室分元件原理与分析
- 格式:docx
- 大小:17.18 KB
- 文档页数:4
室内分布系统室内分布系统是针对室内用户群、用于改善建筑物内移动通信环境的一种成功的方案;是利用室内天线分布系统将移动基站的信号均匀分布在室内每个角落,从而保证室内区域拥有理想的信号覆盖。
从工程角度看室分是由馈线链接有源设备与无源器件通过天馈线放射信号的系统。
本文编者从工程角度分解室分的各部组成和故障排查。
一,无源器件。
无源器件主要包括:耦合器,功分器,3db电桥,合路器等等。
无源器件功率损耗算式为10lg(n)。
1,功分器功分器定义:功率等分器件,根据功率分配规格分为二功分,三功分和四功分。
功分器技术参数:损耗为10lg(1/n),例如二功分损耗为10lg(1/2)=-3db,三功分损耗为10lg(1/3)=-4.8db,四功分损耗为10lg(1/4)=-6db。
功分器应用:一般应用于天线点位分路。
2,耦合器耦合器定义:不等分器件,直通口功率高,耦合口功率低。
根据耦合口功率衰减分为5db 耦合器、7db耦合器、10db耦合器等等。
耦合器参数:耦合口损耗有明文标注,直通口损耗可以计算,以7db耦合器为例,10lg(x)=-7db,x=1/5,则直通口功率分配为4/5,损耗为10lg(4/5)=-0.97db;10db耦合器,10lg(x)=-10db,吸/10,直通口功率分配为9/10,损耗为10lg(9/10)=0.46db。
耦合器应用:一般应用于室分主线,层级主线。
3,3db电桥。
3db电桥定义:同频合路器,合路BTS基站载频不同功率发射口。
3db电桥应用:是主设备和分布过度器件,随着主设备载频单元集成的不断加深,3db电桥作用不断降低。
规格2G频率百米衰减4G频率百米衰减二分之一电缆8dbm左右12dbm左右八分之七电缆4dbm左右7.5dbm左右5,合路器合路器定义:异频合路器,合路不同信号。
2G、3G、4G、WLAN等不同信号多频合路器。
合路器参数:合路器各信号输入端口隔离度为60db,损耗为1dbm左右。
室内分布系统常用器件室内分布系统常用器件主要包含:天线、功分器、耦合器、合路器、馈线和接头1、天线天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。
在无线电设备中用来发射或接收电磁波的部件。
无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。
此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。
一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。
同一天线作为发射或接收的基本特性参数是相同的。
这就是天线的互易定理。
1)室内覆盖天线提供用于覆盖诸如建筑物内部、地下场所、车站、机场、隧道、地铁、电梯等蜂窝基站所延伸不到的通信盲区的各种室内天线,可按需选择吸顶式天线或壁挂式天线、单频段天线或多频段天线、全向辐射天线或定向辐射天线、常规尺寸天线或超小型天线等。
2)美化天线:美化天线是指用和周围比较协调的罩体把天线隐蔽在里面,比如高楼上的仿通气的方柱,空调,挂在墙体上的变色龙,还有小区里放置的景观,都是用玻璃钢做成罩体再喷漆,不容易让我们发现,而且还美化了景色。
2、功分器功分器全称功率分配器,英文名Power divider,是一种将一路输入信号能量分成两路或多路输出相等或不相等能量的器件,也可反过来将多路信号能量合成一路输出,此时可也称为合路器。
一个功分器的输出端口之间应保证一定的隔离度。
功分器按输出通常分为一分二(一个输入两个输出)、一分三(一个输入三个输出)等。
功分器的主要技术参数有功率损耗(包括插入损耗、分配损耗和反射损耗)、各端口的电压驻波比,功率分配端口间的隔离度、幅度平衡度,相位平衡度,功率容量和频带宽度等。
功分器的作用:是将功率信号按一定的比例分配到各分支端口,给不同的覆盖区使用。
3、耦合器在微波系统中,往往需将一路微波功率按比例分成几路,这就是功率分配问题。
室分分析报告1. 引言室内分布系统,即室分系统,是一种针对大型室内空间的无线信号覆盖解决方案。
它通过合理布置天线和增设信号分配器等设备,将无线信号有效地分发到室内的各个角落,提供稳定的网络覆盖和高质量的通信服务。
本文将对某个特定室分系统进行分析,包括现有情况、问题发现和解决方案。
2. 现有情况2.1 系统概述该室分系统应用于某个大型商业中心,总建筑面积约为100,000平方米。
系统的主要组成部分包括:•信号源:运营商提供的基站信号;•光纤:将基站信号传输到室内分布柜机;•室内分布柜机:接收基站信号并进行处理;•天线:将处理后的信号分发到各个室内区域。
2.2 系统参数根据现场测试和调查,我们得到了以下参数:•信号源功率:20 dBm•光纤损耗:0.5 dB/km•室内分布柜机增益:30 dB•天线增益:5 dB•室内区域面积及人流量的统计数据3. 问题分析3.1 信号覆盖不均匀经过现场测试,我们发现室内的某些区域信号强度较低,甚至无信号覆盖。
这给用户的使用体验带来了负面影响。
通过对信号源功率、光纤损耗、室内分布柜机增益和天线增益进行分析,我们发现信号覆盖不均匀的原因可能有:•光纤传输过程中损耗过大;•室内分布柜机增益过小;•天线布置不合理。
3.2 信号干扰严重另外一个问题是信号干扰严重。
在高密度的人流区域,由于信号源功率不变,信号依然较强;但由于总的信号功率相同,各个用户的信号质量受到干扰,导致网络连接不稳定甚至中断。
这主要是由于系统内多个天线之间距离较近,造成了相互干扰。
3.3 其他问题除了上述问题,我们还注意到一些其他问题,比如在某些区域的信号覆盖范围过小、信号容量不能满足用户需求等。
这些问题都需要优化和改进。
4. 解决方案基于以上问题分析,我们提出了以下解决方案:4.1 信号覆盖优化为了解决信号覆盖不均匀的问题,我们建议进行以下改进:•减小光纤的损耗:可以采用更好的光纤材料,减小光纤长度,或者增加光纤连接器的质量。
室分的原理什么是室分?室内分布系统(IBS)又称室分系统,是一种用于室内无线电信号覆盖的技术方案。
它是一种通信系统,通过使用多个小型天线在建筑结构的不同位置进行信号覆盖和传输,从而提高系统的无缝覆盖性能和通信质量。
室内分布系统可以分为被动型、放大型和数字型三种,其中被动型室分系统是最为简单、经济和实用的方式。
室分系统的基本原理室分系统是通过分布在建筑物内部的多个小型室内天线来实现信号的覆盖和传输。
当信号经由一个或多个传输媒介传输时,其信号会受到阻挡、衰弱、渗透和干扰等影响,使得信号的质量下降,信号的覆盖范围受限,同时也会引发信号冲突和通信干扰等问题。
而使用室分系统后,可以将信号传输媒介的影响最小化,利用小型多天线进行信号传输,将信号各别分散覆盖到各个相对独立的小区域内,从而实现信号的全覆盖和减少信号的干扰。
室分系统的组成部分室分系统主要由天线、衰减器、耦合器、分配器、合路器、放大器、过滤器、放大器和分析仪等组成。
其中:天线:是室分系统的核心设备,用于接收和发射信号。
衰减器:用于衰减天线输入信号的强度。
耦合器:用于将输入信号耦合并分配到合适的单元天线上。
分配器:用于将信号分配到不同的天线上,确保室内各区域信号接收稳定。
合路器:用于将单元天线接收到的多路信号汇总成一个信号输出。
放大器:用于放大信号的强度,以便天线的更远传输。
过滤器:用于去除电磁波和其它的通信干扰,以确保信号质量的稳定和连续。
分析仪:用于定位和查找信号干扰源,以便对于干扰进行处理和清除。
室分系统的优点室分系统可以极大地提升建筑物内的信号覆盖质量,使用室分技术能够实现以下几个方面的优点:1. 信号覆盖范围广:由于室分系统采用多个小型天线进行信号传输,可以将指定的区域和具体的房间全部涵盖。
2. 信号覆盖稳定:由于采用多台天线分布式覆盖,从而使得信号在不同区域内的强度和稳定性更可靠,并且不会受到无线环境变化的影响。
3. 信号质量高:由于室分系统使用的多台天线之间进行协同工作,综合效果比起一台天线要好,可以有效地避免信号的波动、抖动和间断问题。
功分器
1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换.
3)主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:
分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因
功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测得与
理论值接近的分配损耗)比如有一个30dBm的信号,转换成毫瓦是1000
毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000÷3
=333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm, 那么
理想分配损耗=输入信号-输出功率=30-25.2=4.8dB,同样可以算出2
功分是3dB,4功分是6dB
插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通
过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗
的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分器
不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。
插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D
的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=
5.3dB-4.8dB=0.5dB.
微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为
0.1dB左右。
由于插损不能使用网络分析仪直接测出,所以一般都以整
个路径上的损耗来表示(即分配损耗+插损):3.5dB/5.5dB/6.5dB等
来表示二/三/四功分器的插损。
隔离度:指的是功分器输出各端口之间的隔离,通常也会根据二、三、四功分器不同而不同约为:18~22dB、19~23dB、20~25dB。
隔离度可通过网络分析仪测,直接测出各个输出端口之间的损耗,如上
图淡蓝色曲线所示,BC间,及 CD间的损耗。
输入/输出驻波比:指的是输入/输出端口的匹配情况,由于腔体功分器的输出端口不是50欧姆,所有对于腔体功分器没有输出端口的驻波要求,输
入端口要求则一般为:1.3~1.4 甚至有1.15的;微带功分器则每个端口
都有要求,一般范围为输入:1.2~1.3 输出:1.3~1.4。
功率容限:指的是可以在此功分器上长期(不损坏的)通过的最大工作功率容限,一般微带功分器为:30~70W平均功率,腔体的则为:100~500W
平均功率。
频率范围:一般标称都是写800~2200MHz,实际上要求的频段是:824-960MHz加上1710~2200MHz,中间频段不可用。
有些功分器还存在800~
2000MHz和800~2500MHz频段
带内平坦度:指的是在整个可用频段内插损含分配损耗的最大值和最小值之间的差值,一般为:0.2~0.5dB。
耦合器
1) 耦合器的作用是将信号不均匀地分成2分(称为主干端和耦合端,也有的
称为直通端和耦合端)
2)种类:耦合器型号较多如5 dB、10 dB、15 dB、20 dB、25 dB、30 dB等。
从结构上分一般分为:微带和腔体2种。
腔体耦合器内部是2条金属杆,组成的一级耦合.
微带耦合器内部是2条微带线,组成的一个类似于多级耦合的网络.
3)主要指标:耦合度、隔离度、方向性、插入损耗、输入输出驻波比、功率
容限、频段范围、带内平坦度。
以下对各项指标进行说明:
耦合度:信号功率经过耦合器,从耦合端口输出的功率和输入信号功率直接的差值。
(一般都是理论值如:6dB、10dB、30dB等)
耦合度的计算方法:如上图所示。
是信号功率 C-A 的值比如输入信号A为30dBm 而耦合端输出信号C为24dBm 则耦合度=C-A=30-24=6dB,
所以此耦合器为6dB耦合器。
因为耦合度实际上没有这么理想,一般有个波动的范围,比如标称为6dB的耦合器,实际耦合度可能为:5.5~6.5之间波动。
隔离度:指的是输出端口和耦合端口之间的隔离;一般此指标仅用于衡量微带耦合器。
并且根据耦合度的不同而不同:如:5-10dB为18~23dB,15dB为20~25dB,20dB(含以上)为:25~30dB;腔体耦合器的隔离度非常好所以没有此指标要求。
方向性:指的是输出端口和耦合端口之间的隔离度的值再减去耦合度的值所得的值,由于微带的方向性随着耦合度的增加逐渐减小最后30dB以上基本没有方向性,所以微带耦合器没有此指标要求,腔体耦合器的方向性一般为:1700~2200MHz时:17~19dB,824~960MHz时:18~22dB。
计算方法:方向性=隔离度-耦合度
例如6dB的隔离度是38dB,耦合度实测是6.5dB,则方向性=隔离度-耦合度=38-6.5=31.5dB。
插入损耗:指的是信号功率经过耦合器至输出端出来的信号功率减小的值再减去分配损耗的值所得的数值。
一般插损对于微带耦合器则根据耦合度不同而不同,一般为:10dB以下的:0.35~0.5dB,10dB以上的:0.2~0.5dB。
计算方法:由于实际上耦合器的内导体是有损耗的,如上图所示以6dB耦合器为例,在实际测试中假设输入A是:30dBm,耦合度实测是:6.5dB,输出端的理想值是28.349dBm(根据实测的输入信号,和耦合度可以计算得出),再实测输出端的信号,假设是27.849dBm,那么插损=理论输出功率-实测输出功率=28.349-27.849=0.5dB;
输入/输出驻波比:指的是输入/输出端口的匹配情况,各端口要求则一般为:
1.2~1.4;
功率容限:指的是可以在此耦合器上长期(不损坏的)通过的最大工作功率容限,一般微带耦合器为:30~70W平均功率,腔体的则为:100~200W 平均功率。
频率范围:一般标称都是写800~2200MHz,实际上要求的频段是:824-960MHz加上1710~2200MHz,中间频段不可用。
有些功分器还存在800~2000MHz和800~2500MHz频段
带内平坦度:指的是在整个可用频段耦合度的最大值和最小值之间的差值,微带一般为:0.5~0.2dB。
腔体:由于耦合度是一条曲线,所以没有此要
求。
耦合损耗:理想的耦合器输入信号为A,耦合一部分到B,则输出端口C必定就要有所减少。
耦合器和功分器均为无源器件,在工作中不使用电源(即不消耗能源),没有功率补充,因为能量是守恒的,输入信号与多个输出信号之和相等(不计插入损耗)。
计算方法是:首先将所以端口的“dBm”功率转换成“毫瓦”为单位表示,比如A输入端的功率原来是30dBm,转换成“毫瓦”是1000毫瓦,而耦合端的输出是25.5dBm(先假设用的是6dB耦合器,并且6dB耦合器实际耦合度是6.5dB),将25.5dBm转换成毫瓦是:316.23毫瓦。
再假设此耦合器没有其它损耗,那么剩下的功率应该是1000-316.23=683.77毫瓦,全部由输出端输出。
将683.77毫瓦转换成“dBm”=28.349, 那么此耦合器的耦合损耗就等于输入端的功率(dBm)-输出端的功率(dBm)=30dBm-28.349dBm=1.651dB,这个值指的是耦合器没有额外损耗(器件损耗)的情况下的耦合损耗。
微带耦合器平坦度: 10dB以下一般为0.5dB,10~20dB一般为1.5dB,20~30一般为2.0dB
腔体耦合器的平坦度:由于腔体耦合器的耦合度是一条类似于抛物线的曲线,所以平坦度非常差.实际使用中表示起来比较困难。
合路器和电桥
1)作用:合路器的主要作用是将几路信号合成起来。
2)种类:合路器分为双频合路器和电桥合路器2种。
双频合路器分为GSM/CDMA 两网合路器和GSM/DCS两网合路器。
3)工作机理说明:双频合路器的工作原理类似于双工器,但要求被合成的信号不在同一频段范围内,比如G网和C网,G网和D网,有C网和D网之间的合路均可以才用双工合路器,而且双频合路器具有插损低(有的只有零点几dB)隔离度大(大于70~90dB) 等特点。
由于C网二次谐波落在D网内,因此,C网和D网的隔离度比其他种类的小约10 dB。
当被合路的信号在同一频段内是就只能采用电桥合路器了.电桥合路器有合路损耗,比如2合1有3dB的合路损耗,而且电桥合路器的隔离度远远低于双工合路器,一般只有20dB左右。