当前位置:文档之家› 串联谐振电路分析

串联谐振电路分析

串联谐振电路分析
串联谐振电路分析

外施耐压串联谐振电路分析

已知:串联谐振装置电抗器组合方式为两串三并(即三条并联支路上各有两个电抗器串联起来),单个电抗器电感值为L ,单个电抗器电阻值为r ,所有电抗器的铭牌参数均一致。被试品电容值为C ,试验中被试品加压到U ,励磁变选用的高低压抽头电压变比为K ,励磁变视在功率S ,励磁变额定电压U o ,励磁变额定电流为I o ,被试品加压到U 时励磁变的损耗为P 损耗。 一.需计算量如下:

1.画出串联谐振时整个电路的基本电路图。

2.画出谐振时高压侧的向量图。

3.串联谐振频率f 的计算公式。 f=

LC

21

π(本题装置串联谐振频率f=LC 832

π) 4.串谐高压侧电路电流I 高压侧的计算公式,并且算出分配到单个电抗器的电

流,电压时多少?

I 高压侧=U jC f 2 π;谐振时:分配到单个电抗器电流L I =

LC

UC 6;

分配到单个电抗器电压L U =2

U -。 5.串谐低压侧电路电流I 低压侧的计算公式。

I 低压侧=U

jC f 2 **πK 6.电路品质因数Q (放大倍数)的计算公式。 Q=

wCR 1或R wL (本题装置串联谐振品质因数Q=C

232

r L

) 7.被试品或电抗器组合的无功功率Q 无功计算公式。

Q 无功=2U jC f 2 *π 或L 2233U

C f j8- *π (=L 32L,本题Q 无功= 3

L U

C f j16-2233 *π )

8.串联谐振高压侧有功功率P 计算公式。

P=R 2222U C f 4

- *π (=R 32r 本题P=3

r U

C f 8-2222 *π)

9.串联谐振高压侧电路总功率P 总计算公式。

P 总=2U jC f 2 *πL 2233U

C f j8- *πR 2222U C f 4- *π 化简

P 总 = ()jCR f 2-CL f 4-1U jC f 22***πππ (=

L 32L ;=R 32r 本题P 总=??

? ??***3jCr f 4-3CL f 8-1U jC f 22πππ ; 谐振时P 总=R 2

2

2

2U C f 4- *π=3

r U C f 8-2

222 *π)

10.励磁变输出高压U 输出,I 输出,P 输出计算公式。

I 输出=U

jC f 2 *π U 输出=U

jC f 2 *π(C

L R j f 21

j f 2*+*+ππ)

(=

L 32L ;=R 32r 本题U 输出=U

jC f 2 *π(C

j f 213jL f 43r 2*+*+ππ))

P 输出=()jCR f 2-CL f 4-1U jC f 22***πππ (=

L 32L ;=R 32r 本题P 输出=??

? ??***3jCr f 4-3CL f 8-1U jC f 22πππ )

二.简述:(电抗器组合方式不定,各设备参数不定。) 1.简述怎么确定电抗器组合方式?

答:根据被试品试验电压c U 及电抗器额定电压NL U 确定电抗器串联级数;再根据谐振时C L X X =,通过已知被试品电容C 计算出电抗电感L 的大小确定是否并联以及并联级数。(注:无法确切得被试品电容C 的值时,被试品电容可以依据

中华人民共和国电力行业标准-现场绝缘试验实施导则 DL474.4-92 中的交流耐压实验 表1作为参考)

2.简述怎么确定励磁变容量选择,励磁变高低压侧抽头选择?

答:首先根据被试品电容C ,试验电压c U ,计算出谐振回路电流 I

输出=c

U jC f 2 *π;对应电抗器组合方式可知谐振回路等效电阻R ,谐振时,P 输出=R 2222U C f 4- *π,U 输出=R U jC f 2 *π。选择的励磁变额定容量应大于P 输出,励磁变高低压侧抽头应选择额定电压大于U

输出,额定电流大于I 输出。 3.装置找不到谐振点频率f 的原因? 答:根据 f=

LC

21

π,被试品电容过小(电感组合调至最大),谐振频率f

过大,超出变频范围;被试品电容过大(电感组合调至最小),谐振频率f 过小,

超出变频范围。

4.高压闪络电路跳闸的原因分析?

答:1.绝缘子表面淋雨,造成湿闪2.绝缘子表面脏污受潮,造成污闪。5.试验中,加压线上使用波纹管的原因?

答:高电压交流流过导线产生集肤效应,易发生电晕,电晕产生臭氧,造成功率损失,为较少电晕危害故使用波纹管。使用波纹管改善电场不均匀情况,抑制电晕。

6.找到谐振点之后,有时升压过程中,只升电流,而电压不升的原因分析?

答:被试品电容过大,选择串联电抗较小,回路等效电阻较小,合闸电压就已经形成大电流,升压过程中,只升电流,而电压上升缓慢表现为“不升”。串联谐振(电压谐振)只能放大电压。对与试验电压较低,考虑采用并联谐振(电流谐振)补偿电流,并联电抗补偿无功,放大电流。

RLC并联谐振电路

R L C并联谐振电路公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

电路课程设计举例:?以 R L C 并联谐振电路 1.电路课程设计目的 (1)验证RLC 并联电路谐振条件及谐振电路的特点; (2)学习使用EWB 仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的RLC 串联电路图如下图所示。 图1 RLC 并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 发生谐振时满足L C ωω001= ,则RLC 并联谐振角频率ω0和谐振频率 f 0分别是 RLC 并联谐振电路的特点如下。 (1)谐振时Y=G,电路呈电阻性,导纳的模最小G B G Y =+=2 2. (2)若外施电流I s 一定,谐振时,电压为最大,G I U S o =,且与外施电流同相。 (3)电阻中的电流也达到最大,且与外施电流相等,I I S R =. (4)谐振时0=+I I C L ,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有几种方法可以观察电路发生串联谐振:

(1)利用电流表测量总电流I s 和流经R 的电流I R ,两者相等时即为并 联谐振。 (2)利用示波器观察总电源与流经R 的电流波形,两者同相即为并联谐振。 例题:已知电感L 为0.02H,电容C 为50uf,电阻R 为200Ω。 由LC f π210=计算得,Hz f 1.1570= 按上图进行EWB 的仿真,得到下图。 流经电阻R 的电流和总电流I 相等为10mA,流进电感L 和电容C 的总电流为5.550uF ,几乎为零,所以电路达到谐振状态。 总电源与流经R 的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB 仿真RLC 并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R 的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

RLC并联谐振电路

电路课程设计举例: 以RLC 并联谐振电路 1.电路课程设计目的 (1)验证RLC 并联电路谐振条件及谐振电路的特点; (2)学习使用EWB 仿真软件进行电路模拟。 2.仿真电路设计原理 本次设计的RLC 串联电路图如下图所示。 图1 RLC 并联谐振电路原理图 理论分析与计算: 根据图1所给出的元件参数具体计算过程为 )1(111L C j R L j C j R Y ωωωω-+=++= 发生谐振时满足L C ω ω0 1 = ,则RLC 并联谐振角频率 ω 和谐振频率 f 分别是 LC LC f πω21, 10 0= = RLC 并联谐振电路的特点如下。 (1)谐振时Y=G,电路呈电阻性,导纳的模最小 G B G Y =+= 2 2 . (2)若外施电流 I s 一定,谐振时,电压为最大,G I U S o =,且与外施电流同相。 (3)电阻中的电流也达到最大,且与外施电流相等, I I S R = .

(4)谐振时 0=+I I C L ,即电感电流和电容电流大小相等,方向相反。 3.谐振电路设计内容与步骤 (1)电路发生谐振的条件及验证方法 这里有几种方法可以观察电路发生串联谐振: (1)利用电流表测量总电流 I s 和流经R 的电流 I R ,两者相等时即为并联谐振。 (2)利用示波器观察总电源与流经R 的电流波形,两者同相即为并联谐振。 例题:已知电感L 为,电容C 为50uf,电阻R 为200Ω。 由LC f π210 = 计算得, Hz f 1.1570 = 按上图进行EWB 的仿真,得到下图。

流经电阻R的电流和总电流I相等为10mA,流进电感L和电容C的总电流为,几乎为零,所以电路达到谐振状态。 总电源与流经R的电流波形同相,所以电路达到并联谐振状态。 4.实验体会和总结 这次实验我学会了运用EWB仿真RLC并联谐振电路,并且运用并联谐振的特点判断达到谐振状态。尤其是观察总电源与流经R的电流波形,两者同相即为并联谐振。这种方法我们只能在实验中看到,平时做题试卷上是不可能观察到的。这加深了我对谐振电路的理解。

(串联谐振电路分析)

《电子设计与制作》 课 程 设 计 报 告

目录 一:题目………………………………………………………..二:原理………………………………………………………….三:电路图……………………………………………………….四:实验内容…………………………………………………….五:实验分析……………………………………………………六:心得体会…………………………………………………….

一、题目:串联谐振电路分析 二、原理 1.串联谐振的定义和条件 在电阻、电感、电容串联电路中,当电路端电 压和电流同相时,电路呈电阻性,电路的这种状态叫做串联谐振。 可以先做一个简单的实验,如图所示,将:三个元件R 、L 和C 与一个小灯泡串联,接在频率可调的正弦交流电源上,并保持电源电压不变。 实验时,将电源频率逐渐由小调大,发现小灯泡也慢慢由 暗变亮。当达到某一频率时,小灯泡最亮,当频率继续增加时, 又会发现小灯泡又慢慢由亮变暗。小灯泡亮度随频率改变而变 化,意味着电路中的电流随频率而变化。怎么解释这个现象呢? 在电路两端加上正弦电压U ,根据欧姆定律有 || U I Z = 式中 2 2 2 2 1 ||()()L C Z R X X R L C ωω= +-= +- L ω和 1 C ω部是频率的函数。但当频率较低时,容抗大而感抗小, 阻抗|Z|较大,电流较小;当频率较高时,感抗大而容抗小,阻抗|Z|也较大,电流也较小。在这两个频率之间,总会有某一频率,在这个

频率时,容抗与感抗恰好相等。这时阻抗最小且为纯电阻,所以,电流最大,且与端电压同相,这就发生了串联谐振。 根据上述分析,串联谐振的条件为 L C X X = 即 001 L C ωω= 或 01LC ω= 01 2f LC π= 0f 称为谐振频率。可见,当电路的参数 L 和C 一定时,谐振频率 也就确定了。如果电源的频率一定,可以通过调节L 或C 的参数大小来实现谐振。 2、串联谐振的特点 (1)因为串联谐振时,L C X X =,故谐振时电路阻抗为 0||Z R = (2)串联谐振时,阻抗最小,在电压U 一定时,电流最大,其值 为 00|| U U I Z R = = 由于电路呈纯电阻,故电流与电源电压同相,0? = (3)电阻两端电压等于总电压。电感和电容的电压相等,其大小

谐振电路工作原理

https://www.doczj.com/doc/228778528.html, 谐振电路工作原理,华天电力是串联谐振装置的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找串联谐振,就选华天电力。 谐振就是电路中既有感性原件又有容性原件,感性原件是通直流阻交流,容性原件是通交流阻直流,物理上用相位来描述,感性原件和容性原件的相位正好相反,而感性原件和容性原件在电路中呈现的阻性在某个频率下会相等,及大小相等,方向相反,这样的电路称为谐振电路,该频率称为谐振频率。 在RLC串联电路中,若接入一个输出电压幅值一定,输出频率f连续可调的正弦交流信号源,则电路中的许多参数将随着信号源的频率的变化而变化,即电路阻抗Z,回路电流I,电流与信号源电压之间的相位差φ分别为 Z=[R2+(ZL-ZC)2]1/2=[R2+(ωL-1/ωC)2]1/2 I=U/Z=U/[R2+(ωL-1/ωC)2]1/2 φ=arctan[(ωL-1/ωC)/r] 上述三个式子中,信号源角频率ω=2пf,容抗Zc=1/ωC,感抗ZL = ωL,各参数随ω的变化而变化。ω很小时,电路总阻抗Z=[R2+(1/ωC)2]1/2,φ→π/2电流的相位超前与信号源电压相位,整个电路呈容性;ω很大时,Z=[R2+(ωL)2]1/2,φ→-π/2,电流相位滞后与信号源电压相位,整个电路呈感性;当容抗等于感抗,相互抵消时,电路总阻抗Z=R,为最小值,此时回路电流为最大值Imax=U/R,相位差φ=0,整个电路呈阻性,这个现象即为谐振现象。发生谐振时的频率fo称为谐振频率,角频率ωo称为谐振角频率,它们之间的关系为 ω=ω0=(1/LC) 1/2 或fo=ω0/2π=1/[2π(LC) 1/2]

实验一 RLC串联谐振电路的研究

2 1实验一 RLC 串联谐振电路的研究 一、实验目的 1、学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线; 2、加深理解电路发生谐振的条件、特点、掌握电路品质因数(电路Q 值)的物理意义及 其测定方法。 二、实验设备和器材 函数信号发生器1只 交流毫伏表1只(0~600V) 电路原理实验箱1只 三、实验原理与说明 1.在图1.1所示的R 、L 、C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的 感抗、容抗随之而变,电路中的电流也随f 而变。取电阻电路电流I 作为响应,当输入电压U i 维持不变时,在不同信号频率的激励下,测出电阻R 两端的电压U 0之值,则I=U 0/R 。然后以f 为横坐标,以I 为纵坐标,绘出光滑的曲线,此即为幅频特性,亦称电流谐振曲线,如图1.2所示。 2. 在 处(X L =X C )即幅频特性曲线尖峰所在的频率点,该频率称为 谐振频率,此时电路呈纯阻性,电路阻抗的模为最小,在输入电压U i 为定值时,电路中的电流达I 达到最大值,且与输入电压U i 同相位,从理论上讲,此时,U i =U R =U 0, U L =U C =QU i ,式中的Q 称为电路的品质因数。 3. 电路品质因数Q 值的两种测量方法 一是根据公式 测定,U C 与U L 分别为谐振时电容器C 和电感线圈L 上的电压;另一方法是通过测量谐 振曲线的通频带宽度 再根据 求出Q 值,式中f 0为谐振频率,f 1和f 2是失谐时,幅度下降到最大值的 倍时的上、 下频率点。 Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好,在恒压源供电时,电路的品 质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。 四、实验内容 1.按图1.3接线,取C=0.1μF ,R=200Ω,调节信号源输出电压为V P-P = 2.83V ,有效值约 U i =1V 正弦信号,并在整个实验过程中保持不变。(本实验的电感L 约30mH) 2.找出电路的谐振频率f 0,其方法是,将交流毫伏表接在R (200Ω)两端,令信号源的 频率由小逐渐变大(注意要维持信号源的输出幅度不变),当U 0的读数为最大时,读得频率表上的频率值即为电路的谐振频率f 0,并测量U 0、U C 、U L 之值(注意及时更换毫伏表的量限),记入表格中。 3. 在谐振点两侧,先测出下限频率f 1和上限频率f 2及相对应的U R 值,然后按频率递增 或递减500H Z 或1KH Z ,依次各取8个测量点,逐点测出U R ,U L ,U C 之值,记入数据表格。 LC f f π21 0==O C O L U U U U Q ==1 2f f f -=?1 2f f f Q o -=

串联谐振系统讲解

在电阻、电感及电容所组成的串联电路内,当容抗XC与感抗XL相等时,即XC=XL,电路中的电压U与电流I的相位相同,电路呈现纯电阻性,这种现象叫串联谐振。当电路发生串联谐振时电路的阻抗Z=√R^2 +(XC-XL)^2=R,电路中总阻抗最小,电流将达到最大值。 串联谐振的三大应用 高压大电容量设备进行交流耐压试验时,试验变压器容量要求非常大,试验设备笨重,而 应用串联谐振原理可以利用电压及容量小得多的设备产生所需的试验电压,满足试验要求。下面三新电力给大家介绍一下串联谐振试验装置在各个领域的应用。 1.在电缆试验中的应用 城乡电网中电缆的大量使用,其故障时有发生。为保证交联电缆的安全运行,国家电网公司对电缆交接和预防性试验做出了新的规定,用交流耐压试验替代原来的直流耐压试验,以 避免直流试验的累积效应对电缆造成损伤。

国际大电网会议(CIGRE)21.09工作组的建议导则提出高压挤包绝缘电缆的现场试验采用DAXZ串联谐振试验系统,频率范围为30~300Hz。并在1997年发表的题为“高压橡塑电缆系统敷设后的试验”的总结报告中明确指出以下3条。 ①由于直流电场强度按电阻率分布,而电阻率受温度等影响较大,同时耐压试验过程中,终端头的外部闪络引起的行波可能造成绝缘损坏。 ②直流耐压试验在很高电压下,难以检出相间的绝缘缺陷。 ③直流电压本身容易在电缆内部集起空间电荷,引起电缆附件沿绝缘闪络,因波过程还会产生过电压,这些现象迭加在一起,使局部电场增强,容易形成绝缘弱点,在试验过程中可能导致绝缘击穿,并可能在运行中引起事故。 很多电缆在交接试验中按GB50150-2006标准进行直流耐压试验顺利进行,但投运不久就发生绝缘击穿事故,正常运行的电缆被直流耐压试验损坏的情况也时有发生。交流耐压试验因其电场分布符合运行实际情况,故对电缆的试验最为有效。 通常交流电力电缆的电容量较大,试验电流也很大,调感式设备的体积将非常巨大并且电感调节也很困难,而调频式装置则灵活性更强,更易于实现。因此,电缆现场交流耐压试验多利用变频谐振试验设备。三新可根据客户需求制造10KV、35KV、110KV、220KV、500KV 电压等级的串联谐振试验装置。 2.在GIS设备中的应用 气体绝缘开关设备在工厂整体组装完成以后或分单元进行调整试验,试验合格后以分单元运输的方式运往现场安装。运输过程中的振动、撞击等可能导致GIS元件或组装件内坚固件松动或移位;安装过程中,在联结、密封等工艺处理方面可能失误,导致电极表面刮伤或安装错位引起电极表面缺陷;安装现场可能从空气中进入悬浮尘埃。导电微粒杂质等,这些在安装现场通过常规试验将难以检查出来,对GIS的安全运行将是极大的威胁。 由于试验设备和条件所限,早期的GIS产品多数未进行严格的现场耐压试验。事故统计表明没有进行现场耐压试验的GIS大都发生了事故。因此,GIS必须进行现场耐压试验。 GIS的现场耐压主要包括交流电压、振荡操作冲击电压和振荡雷电冲击电压等3种试验方法。其中交流耐压试验是GIS现场耐压试验最常见的方法,它能够有效地检查异常的电场结构(如电极损坏)。 目前,由于试验设备和条件所限,现场一般只做交流耐压试验。IEC517和GB7674认定对SF6气体绝缘试验电压频率在10~300Hz范围内与工频电压试验基本等效。国内外大多采用调频式串联谐振耐压试验装置进行GIS现场交流耐压试验。

谐振电路的原理和作用

谐振电路的原理和作用 含有电感线圈和电容器的无源(指不含独立电源)线性时不变电路在某个特定频率的外加电源作用下,对外呈纯电阻性质的现象。这一特定频率即为该电路的谐振频率。以谐振为主要工作状态的电路称谐振电路。无线电设备都用揩振电路完成调谐、滤波等功能。电力系统则需防止谐振以免引起过电流、过电压。 电路中的谐振有线性谐振、非线性谐振和参量谐振。前者是发生在线性时不变无源电路中的谐振,以串联谐振电路中的谐振为典型。非线性谐振发生在含有非线性元件电路内。由铁心线圈和线性电容器串联(或并联)而成的电路(习称铁磁谐振电路)就能发生非线性谐振。在正弦激励作用下,电路内会出现基波谐振、高次谐波谐振、分谐波谐振以及电流(或电压)的振幅和相位跳变的现象。这些现象统称铁磁谐振。参量谐振是发生在含时变元件电路内的谐振。一个凸极同步发电机带有容性负载的电路内就可能发生参量谐振。 串联谐振电路:用线性时不变的电感线圈和电容器串联成的谐振电路。这种电路产生的谐振称串联谐振,又称电压谐振。当外加电压的频率ω等于电路的谐振频率ω0时,除改变ω可使电路谐振外,调整L、C的值也能使电路谐振。谐振时电路内的能量过程是在电感和电容之间出现周期性的等量能量交换。以品质因数Q值表示电路的性能,Q值越大,谐振曲线越尖窄,则电路的选择性越好。考虑信号源的内阻时,Q值要下降,因此,串联谐振电路不宜与高内阻信号源一起作用。 并联谐振电路:用线性时不变电感线圈和电容器并联组成的谐振电路。其中的谐振称并联谐振,又称电流谐振。以Q表示电路的性能,电路内的能量过程与串联谐振电路类似。信号源内阻会降低Q 值,且内阻越小,品质因数值越小,所以并联谐振电路不宜与低内阻信号源一起使用。 式中R为电阻,L为电感,C为电容,ω为非谐振频率,ω0为谐振频率。电路内的能量过程与串联谐振电路类似。信号源内阻会降低Q 值,且内阻越小,品质因数值越小,所以并联谐振电路不宜与低内阻信号源一起用。 原理: 主要是指电感、电容并联谐振组成的LC振荡器。 因为LC回路有选频特性。理由:回路的等效阻抗Z=(-J/ωC)//(R+JωL),可知,阻抗Z与信号频率有关。不同频率的信号电流(同等大小的电流)在通过回路时,产生的电压是不同的。只有一个频率的信号电流产生的电压最大,就是当信号角频率ω=ω0=1/√LC时。此时回路阻抗最大,叫做并联谐振。 作用: RCL串联电路中的感抗与容抗有相互抵消的作用,即ωL-1/ωC=0,此时串联电路中的电抗为0,电流和电压同相位,称谓串联谐振。

串联谐振:如何谐振及其原理解析

串联谐振:如何谐振及其原理解析 谐振电路是在具有电阻R、电感L、电容C的交流电路中;一般电路的电压与电流电路中的相位是不同的。如果我们调整电路元件(L或C)或电源频率的参数,它们可以具有相同的相位,整个电路呈现纯电阻。当电路达到这种状态时,称为共振。研究共振现象的目的是了解这一客观现象,充分利用科学技术中共振的特点,同时预防产生的危害。根据电路连接的不同,可分为串联谐振和并联谐振。 在HTXZ串联谐振情况下,电感电压和电容电压是等价的,即电感电容吸收不同数目的等效无功率,使电路吸收的无功率为0;电场能量和磁场能量不断变化,但这部分能量在电场和磁场之间振荡,整个电路的电磁场能量之和保持不变;励磁电源电路的能量转化为电阻加热。为了维持振荡,励磁必须不断地提供能量来补偿电阻的热消耗。与电路中的电磁场总能量相比,每个振荡电路消耗的能量越少,电路的质量越好。 首先,谐振是在一定条件下由R、L和C元件组成的电路的特殊现象。首先,当C系列电路发生谐振时,首先要分析电路的特性,如图1、C系列电路的复阻抗如下:在正弦电压作用下:电路的复阻抗如下:

公式中,电抗x=x1 xc是角频率w的函数,x随w的变化如图2所示。当w从0变为如图2所示时,x从-变为+如W所示,当w 0,当x是电容性的,当w 0,当x是电感性的,当w=w0,当阻抗z(w0)=r是纯电阻、电压和无穷大时。电流同相,我们称之为此时电路谐振的工作状态。由于这种共振发生在RLC串联电路中,我们也可以称之为串联谐振、串联谐振电路等。式1是串联电路的谐振条件,从中可以得到谐振角频率w。如图:

谐振频率为 由此可见,串联电路的谐振频率是由其自身的参数L和C决定的,这与外界条件无关。当电源固定时,可以调节L和C,使电路的固有频率与电源频率产生共振。 4.变频串联谐振的计算方法 变频串联谐振主要是指所研究的串联电路的电压和电流达到同一相位,即电路中电感的电感电抗和电容电抗的值和时间相等,使所研究的电路呈现出纯的电阻特性。在给定的端电压下,所研究的电路中会出现最大电流。电路中消耗的是最大的有功功率。 变频串联谐振计算方法 z=r+jx,x=0,z=r,i=u/z=u/r。 (1)谐振定义:在电路中,当两个元件的能量由电路中的一个电抗模块释放,而另一个电抗模块必须吸收相同的能量时,两个元件的能量相等,即两个电抗元件之间会有能量脉动。 (2)为了产生共振,电路必须有电感L和电容C。 (3)相应的共振频率是以fr表示的共振频率或共振频率。 串联谐振电路之条件如下: 当q=qi2xl=i2xc或xl=xc时,得到了r-l-c串联电路的谐振条件。

RLC串联电路谐振练习题

一、选择题 1、RLC 并联电路在f 0时发生谐振,当频率增加到2f 0时,电路性质呈( ) A 、电阻性 B 、电感性 C 、电容性 2、处于谐振状态的RLC 串联电路,当电源频率升高时,电路将呈现出( ) A 、电阻性 B 、电感性 C 、电容性 3、下列说法中,( )是正确的。 A 、串谐时阻抗最小 B 、并谐时阻抗最小 C 、电路谐振时阻抗最小 4、发生串联谐振的电路条件是( ) A 、R L 0ω B 、LC f 1 0= C 、LC 1 0=ω 5、在RLC 串联正弦交流电路,已知XL=XC=20欧,R=20欧,总电压有效值为220V ,电感上的电压为( )V 。 A 、0 B 、220 C 、 6、正弦交流电路如图所示,已知电源电压为220V ,频率f=50HZ 时,电路发生谐振。现将电源的频率增加,电压有效值不变,这时灯泡的亮度( )。 A 、比原来亮 B 、比原来暗 C 、和原来一样亮 7、正弦交流电路如图所示,已知开关S 打开时,电路发生谐振。当把开关合上时,电路呈 现( )。 A 、阻性 B 、感性 C 、容性 二、计算题 1、在RLC 串联电路中,已知L=100mH,R=Ω,电路在输入信号频率为400Hz 时发生谐振,求电容C 的电容量和回路的品质因数. 2、 一个串联谐振电路的特性阻抗为100Ω,品质因数为100,谐振时的角频率为1000rad/s,试求R,L 和C 的值. 3、一个线圈与电容串联后加1V 的正弦交流电压,当电容为100pF 时,电容两端的电压为100V 且最大,此时信号源的频率为100kHz,求线圈的品质因数和电感量。 4、已知一串联谐振电路的参数Ω=10R ,mH 13.0=L ,pF 558=C , 外加电压5=U mV 。

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

RLC串联谐振电路(Multisim仿真实训)

新疆大学 实习(实训)报告 实习(实训)名称: __________ 电工电子实习(EDA __________ 学院: __________________ 专业班级_________________________________ 指导教师______________________ 报告人____________________________ 学号 ______ 时间: 实习主要内容: 1. 运用Multisim仿真软件自行设计一个RLC串联电路,并自选合适的参数。 2. 用调节频率法测量RLC串联谐振电路的谐振频率f 0 ,观测谐振现象。 3. 用波特图示仪观察幅频特性。 4?得出结论并思考本次实验的收获与体会。 主要收获体会与存在的问题: 本次实验用Multisim 仿真软件对RLC串联谐振电路进行分析,设计出了准确的电路模型,也仿真出了正确的结果。通过本次实验加深了自己对RLC振荡电路的理解与应用,更学习熟悉了Multisim 仿真软件,达到了实验的目

的。存在的问题主要表现在一些测量仪器不熟悉,连接时会出现一些错误,但最终都实验成功了。 指导教师意见: 指导教师签字: 年月日 备注: 绪论 Multisim仿真软件的简要介绍 Multisim是In terctive Image Tech no logies公司推出的一个专门用于电子电 路仿真和设计的软件,目前在电路分析、仿真与设计等应用中较为广泛。该软件以图形界面为主,采用菜单栏、工具栏和热键相结合的方式,具有一般Windows 应用软件的界面风格,用户可以根据自己的习惯和熟练程度自如使用。尤其是多种可放置到设计电路中的虚拟仪表,使电路的仿真分析操作更符合工程技术人员的工作习惯。下面主要针对Multisim11.0软件中基本的仿真与分析方法做简单介绍。 EDA就是“ Electronic Design Automation ”的缩写技术已经在电子设计领 域得到广泛应用。发达国家目前已经基本上不存在电子产品的手工设计。一台电子产品的设计过程,从概念的确立,到包括电路原理、PCB版图、单片 机程序、机内结构、FPGA的构建及仿真、外观界面、热稳定分析、电磁兼容分析在内的物理级设计再到PCB钻孔图、自动贴片、焊膏漏印、元器件清 单、总装配图等生产所需资料等等全部在计算机上完成。EDA已经成为集成 电路、印制电路板、电子整机系统设计的主要技术手段。 功能: 1. 直观的图形界面 整个操作界面就像一个电子实验工作台,绘制电路所需的元器件和仿真所需的测试仪器均可直接拖放到屏幕上,轻点鼠标可用导线将它们连接起来,软件仪器的控制面板和操作方式都与实物相似,测量数据、波形和特性曲线如同在真实仪器上看到的;

谐振电路的设计及分析

谐振电路的设计及分析 谐振电路 1.实验目的: 1. 掌握谐振电路、相量法的相关知识 2. 掌握利用Mulstim软件分析验证相关的原理 3. 加深对谐振的理解。 2.实验原理: 在具有电阻R、电感L和电容C元件的交流电路中,电路两端的电压与其中电流位相一般是不同的。如果我们调节电路元件(L或C)的参数或电源频率,可以使它们位相相同,整个电路呈现为纯电阻性。电路达到这种状态称之为谐振。 串联: 1)条件:ω=ω0=1/√LC f=f0=1/2π√LC 2)当在谐振时的感抗和容抗在量值上相等,其值称为谐振电路的特性阻抗,其值为ω0L= 3)品质因数:Q== 并联: 1)条件:ω=ω0=1/√LC f=fo=1/2π√LC 2)品质因数:Q==R 3.实验步骤: 1)画出电路 2)算出理论值 3)利用Mulstim软件分析验证 4)得出结论

理论值: 串联 ?Im =C j L j R Usm ωω1 ++?=A A j j ?∠=-+∠0110010010010 i(t)=1cos105t A V j C j Ucm V V j L j Ulm V V R Urm ?-∠=?∠?-==?∠=?∠?==?∠=?∠?==? ?????9010001100Im 9010001100Im 0100110Im ωω u R (t)=10cos105t V u L (t)=100cos(105t+90°) V u C (t)=100cos(105t-90°) V Q==R =10=0.1 0= 并联

?Im =C j L j R Usm ωω1 1 ++?=A A j j ?∠=-+∠01.01001 i(t)=0.1cos103t A ?Irm =R ?Usm =A A ?∠=∠01.01001Ω i(t)=0.1cos103t A ?Ilm =L j Usm ω?=A A j ?-∠=∠90101 i(t)= 1cos (103t-90°) A ?Icm =C j Usm ω1 ?=A A j ?∠=-∠90101 i(t)=1cos (103t+90°) A Q==R =10=10 0= I I R I L I C

串联谐振电路分析

外施耐压串联谐振电路分析 已知:串联谐振装置电抗器组合方式为两串三并(即三条并联支路上各有两个电抗器串联起来),单个电抗器电感值为L ,单个电抗器电阻值为r ,所有电抗器的铭牌参数均一致。被试品电容值为C ,试验中被试品加压到U ,励磁变选用的高低压抽头电压变比为K ,励磁变视在功率S ,励磁变额定电压U o ,励磁变额定电流为I o ,被试品加压到U 时励磁变的损耗为P 损耗。 一.需计算量如下: 1.画出串联谐振时整个电路的基本电路图。 2.画出谐振时高压侧的向量图。 3.串联谐振频率f 的计算公式。 f= LC 21 π(本题装置串联谐振频率f=LC 832 π) 4.串谐高压侧电路电流I 高压侧的计算公式,并且算出分配到单个电抗器的电 流,电压时多少? I 高压侧=U jC f 2 π;谐振时:分配到单个电抗器电流L I = LC UC 6;

分配到单个电抗器电压L U =2 U -。 5.串谐低压侧电路电流I 低压侧的计算公式。 I 低压侧=U jC f 2 **πK 6.电路品质因数Q (放大倍数)的计算公式。 Q= wCR 1或R wL (本题装置串联谐振品质因数Q=C 232 r L ) 7.被试品或电抗器组合的无功功率Q 无功计算公式。 Q 无功=2U jC f 2 *π 或L 2233U C f j8- *π (=L 32L,本题Q 无功= 3 L U C f j16-2233 *π ) 8.串联谐振高压侧有功功率P 计算公式。 P=R 2222U C f 4 - *π (=R 32r 本题P=3 r U C f 8-2222 *π) 9.串联谐振高压侧电路总功率P 总计算公式。 P 总=2U jC f 2 *πL 2233U C f j8- *πR 2222U C f 4- *π 化简 P 总 = ()jCR f 2-CL f 4-1U jC f 22***πππ (= L 32L ;=R 32r 本题P 总=?? ? ??***3jCr f 4-3CL f 8-1U jC f 22πππ ; 谐振时P 总=R 2 2 2 2U C f 4- *π=3 r U C f 8-2 222 *π) 10.励磁变输出高压U 输出,I 输出,P 输出计算公式。 I 输出=U jC f 2 *π U 输出=U jC f 2 *π(C L R j f 21 j f 2*+*+ππ) (= L 32L ;=R 32r 本题U 输出=U jC f 2 *π(C j f 213jL f 43r 2*+*+ππ))

RLC串联谐振电路

《模拟电子技术实验》课程 实验报告 实验项目:R,L,C串联谐振电路 姓名:*** 学号:*** 学院:信息学院专业:物联网工程指导教师:*** 日期:2018.6.10

一.实验目的 1.学习R ,L ,C 串联电路的幅频特性曲线 2.学会利用公式计算R,L,C 串联电路的谐振频率f 0和品质因素Q,以及通频带宽Δf 3.学会利用示波器读出R ,L ,C 串联电路谐振频率f 0 二.实验仪器 1.示波器 2.DGJ-1电工试验台 三.实验内容涉及的基本理论 1. 在如左图所示的R 、L.C 串联电路中,当正弦交流信号源的频率f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。取电阻R 上的电压u 。作为响应,当输入电压u 的幅值维持不变时,在不同频率的信号激励下,测出Uo 之值,然后以f 为横坐标,以Uo/Ui;为纵坐标(因Ui 不变,故也可直接以Uo 为纵坐标),绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如右图所示。 2.在f=fo= LC π21 处,即幅频特性曲线尖峰所在的频率点称为谐振频率。此时X L =X C ,电 路呈纯阻性,电路阻抗的模为最小。在输入电压Ui 为定值时,电路中的电流达到最大值, 且与输入电压Ui 同相位。从理论上讲,此时Ui=U R =Uo,U L =U C =QUi,式中的Q 称为电路的品质因数。 3、电路品质因数Q 值的两种测量方法一是根据公式Q= O L U U =O C U U 测定,Uc 与U L 分别为谐振时电容器C 和电感线圈L 上的电压;另一方法是通过测量谐 振曲线的通频带宽度Δf=f 2-f 1,

RLC串联谐振电路的实验报告

RLC串联谐振电路的实验报告 (1)实验目的: 1.加深对串联谐振电路条件及特性的理解。 2.掌握谐振频率的测量方法。 3.测定RLC串联谐振电路的频率特性曲线。 (2)实验原理: RLC串联电路如图所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。该电路的阻抗是电源角频率ω的函数:Z=R+j(ωL-1/ωC)当ωL-1/ωC=0时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率ω 0 =1/LC,谐振频率f =1/2πLC。谐振频率仅与原件L、C的数值有关,而与电阻R 和激励电源的角频率ω无关,当ω<ω 0时,电路呈容性,阻抗角φ<0;当ω>ω 时,电路呈感性,阻抗角φ>0。 1、电路处于谐振状态时的特性。 (1)、回路阻抗Z 0=R,| Z |为最小值,整个回路相当于一个纯电阻电路。 (2)、回路电流I 0的数值最大,I =U S /R。 (3)、电阻上的电压U R 的数值最大,U R =U S 。 (4)、电感上的电压U L 与电容上的电压U C 数值相等,相位相差180°,U L =U C =QU S 。 2、电路的品质因数Q 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即: Q=U L (ω )/ U S = U C (ω )/ U S =ω L/R=1/R* (3)谐振曲线。 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。

在U S 、R、L、C固定的条件下,有 I=U S / U R =RI=RU S / U C =I/ωC=U S /ωC U L =ωLI=ωLU S / 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路 电流与电阻电压成正比。从图中可以看到,U R 的最大值在谐振角频率ω 处,此 时,U L =U C =QU S 。U C 的最大值在ω<ω 处,U L 的最大值在ω>ω 处。 图表示经过归一化处理后不同Q值时的电流频率特性曲线。从图中(Q 11/2时,U C 和U L 曲线才出现最大值,否则U C 将单调下降趋于0,U L 将单调上升趋于U S 。 仿真RLC电路响应的谐振曲线的测量

LCR串联谐振电路基础知识

LCR串联谐振电路基础知识 1. 谐振定义:电路中L、C 两组件之能量相等,当能量由电路中某一电抗组件释出时,且另一电抗组件必吸收相同之能量,即此两电抗组件间会产生一能量脉动。 2. 电路欲产生谐振,必须具备有电感器L及电容器C 两组件。 3. 谐振时其所对应之频率为谐振频率(resonance),或称共振频率,以f r表示之。 4. 串联谐振电路之条件如图1所示:当Q=Q ?I2X L = I2 X C也就是X L =X C时,为R-L-C串联电路产生谐振之条件。 图1 串联谐振电路图 5. 串联谐振电路的特性: (1) 电路阻抗最小且为纯电阻。即Z =R+jX L?jX C=R (2) 电路电流为最大。即 (3) 电路功率因子为1。即 (4) 电路平均功率最大。即P=I2R (5) 电路总虚功率为零。即Q L=Q C?Q T=Q L?Q C=0 6. 串联谐振电路频率计算公式: (1) 公式: (2) R - L -C串联电路欲产生谐振时,可调整电源频率f 、电感器L 或电容器C 使其达到谐振频率f r,而与电阻R完全无关。 7. 串联谐振电路品质因子(Q值): (1) 定义:电感器或电容器在谐振时产生的电抗功率与电阻器消耗的平均功率

之比,称为谐振时之品质因子。 (2) Q值计算公式: (3) 品质因子Q值愈大表示电路对谐振时之响应愈佳。一般Q值在10~100 之间。 8. 串联谐振电路阻抗与频率之关系如图(2)所示: (1) 电阻R 与频率无关,系一常数,故为一横线。 (2) 电感抗X L=2 πfL ,与频率成正比,故为一斜线。 (3) 电容抗与频率成反比,故为一曲线。 (4) 阻抗Z = R+ j(X L?X C) 当f = f r时,Z = R 为最小值,电路为电阻性。 当f > f r时,X L>X C,电路为电感性。 当f <fr时,X L<X C,电路为电容性。 当f = 0或f = ∞时, Z = ∞ ,电路为开路。 (5) 若将电源频率f由小增大,则电路阻抗Z 的变化为先减后增。 9. 串联谐振电路之选择性如图(3)所示: (1) 当f = f r时, ,此频率称为谐振频率。 (2) 当f = f1或f 2时, ,此频率称为旁带频率、截止频率或半功率频率。

串联谐振电路

串联谐振电路 学号: 姓名: 成绩: 1、实验目的 1. 加深对串联谐振电路条件及特性的理解。 2. 掌握谐振频率的测量方法。 3. 理解电路品质因数Q和通频带的物理意义及测量方 法。 4. 测定RLC串联谐振电路的频率特性曲线。 5. 深刻理解和掌握串联谐振的意义及作用。 6. 掌握电路板的焊接技术以及信号发生器、交流毫伏 表等仪器的使用。 7. 掌握Multisim软件中的Function Generator、 Voltmeter、Bode Plotter等仪表的使用,以AC Analysis 等SPICE仿真分析方法。 8. 用Origin绘图软件绘图。 2、实验原理 RLC串联电路如图7.1所示,改变电路参数L、C或电源频率时,都可能使电路发生谐振。 该电路的阻抗是电源角频率的函数 (7-1) 当时,电路中的电流与激励电压同相,电路处于谐振状态。谐振角频率,谐振频率。 谐振频率仅与元件的数值有关,而与电阻和激励电源的角频率无关, 当时,电路呈容性,阻抗角<0;当时,电路呈感性,阻抗角>0。

1.电路处于谐振状态时的特性: (1) 回路阻抗,为最小值,整个回路相当于一个纯电阻电 路。 (2) 回路电路I0的数值最大, (3) 电阻的电压U R的数值最大, (4) 电感上的电压U L与电容上的电压U C数值相等,相位相 差。 2.电路的品质因数Q和通频带B 电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因数Q,即 (7-2) 定义回路电流下降到峰值的0.707时所对应的频率为截止频率,介于两截止频率间的频率范围为通频带。 (7-3) 3.谐振曲线 电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲线,也称谐振曲线。 在固定的条件下: 改变电源角频率,可得到图7.2响应电压随电源角频率变化的谐振曲线,回路电流与电阻电压成正比。从图中可以看到,U R的最大值在谐振角频率ω0处,此时U C=U L=Q U。U C的最大值在ω<ω0处, U L的最大值在ω>ω0处。 图7.3则表示经过归一化处理后不同值时的电流频率特性曲线。从图中可以看:值愈大,曲线尖峰值愈峻端,其选择性就愈好,但电路的通过的信号频带越窄,即通频带越窄。 3、实验内容 1. Multisim仿真 (1) 创建电路:从元器件库中选择可变电阻、电容、电感创建如图电路。

RLC串联谐振电路及答案解析

RLC 串联谐振电路 一、知识要求: 理解RLC 串联电路谐振的含义;理解谐振的条件、谐振角频率、频率;理解谐振电路的特点,会画矢量图。 二、知识提要: 在RLC 串联电路中,当总电压与总电流同相位时,电路呈阻性的状态称为串联谐振。 (1)、串联谐振的条件:C L C L X X U U ==即 (2)、谐振角频率与频率:由LC f LC :C L πωωω21 1 10= == 谐振频率得 (3)、谐振时的相量图: (4)、串联谐振电路的特点: ①.电路阻抗最小:Z=R ②、电路中电流电大:I 0=U/R ③、总电压与总电流同相位,电路呈阻性 ④、电阻两端电压等于总电压,电感与电容两端电压相等,相位相反,且为总电压的Q 倍,。即:U L =U C =I 0X L =I 0X C = L X R U =U R X L =QU 式中:Q 叫做电路的品质因数,其值为: CR f R L f R X R X Q C L 0021 2ππ= === >>1(由于一般串联谐振电路中的R 很小,所以Q 值总大于1,其数值约为几十,有的可达几百。所以串联谐振时,电感和电容元件两端可能会产生比总电压高出Q 倍的高电压,又因为U L =U C ,所以串联谐振又叫电压谐振。) (5)、串联谐振电路的应用: 适用于信号源内阻较低的交流电路。常被用来做选频电路。 三、例题解析: 1、在RLC 串联回路中,电源电压为5mV ,试求回路谐振时的频率、谐振时元件L 和C 上的电压以及回路的品质因数。 解:RLC 串联回路的谐振频率为 Uc ?

LC f π210= 谐振回路的品质因数为 R L f Q 02π= 谐振时元件L 和C 上的电压为 mV 5mV 5C L C L R Q U U = == 2、 在RLC 串联电路中,已知L =100mH ,R =3.4Ω,电路在输入信号频率为400Hz 时发生谐振,求电容C 的电容量和回路的品质因数。 解:电容C 的电容量为 F 58.14 .6310141 )2(12 0μπ≈== L f C 回路的品质因数为 744 .31 .040028.620≈??== R L f Q π 3、已知某收音机输入回路的电感L=260μH,当电容调到100PF 时发生串联谐振,求电路的谐振频率,若要收听频率为640KHz 的电台广播,电容C 应为多大。(设L 不变) 解:LC f π210= = 12 6 10 101026014.321 --X X X X X ≈KHZ 6 23210260)1064014.32(1 )2(1-= = X X X X X L f C π≈238PF 四、练习题: (一)、填空题 1、串联正弦交流电路发生谐振的条件是 ,谐振时的谐振频率品质因数Q= ,串联谐振又称为 。 2、在发生串联谐振时,电路中的感抗与容抗 ;此时电路中的阻抗最 ,电流最 ,总阻抗Z= 。 3、在一RLC 串联正弦交流电路中,用电压表测得电阻、电感、电容上电压均为10V ,用电流表测得电流为10A ,此电路中R= ,P= ,Q= ,S= 。 4、在含有L 、C 的电路中,出现总电压、电流同相位,这种现象称为 。这种现象若发生在串联电路中,则电路中阻抗 ,电压一定时电流 ,且在电感和电容两端将出现 。 5、谐振发生时,电路中的角频率=0ω ,=0f 。 (二)、判断题

相关主题
文本预览
相关文档 最新文档