温度检测传感器及仪表
- 格式:ppt
- 大小:1013.00 KB
- 文档页数:25
温度检测仪表的应用与作用一、温度测量的基本概念温度是表征物体冷热程度的物理量。
温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。
它规定了温度的读数起点(零点)和测量温度的基本单位。
目前国际上用得较多的温标有华氏温标、摄氏温标、热力学温标和国际实用温标。
华氏温标(oF)规定:在标准大气压下,冰的熔点为32度,水的沸点为212度,中间划分180等分,每第分为报氏1度,符号为oF。
摄氏温度(℃)规定:在标准大气压下,冰的熔点为0度,水的沸点为100度,中间划分100等分,每第分为报氏1度,符号为℃。
热力学温标又称开尔文温标,或称绝对温标,它规定分子运动停止时的温度为绝对零度,记符号为K。
国际实用温标是一个国际协议性温标,它与热力学温标相接近,而且复现精度高,使用方便。
目前国际通用的温标是1975年第15届国际权度大会通过的《1968年国际实用温标-1975年修订版》,记为:IPTS-68(Rev-75)。
但由于IPTS-68温示存在一定的不足,国际计量委员会在18届国际计量大会第七号决议授权予1989年会议通过了1990年国际温标ITS-90,ITS-90温标替代IPTS-68。
我国自1994年1月1日起全面实施ITS-90国际温标。
1990年国际温标(ITS-90)简介如下。
1.温度单位热力学温度(符号为T)是基本功手物理量,它的单位为开尔文(符号为K),定义为水三相点的热力学温度的1/273.16。
由于以前的温标定义中,使用了与273.15K(冰点)的差值来表示温度,因此现在仍保留这各方法。
根据定义,摄氏度的大小等于开尔文,温差亦可以用摄氏度或开尔文来表示。
国际温标ITS-90同时定义国际开尔文温度(符号为T90)和国际摄氏温度(符号为t90)2.国际温标ITS-90的通则ITS-90由0.65K向上到普朗克辐射定律使用单色辐射实际可测量的最高温度。
ITS-90是这样制订的,即在全量程中,任何温度的T90值非常接近于温标采纳时T的最佳估计值,与直接测量热力学温度相比,T90的测量要方便得多,而且更为精密,并具有很高的复现性。
简述仪表的分类一、按照测量物理量的类型分类1. 电气仪表:用于测量电流、电压、电阻、功率等电气物理量的仪表。
常见的电气仪表有电压表、电流表、电能表等。
2. 液位仪表:用于测量液体的液位高度,常见的液位仪表有浮子液位计、电容液位计、压力式液位计等。
3. 温度仪表:用于测量温度的仪表,常见的温度仪表有温度计、温度传感器等。
4. 压力仪表:用于测量气体或液体的压力,常见的压力仪表有压力计、压力传感器等。
5. 流量仪表:用于测量流体的流量,常见的流量仪表有流量计、涡街流量计等。
6. 频率仪表:用于测量频率的仪表,常见的频率仪表有频率计、频率传感器等。
二、按照工作原理分类1. 机械仪表:采用机械结构和机械运动来测量物理量的仪表,如指针式仪表、机械计时器等。
2. 电子仪表:采用电子元器件和电子技术来测量物理量的仪表,如数字仪表、电子计时器等。
3. 光学仪表:采用光学原理来测量物理量的仪表,如光电测距仪、光谱仪等。
4. 气动仪表:采用气体流动原理来测量物理量的仪表,如气动控制仪表、气动计量仪表等。
5. 磁性仪表:采用磁性原理来测量物理量的仪表,如磁流量计、磁力计等。
三、按照用途分类1. 检测仪表:用于检测和监测物理量的仪表,如检测仪、监测仪等。
2. 控制仪表:用于控制和调节物理量的仪表,如控制器、调节器等。
3. 计量仪表:用于计量和统计物理量的仪表,如计量仪、统计仪等。
4. 分析仪表:用于分析和测试物理量的仪表,如分析仪、测试仪等。
四、按照使用环境分类1. 室内仪表:适用于室内环境使用的仪表,如室内温湿度计、室内气体检测仪等。
2. 室外仪表:适用于室外环境使用的仪表,如室外温度计、室外风速仪等。
3. 特殊环境仪表:适用于特殊环境使用的仪表,如高温仪表、防爆仪表等。
以上是仪表的常见分类,不同的分类具有不同的特点和应用领域。
通过对仪表的分类了解,可以更好地选择和使用适合的仪表。
仪表的发展和应用将继续推动各行各业的进步和发展。
温度传感器检测标准和测试项目
温度传感器是指能感受温度并转换成可用输出信号的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
温度传感器检测项目:
温度传感器检测报告,温度传感器耐压检测,高温低温、温度冲击、浸渍、温度循环、低气压、高低温低气压、恒定湿热、交变湿热、高压蒸煮、砂尘、耐爆炸、盐雾腐蚀、气体腐蚀、霉菌、淋雨、太阳辐射、老化等。
温度传感器检测标准:
JB/T 7486-2008温度传感器系列型谱
JB/T 12599-2016一体化温度传感器
JB/T 13142-2017拖拉机用温度传感器
JG/T 421-2013土木工程用光纤光栅温度传感器
MT/T 381-2007煤矿用温度传感器通用技术条件
QC/T 821-2009汽车用发动机冷却水及润滑油温度传感器
QJ 1088A-1996火箭发动机试验用热电偶温度传感器技术条件
QJ 1457-1988铂电阻型温度传感器通用技术条件
QJ 1694-1989热敏电阻温度传感器通用技术条件
SJ 20832-2002光纤温度传感器通用规范
办理温度传感器检测流程:
1、项目申请——向检测机构监管递交申请。
2、资料准备——根据要求,企业准备好相关的认证文件。
3、产品测试——企业将待测样品寄到实验室进行测试。
4、编制报告——认证工程师根据合格的检测数据,编写报告。
5、递交审核——工程师将完整的报告进行审核。
6、签发证书——报告审核无误后,颁发报告。
Pt100就是说它的阻值在0度时为100欧姆,PT100温度传感器。
是一种以铂(Pt)作成的电阻式温度传感器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)Pt100温度传感器的主要技术参数如下:测量范围:-200℃~+850℃;允许偏差值△℃:A级±(0.15+0.002│t│),B 级±(0.30+0.005│t│);热响应时间<30s;最小置入深度:热电阻的最小置入深度≥200mm;允通电流≤5mA。
另外,Pt100温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。
PT100温度传感器三根芯线的接法:PT100铂电阻传感器有三条引线,可用A、B、C(或黑、红、黄)来代表三根线,三根线之间有如下规律:A与B或C之间的阻值常温下在110欧左右,B与C之间为0欧,B与C在内部是直通的,原则上B与C没什么区别。
仪表上接传感器的固定端子有三个:A线接在仪表上接传感器的一个固定的端子.B和C接在仪表上的另外两个固定端子,B和C线的位置可以互换,但都得接上。
如果中间接有加长线,三条导线的规格和长度要相同。
热电阻的3线和4线接法:是采用2线、3线、4线,主要由使(选)用的二次仪表来决定。
一般显示仪表提供三线接法,PT100一端出一颗线,另一端出两颗线,都接仪表,仪表内部通过桥抵消导线电阻。
一般PLC为四线,每端出两颗线,两颗接PLC输出恒流源,PLC通过另两颗测量PT100上的电压,也是为了抵消导线电阻,四线精确度最高,三线也可以,两线最低,具体用法要考虑精度要求和成本。
PT100温度传感器产品特征:1、不锈钢套管封装,经久耐用;2、活动螺丝固定,使用方便;3、按照国际IEC751国际标准制造,即插即用;4、多种探头尺寸可选、适应面广;5、高精度、高稳定、高灵敏;6、外形小巧,经济实用。
特性指标:●测温范围:-200-400℃●探头长度:5cm/10cm/15cm/20cm●探头直径:Φ5mm●电阻变化:0.3851Ω/℃●安装方式:活动螺丝固定●螺丝规格:M8*1.0●引线长度:一般2米,可订制长度(专用引线)●引线接法:三线式●接线方式:接线叉●套管材质:不锈钢●传感器件:PT(铂)PT100温度传感器采用三线式接法的原因:PT100温度传感器0℃时电阻值为100Ω,电阻变化率为0.3851Ω/℃。
常用温度传感器解析,温度传感器的原理、分类及应用温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。
温度传感器是温度测量仪表的核心部分,品种繁多。
按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
温度传感器的分类接触式接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。
温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。
一般测量精度较高。
在一定的测温范围内,温度计也可测量物体内部的温度分布。
但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。
它们广泛应用于工业、农业、商业等部门。
在日常生活中人们也常常使用这些温度计。
随着低温技术在国防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。
低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。
利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量 1.6~300K范围内的温度。
非接触式它的敏感元件与被测对象互不接触,又称非接触式测温仪表。
这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。
最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。
辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。
各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。
只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。
如欲测定物体的真实温度,则必须进行材料表面发射率的修正。
温度传感器的分类
温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。
热电偶传感器
热电偶是一种感温元件,是一种仪表bai,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度,热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势,这就是所谓的塞贝克效应。
热敏电阻传感器
热敏电阻传感器主要元件是热敏电阻,当热敏材料周围有热辐射时,它就会吸收辐射热,产生温度升高,引起材料的阻值发生变化。
电阻温度检测器
RTD通常用铂金、铜或镍,这几种金属的电阻-温度关系如图所示,它们的温度系数较大,随温度变化响应快,能够抵抗热疲劳,而且易于加工制造成为精密的线圈。
IC温度传感器
集成传感器是采用硅半导体集成工艺而制成的,因此亦称硅传感器或单片集成温度传感器,模拟集成温度传感器是在20世纪80年代问世的,它是将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出功能的专用IC,模拟集成温度传感器的主要特点是功
能单一、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温、控测,不需要进行非线性校准,外围电路简单。
VDO仪表及传感器检查指南VDO传感器在入库检验及以后的故障判断中多采用万用表来检查;压力传感器在无压力的状态下,用万用表测压力传感器有没有阻值;具体的操做如下:1 压力传感器外壳接地,没有报警点的,用万用表测G端子与传感器的外壳,阻值在5-13欧姆是正常的。
2压力传感器外壳接地,有报警点的,用万用表测G端子与传感器的外壳,阻值在5-13欧姆是正常的。
3压力传感器外壳不接地,没有报警点的,用万用表测G端子与传感器的另一端子,阻值在5-13欧姆是正常的。
温度传感器也用万用表检测,操做如下:1温度传感器外壳接地,没有报警点的,用万用表测G端子与传感器的外壳,有阻值是正常的(当时环境温度对应温度传感器的阻值表,一般情况下找几只温度传感器一起测,因为在同一温度下,阻值相同,不同的可能有问题)。
2 温度传感器外壳接地,有报警点的,用万用表测G端子与传感器的外壳,有阻值是正常的(当时环境温度对应温度传感器的阻值表,一般情况下找几只温度传感器一起测,因为在同一温度下,阻值相同,不同的可能有问题)。
3温度传感器外壳不接地,没有报警点的,用万用表测G端子与传感器的另外一个端子,有阻值是正常的(当时环境温度对应温度传感器的阻值表,一般情况下找几只温度传感器一起测,因为在同一温度下,阻值相同,不同的可能有问题)。
在用户的使用中,VDO仪表与VDO传感器同时使用。
对仪表与传感器的检测如下:压力表1 压力表指针不动,先检查线路是否有电,然后在检测压力传感器有没有阻值,如有阻值机器启动后,传感器阻值没有上升,可判定传感器油孔堵塞;如传感器阻值上升压力表指针还是不动,可更换压力表。
2 压力表指示到头,先检查压力表到传感器之间的线路,如没有问题,需要更换传感器。
以上办法可用入快速判断,具体产生的原因,需返回厂家检测。
《传感器与检测技术》温度测量实验报告课程名称:传感器与检测技术实验类型:验证型实验实验项目名称:温度测量一、实验目的和要求(必填)PN 结温度传感器测温实验:了解PN 结温度传感器的特性及工作情况。
热电偶测温性能实验:了解热电偶测量温度的性能与应用范围。
二、实验内容和原理(必填)PN 结温度传感器测温实验:晶体二极管或三极管的PN 结电压是随温度变化的。
例如硅管的PN 结的结电压在温度每升高1ºC 时,下降约 2.1mV,利用这种特性可做成各种各样的PN 结温度传感器。
它具有线性好、时间常数小(0.2~2 秒),灵敏度高等优点,测温范围为-50ºC~+150ºC。
其不足之处是离散性大,互换性较差。
热电偶测温性能实验:热敏电阻分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。
一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,有些功率PTC 也作为发热元件用。
PTC 缓变型热敏电阻可用于温度补偿或作温度测量。
一般的NTC 热敏电阻测温范围为:-50ºC — +300ºC。
热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需要考虑引线长度带来的误差,适用于远距离传输等优点。
但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。
一般只适于低精度的温度测量。
三、需用器件与单元:加热器、热敏电阻、可调直流稳压电源、+15V 不可调直流稳压电源、电压/频率表、主、副电源、液晶温度表。
三、主要仪器设备PN 结温度传感器测温实验:需用器件与单元:主、副电源、可调直流稳压电源、+15V 不可调直流稳压电源、差动放大器、电压放大器、电压/频率表、加热器、电桥、液晶温度表、PN 结传感器。
热电偶测温性能实验:K 型、E 型热电偶、温度测量控制仪、温度源、差动放大器、电压表、直流稳压电源+15V。