第四象限。
四、距离和斜率在平面直角坐标系中,我们可以通过坐标来计算点之间的距离和直线的斜率。
1. 距离公式:设两点 A(x1, y1) 和 B(x2, y2),它们之间的距离可以使用勾股定理来计算:AB = √((x2-x1)^2 + (y2-y1)^2)2. 斜率公式:设直线上两点 A(x1, y1) 和 B(x2, y2),直线的斜率可以使用以下公式计算:k = (y2-y1) / (x2-x1)根据以上公式,我们可以根据给定的坐标计算点之间的距离,或确定直线的斜率,帮助我们解决各种几何和物理问题。
五、应用平面直角坐标系广泛应用于几何、物理、经济学等学科中。
平面直角坐标系
平面直角坐标系,又称笛卡尔坐标系,是一种在二维空间里应用的坐标系。
它是由两个互相垂直的直线组成的,分别叫做X轴和Y轴,可以将二维平面上的任何一点定位。
一般来说,平面直角坐标系的原点为坐标原点(0,0),X轴水平向右延伸,Y轴垂直向上延伸。
每一点都可以用一对数字来表示,分别表示其在X轴和Y轴上的坐标。
用坐标显示出来形成一个坐标轴,已经有助于理解平面坐标系。
平面直角坐标系的使用非常广泛,应用于数学、物理、地理等诸多学科,是学习和处理二维数据的非常有用的工具。
它可以帮助我们更好地理解物体的位置和运动路径,以及分析函数的结构和趋势。
同时,平面直角坐标系还可以帮助我们将二维地图投影到平面上,帮助人们更清楚地理解地形和地貌。
可以说,平面直角坐标系是研究和处理二维数据的必不可少的工具。
在科学研究中,平面直角坐标系是一种非常重要的技术,它被广泛用于表达空间结构,分析和模拟各种现象,有很多强大的数学工具,可以帮助我们更好地了解这些现象。
当然,也可以用平面直角坐标系来研究各种曲线问题,比如椭圆、抛物线、双曲线等等。
总而言之,平面直角坐标系是一种重要的坐标系,应用于数学、物理和地理等多个领域,被广泛用于研究和处理二维数据。
它是一个强大的工具,对于理解二维空间中的物体结构和现象非常有用,也是研究函数曲线的重要基础。
平面直角坐标系平面直角坐标系是解决平面几何问题的基础。
它通过两条相互垂直的轴线来定位平面上的点,一条轴线称为横轴或X轴,另一条轴线称为纵轴或Y轴。
本文将介绍平面直角坐标系的定义、特点及其应用。
定义及特点平面直角坐标系由两条相互垂直的轴线和一个坐标原点组成。
横轴和纵轴相交于坐标原点,并且原点的坐标为(0, 0)。
根据笛卡尔坐标系的规定,横轴向右为正方向,纵轴向上为正方向。
坐标轴上的刻度表示具体的数值,刻度之间的等距离表示单位长度,一般称为“单位距离”。
在平面直角坐标系中,横轴和纵轴上的刻度可以表示实数。
每一个点都可以用一个有序数对(x, y)来表示,其中x表示横轴上的刻度,y表示纵轴上的刻度。
平面直角坐标系可用于表示平面上的点、直线、曲线等几何对象。
通过坐标系,可以方便地计算两个点之间的距离、两条直线的交点等几何性质。
在平面直角坐标系中,直线可以由一个方程表示,常见的直线方程有斜率截距方程和一般式方程。
平面直角坐标系的应用平面直角坐标系在几何学、代数学以及物理学等学科中都有广泛的应用。
下面将介绍一些典型的应用场景。
1. 几何形状的表示:平面直角坐标系可以用于表示任意几何形状。
通过将图形中的各个点的坐标表示在坐标系中,可以直观地观察图形的性质和关系。
例如,可以用平面直角坐标系表示矩形、圆、椭圆等几何形状,便于计算它们的面积、周长等几何特征。
2. 直线和曲线的方程表示:平面直角坐标系可以用于表示直线和曲线的方程。
例如,对于直线,可以根据已知点和斜率确定直线的方程,或者通过已知两点求解直线的方程。
对于曲线,可以通过解析几何方法将曲线转化为方程,从而研究曲线的特性和性质。
3. 空间位置的定位:平面直角坐标系也可以扩展到三维空间,用于表示点、直线和平面的位置。
通过添加垂直于平面的第三条轴线,可以构建三维直角坐标系,用于表示三维几何对象的位置和性质。
三维直角坐标系在物理学、工程学等领域中有着广泛的应用。
4. 函数的表示和计算:平面直角坐标系可以用于表示数学函数,如直线函数、二次函数等。
平面直角坐标系一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。
1、记作(a ,b);2、注意:a、b的先后顺序对位置的影响。
(二)平面直角坐标系2、构成坐标系的各种名称;3、各种特殊点的坐标特点。
(三)坐标方法的简单应用1、用坐标表示地理位置;2、用坐标表示平移。
二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。
三、各象限的角平分线上的点的坐标特点:第一、三象限角平分线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。
四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:P(x,y-a)(2)横坐标为0的点在轴上()(3)纵坐标小于0的点一定在轴下方()(4)到轴、轴距离相等的点一定满足横坐标等于纵坐标()(5)若直线轴,则上的点横坐标一定相同()(6)若,则点P()在第二或第三象限()(7)若,则点P()在轴或第一、三象限()1、若点P ()n m ,在第二象限,则点Q ()n m --,在( )A .第一象限B .第二象限C .第三象限D .第四象限2、点P 的横坐标是-3,且到x 轴的距离为5,则P 点的坐标是( )A. (5,-3)或(-5,-3)B. (-3,5)或(-3,-5)C. (-3,5)D. (-3,-5)3、如果点M 到x 轴和y 轴的距离相等,则点M 横、纵坐标的关系是 ( ) A .相等 B .互为相反数 C .互为倒数 D .相等或互为相反数4、在平面直角坐标系中,点()2,12+-m 一定在 ( ) A .第一象限 B .第二象限C .第三象限D .第四象限5、如果a -b <0,且ab <0,那么点(a ,b)在 ( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限.6、如上右图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是 ( ) A 、点A B 、点B C 、点C D 、点D7、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,- 1)、(-1,2)、(3,-1),则第四个顶点的坐标为 ( ) A .(2,2) B .(3,2) C .(3,3) D .(2,3) 8、若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( )A.1个 B.2个 C.3个 D.4个9、已知点P(102-x ,x -3)在第三象限,则x 的取值范围是 ( ) A .53<<x B.3≤x ≤5 C.5>x 或3<x D.x ≥5或x ≤3 10、过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为 ( ) A .(0,2) B .(2,0)C .(0,-3)D .(-3,0)11、线段CD 是由线段AB 平移得到的,点A (–1,4)的对应点为C (4,7),则点B (-4,–1)的对应点D 的坐标为 ( ) A .(2,9) B .(5,3) C .(1,2) D .(– 9,– 4) 12、到x 轴的距离等于2的点组成的图形是 ( ) A. 过点(0,2)且与x 轴平行的直线 B. 过点(2,0)且与y 轴平行的直线 C. 过点(0,-2)且与x 轴平行的直线D. 分别过(0,2)和(0,-2)且与x 轴平行的两条直线1、已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m .2、点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是3、5,则坐标是 .已知点M(2m+1,3m-5)到x 轴的距离是它到y 轴距离的2倍,则m= 3、直线a 平行于x 轴,且过点(-2,3)和(5,y ),则y=4、若│3-a │+(a-b+2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为_______. 5、已知点P 的坐标(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是__________。
6、如果点M ()ab b a ,+ 在第二象限,那么点N ()b a ,在第___象限.7、若点M ()m m -+3,12关于y 轴的对称点M ′在第二象限,则m 的取值范围是 . 8、在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.9、在平面直角坐标系中,以点P ()2,1为圆心,1为半径的圆必与x 轴有 个公共点。
10、如果点M (3a-9,1-a )是第三象限的整数点,则M 的坐标为__________; 11、已知点M ()a a -+4,3在y 轴上,则点M 的坐标为_____.12、若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限。
四.解答题1、在平面直角坐标系内,已知点(1-2a ,a-2)在第三象限的角平分线上,求a 的值及点的坐标?2、这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.3、如图,已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位再向下平稳2个单位后,与点P 对应的点为Q ,则点Q 的坐标是什么?且在图像标出点。
3、如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S =ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.初二第7周独立练习 2011.10.12满分100分 第一卷(60分)一、选择题:(每题2分,共20分)1.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3样的点P 有( )A.1个 B.2个 C.3个 D.4个 2.已知点A (2,-2),如果点A 关于x 轴的对称点是B ,点B 关于原点对称点是C ,那么点C 的坐标是( )A.(2,2)B.(-2,2)C.(-1,-1)3题3.若点P(m -1, m )在第二象限,则下列关系正确的是( ) A.10<<m B.0<m C.0>m D.1>m 4.如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点( )A.(-1,1)B.(-2,-1)C.(-3,1) D .(1,-2)5. 已知坐标平面内点M(a,b)在第三象限,那么点N(b, -a)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 若点P (x,y )的坐标满足xy=0(x ≠y),则点P ( ) A .原点上 B .x 轴上 C .y 轴上 D .x 轴上或y 轴上7. 如图,在平面直角坐标系中,平行四边形OABC 的顶点O 、A 、C 的坐标分别是(0,0)、(5,0)、(2,3),则顶点B 的坐标是( )A 、(3,7)B 、(5,3)C 、(7,3)D 、(8,2)8. 线段CD 是由线段AB 平移得到的.点A (–1,4)的对应点为C (4,7),则点B (– 4,– 1)的对应点D 的坐标为( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4) 9. 已知△ABC 的面积为3,边BC 长为2,以B 原点,BC 所在的直线为x 轴,则点A 的纵坐标为( ) A. 3 B. - 3 C. 6 D. ±3 10.如图,已知直角坐标系中的点A ,点B 的坐标分别为A (2,4),B (4,0),且P 为AB 的中点,若将线段AB 向右平移3个单位后,与点P 对应的点为Q ,则点Q 的坐标为 ( )A.(3,2)B.(6,2)C.(6,4)D.(3,5)二、填空题:(每题2分,共20分)11.已知两点()()632121,、,P P ,那么21P P 长为 ; 12.点A(5,7-)到原点的距离是13.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则点 A 坐标是 ; 14.已知点A(1,2),AC ∥X 轴, AC=5,则点C 的坐标是 _____________. 15.当b=______时,点B(3,|b-1|)在第一.三象限角平分线上.16. 如果点P (m+3,m+1)在直角坐标系的x 轴上,则点P 的坐标为_________ 17.点A (-3,4),点B 在坐标轴上,且AB=5,那么点B 坐标为18. 如果点A (0,0),B (3,0),点C 在y 轴上,且ABC ∆的面积是5,C 点坐标为 . 19.正方形ABCD 在平面直角坐标系中的位置如图所示,已知A 点的坐标(0,4),B 点的坐标(-3,0),则C 点的坐标是 . 20. 如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是 .yCF BO G A E x三、解答题:21.对于边长为6的正△ABC ,建立适当的直角坐标系,并在图上标明各个顶点的坐标.22.如图,方格纸中有一条美丽可爱的小金鱼.(1)在同一方格纸中,画出将小金鱼图案上每一个点的横坐标乘以-1,而纵坐标不变后得到的图案;(4分)(2)在同一方格纸中,在轴的右侧,将原小金鱼图案上所有的点的坐标以相同的规律进行变化,使图案的形状不变,并且对应线段放大为原来的2倍,画出放大后小金鱼的图案,并简述你将点的坐标进行了怎样的变化.(6分)第二卷(40分)一、选择题(每题4分,共16分)1.对任意实数,点一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如图的坐标平面上有一正五边形ABCDE ,其中C 、D 两点坐标分别为(1,0)、(2,0) .若在没有滑动的情况下,将此正五边形沿着x 轴向右滚动,则滚动过程中,下列会经过(75 , 0)的点是( )A . AB . BC . CD . D3.在一次夏令营活动中,小霞同学从营地点出发,要到距离点的地去,先沿北偏东方向到达地,然后再y x 2(2)P x x x -,A A 1000m C 70︒B x(第22题图)沿北偏西方向走了到达目的地,此时小霞在营地的( ) A. 北偏东方向上 B.北偏东方向上 C. 北偏东方向上 D. 北偏西方向上4. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为( ) A .64. B .49. C .36. D .25. 二、填空题(每题4分,共20分)5. 在直角坐标平面内的机器人接受指令“”(≥0,<<)后的行动结果为:在原地顺时针旋转后,再向正前方沿直线行走.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令后位置的坐标为6. 已知点()01,-P ,O 为原点,︒=∠150POQ ,2=PQ ,则点Q 坐标为 7.如图,在平面直角坐标系中有一矩形ABCD,其中(0,0),B(8,0),C(0,4,) 若将△ABC 沿AC 所在直线翻折,点B 落在点E 处,则E 点的坐标是__________.8. 如图,将正六边形放在直角坐标系中中心与坐标原点重合,若A 点的坐标为(-1,0),则点C 的坐标为______.9.已知:如图,O 为坐标原点,四边形OABC 为矩形,A(10,0),C(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,则P 点的坐标为 .三、解答题(24分)1.(12分)已知在平面直角坐标系中点A (-3,4),O 为坐标原点,点P 为坐标轴上一点,且PAO ∆为等腰三角形,请你画出草图并在图上标明点P 的坐标(不写过程)。