8 《材料科学基础》第八章 材料制备中的固态反应
- 格式:ppt
- 大小:870.00 KB
- 文档页数:20
第八章 固相反应固相反应第一节第一节 固相反应概述固相反应概述固相反应概述一、固相反应的定义固相反应的定义1.1.狭义的固相反应狭义的固相反应狭义的固相反应::固体与固体间发生化学反应生成新的固体产物的反应固体与固体间发生化学反应生成新的固体产物的反应。
2.2.广义的固相反应广义的固相反应广义的固相反应::凡是有固相参与的化学反应都可称为固相反应凡是有固相参与的化学反应都可称为固相反应。
二、固相反应的分类固相反应的分类依反应的性质可分为四类依反应的性质可分为四类1. 加成反应加成反应((A 、B 为任一元素或化合物为任一元素或化合物))A (s )+B(s)+B(s)——————AB(s)AB(s)AB(s)2. 造膜反应造膜反应((固气反应固气反应,,A 、B 为单质为单质))A(s)+B(g)A(s)+B(g)——————AB(s)AB(s)AB(s)3. 分解反应分解反应((固气反应固气反应))AB(s)AB(s)——————A(s)+B(g)A(s)+B(g)A(s)+B(g)4.4.置换反应置换反应置换反应A (s )+BC +BC((s )————AC AC AC((s )+B +B((s )AC AC((s )+BD +BD((s )————AB AB AB((s )+CD +CD((s )三、固相反应热力学固相反应热力学纯的固相反应总是放热的纯的固相反应总是放热的纯的固相反应总是放热的,,并且熵变并且熵变ΔΔS 很小很小,,所以所以 ΔG=G=ΔΔH -T ΔS ≈Δ≈ΔH<0H<0H<0因此因此,,纯固相反应总是可以自发进行的纯固相反应总是可以自发进行的。
四、固相反应进程固相反应进程固相反应进程由快路线的慢步骤的速率所控制固相反应进程由快路线的慢步骤的速率所控制固相反应进程由快路线的慢步骤的速率所控制。
五、关于固相反应产物的若干一般规律关于固相反应产物的若干一般规律1.1.最初产物的恒定性最初产物的恒定性最初产物的恒定性对碱土金属氧化物和对碱土金属氧化物和SiO2的二元固相反应的二元固相反应,,不论原始组成摩尔比如何不论原始组成摩尔比如何,,反应首先生成的化合物总是2:1的正硅酸盐的正硅酸盐,,而对于碱土金属氧化物与AI2O3的反应反应,,首先生成的化合物总是1:1。
《材料科学基础》总结及重点第一章 材料的结构与键合1、金属键、离子键、共价键、分子键(范德华力)、氢键的特点,并解释材料的一些性能特点。
2、原子间的结合键对材料性能的影响。
用金属键的特征解释金属材料的性能—①良好的延展性;②良好的导电、导热性;③具有金属光泽。
3、比较金属材料、陶瓷材料、高分子材料、复合材料在结合键上的差别。
本章重要知识点: 1. 金属键、离子键、共价键、分子键、氢键的特点。
第二章 固体结构1、晶体与非晶体(在原子排列上的区别)2、空间点阵、晶格、晶胞及选取晶胞的的原则、七大晶系及各自的特点,布拉菲点阵(14种) 、晶格常数、晶胞原子数。
3、晶面指数、晶面族、晶向指数、晶向族、晶带和晶带定理、晶面间距、配位数、致密度、八面体间隙、四面体间隙。
各向同性与各向异性、实际晶体的伪各向异性、同素异构转变(重结晶、多晶型性转变) 。
(1)指数相同的晶向.和晶面必然垂直。
如[111]⊥(111)(2)当一晶向[uvw]位于或平行某一晶面(hkl )时,则必然满足晶带定理:h ·w+k ·v+l ·w =04、能绘出三维的体心、面心立方和密排六方晶胞,根据原子半径计算出金属的体心和面心立方晶胞的晶胞常数。
三种典型晶体结构的特征(包括:晶胞形状、晶格常数、晶胞原子数、原子半径、配位数、致密度、各类间隙尺寸与个数,最密排面(滑移面)和最密排方向的指数与个数,滑移系数目等);即:bcc 、fcc 、hcp 的晶格特征及变形能力(结合塑性变形一章的内容你必须知道常用金属材料的滑移面与滑移系的指数)。
给画出晶胞指出滑移面和滑移方向。
能标注和会求上述三种晶胞的晶向和晶面指数。
晶向和晶面指数的一些规律。
求晶面间距d (hkl )、晶面夹角。
5、晶面间距:d (hkl ) 的求法:(1)立方晶系:222)(l k h ad hkl ++= (2)正交晶系:222)(1⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=c l b k a h d hkl (3)六方晶系:2222)()(341⎪⎭⎫ ⎝⎛+++=c l a k hk h d hkl (4)四方晶系:2222)()/(/)(1c l a k h d hkl ++=以上公式仅适用于简单晶胞,复杂晶胞要考虑其晶面层数的增加。
第8章 固体中的扩散一、选择题1.在扩散系数的热力学关系中,称为扩散系数的热力学因子。
在非理想混合体系中:当扩散系数的热力学因子>0时,扩散结果使溶质()。
当扩散系数的热力学因子<0时扩散结果使溶质()。
[南京工业大学2008研]A.发生偏聚B.浓度不改变C.浓度趋于均匀【答案】C;A2.在烧结过程中,只改变气孔形状而不引起坯体收缩的传质方式是()。
[南京工业大学2008研]A.扩散传质B.流动传质C.蒸发-凝聚传质D.晶界扩散【答案】C【解析】晶格扩散指原子在晶体内部的扩散过程,其主要机制是空位扩散。
对流传质是指发生在相际之间的非流向传质,即当流体流经与其浓度不同的异相表面时,发生在两相之间的传质现象。
溶解-沉淀的实质是沉淀溶解平衡的移动。
蒸发-凝聚是制备高性能金属及合金超微粉末的有效方法,可用于烧结过程。
二、填空题1.菲克第一定律适用于求解______;菲克第二定律适用于求解______。
[南京工业大学2008研]【答案】稳态扩散;不稳定扩散2.扩散分为_____和______。
[天津大学2010研]【答案】间隙扩散;空位扩散3.本征扩散是由______而引起的质点迁移,本征扩散的活化能由______和______两部分组成,扩散系数与温度的关系式为:______。
[南京工业大学2008研]【答案】本征热缺陷所产生的空位;空位形成能;质点迁移能;4.烧结的主要传质方式有______、______、______和______四种。
这四种传质过程的△L/L 与烧结时间的关系依次为______、______、______和______。
[南京工业大学2008研]【答案】蒸发-凝聚传质;扩散传质;流动传质;溶解-沉淀传质;【解析】晶格扩散传质指原子在晶体内部的扩散过程,其主要机制是空位扩散。
对流传质是指发生在相际之间的非流向传质,即当流体流经与其浓度不同的异相表面时,发生在两相之间的传质现象。
溶解-沉淀的实质是沉淀溶解平衡的移动。
第八章烧结过程8-1 名词解释:烧结烧结温度泰曼温度液相烧结固相烧结初次再结晶晶粒长大二次再结晶(1)烧结:粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。
(2)烧结温度:坯体在高温作用下,发生一系列物理化学反应,最后显气孔率接近于零,达到致密程度最大值时,工艺上称此种状态为"烧结",达到烧结时相应的温度,称为"烧结温度"。
(3)泰曼温度:固体晶格开始明显流动的温度,一般在固体熔点(绝对温度)的2/3处的温度。
在煅烧时,固体粒子在塔曼温度之前主要是离子或分子沿晶体表面迁移,在晶格内部空间扩散(容积扩散)和再结晶。
而在塔曼温度以上,主要为烧结,结晶黏结长大。
(4)液相烧结:烧结温度高于被烧结体中熔点低的组分从而有液相出现的烧结。
(5)固相烧结:在固态状态下进行的烧结。
(6)初次再结晶:初次再结晶是在已发生塑性变形的基质中出现新生的无应变晶粒的成核和长大过程。
(7)晶粒长大:是指多晶体材料在高温保温过程中系统平均晶粒尺寸逐步上升的现象.(8)二次再结晶:再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。
8-2 烧结推动力是什么?它可凭哪些方式推动物质的迁移,各适用于何种烧结机理?解:推动力有:(1)粉状物料的表面能与多晶烧结体的晶界能的差值,烧结推动力与相变和化学反应的能量相比很小,因而不能自发进行,必须加热!!(2)颗粒堆积后,有很多细小气孔弯曲表面由于表面张力而产生压力差,(3)表面能与颗粒之间形成的毛细管力。
传质方式:(1)扩散(表面扩散、界面扩散、体积扩散);(2)蒸发与凝聚;(3)溶解与沉淀;(4)黏滞流动和塑性流动等,一般烧结过程中各不同阶段有不同的传质机理,即烧结过程中往往有几种传质机理在起作用。
8-3 下列过程中,哪一个能使烧结体强度增大,而不产生坯体宏观上的收缩? 试说明理由。
(1)蒸发-冷凝;(2)体积扩散;(3)粘性流动;(4)晶界扩散;(5)表面扩散;(6)溶解-沉淀解:蒸发-凝聚机理(凝聚速率=颈部体积增加)烧结时颈部扩大,气孔形状改变,但双球之间中心距不变,因此坯体不发生收缩,密度不变。
《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。