高中数学选修2-2人教A版 2.2.2反证法
- 格式:ppt
- 大小:1.22 MB
- 文档页数:17
2.2.2反证法填一填1.反证法假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这种证明方法叫做反证法.2.反证法常见矛盾类型反证法的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.判一判1.2.反证法的证明过程既可以是合情推理也可以是一种演绎推理.(×)3.反证法的实质是否定结论导出矛盾.(√)4.反证法是通过证明逆否命题来证明原命题.(×)5.用反证法证明时,推出的矛盾不能与假设矛盾.(×)6.使用反证法证明时,可以不进行反设.(×)7.反证法是指将结论和条件同时否定.(×)8.“全为0”的对立面是“全不为0”.(×)想一想1.(1)反证法的原理是“否定之否定等于肯定”.第一个否定是指“否定结论(假设)”;第二个否定是指“逻辑推理结果否定”.(2)反证法属“间接解题方法”.2.“反证法”和“证明逆否命题”的区别与联系是什么?(1)联系:通过证明逆否命题成立来证明原命题成立和通过反证法说明原命题成立属于间接证明,都是很好的证明方法.(2)区别:证明逆否命题实际上就是从结论的反面出发,推出条件的反面成立,而反证法一般是假设结论的反面成立,然后通过推理导出矛盾.3.反证法中常用到的反设有哪些?反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个.4.反证法的适用对象有哪些?作为一种间接证明方法,反证法尤其适合证明以下几类数学问题:(1)直接证明需分多种情况的;(2)结论本身是以否定形式出现的一类命题——否定性命题; (3)关于唯一性、存在性的命题;(4)结论是含有“至多”“至少”等词语的命题;(5)条件与结论联系不够明显,直接由条件推结论的线索不够清晰,结论的反面是比原结论更具体、更容易研究的命题.感悟体会练一练1.( )①结论相反的判断,即假设;②原命题的条件;③公理、定理、定义等;④原结论. A .①② B .①②④ C .①②③ D .②③解析:反证法是指假设命题的反面成立,再从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾,得出假设命题不成立是错误的,从而所求的命题成立,故应用反证法推出矛盾的推导过程中,作为条件使用的通常有①结论相反的判断,即假设;②原命题的条件;③公理、定理、定义等,故选C.答案:C2.“实数a ,b ,c 不全大于0”等价于( ) A .a ,b ,c 均不大于0B .a ,b ,c 中至少有一个大于0C .a ,b ,c 中至多有一个大于0D .a ,b ,c 中至少有一个不大于0解析:“不全大于0”即“至少有一个不大于0”,它包括“全不大于0”,故选D. 答案:D3.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数),且a >b ,那么两个数列中序号与数值均相同的项有( )A .0个B .1个C .2个D .无穷多个解析:假设存在序号和数值均相等的项,即存在n ∈N *,使得a n =b n ,由题意a >b ,n ∈N *, ∴an >bn ,从而an +2>bn +1恒成立,∴不存在n ∈N *使得a n =b n ,故选A. 答案:A4.下列命题适合用反证法证明的是________.①已知函数f (x )=a x +x -2x +1(a >1),证明:方程f (x )=0没有负实数根.②若x ,y ∈R ,x >0,y >0,且x +y >2,求证:1+x y 和1+yx中至少有一个小于2.③关于x 的方程ax =b (a ≠0)的解是唯一的.④同一平面内,分别与两相交直线垂直的两条直线必相交.解析:①是“否定性”命题;②是“至少”类命题;③是“唯一性”命题,且题中条件较少;④不易直接证明,因此,四个命题都适合用反证法证明.答案:①②③④知识点一 用反证法证明否(肯)定性命题1.________________.解析:“a =b =1”的反面是“a ≠1或b ≠1”,所以应假设a ≠1或b ≠1. 答案:a ≠1或b ≠12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知A =30°,a =3,b =3 3. (1)求B 和△ABC 的面积;(2)当B 是钝角时,证明:tan(B -118°)不可能是有理数.解析:(1)由正弦定理得a sin A =b sin B ,即sin B =33sin30°3=32.因为B 是三角形内角且B >A ,所以B =60°或B =120°, 记△ABC 的面积为S ,当B =60°时,C =90°,S =12ab =12×3×33=932;当B =120°时,C =30°,S =12ab sin 30°=12×3×33×12=934.(2)证明:因为B 是钝角,结合(1)的结论得tan(B -118°)=tan 2°,假设tan 2°是有理数,则tan4°=2tan 2°1-tan 22°为有理数;同理可证tan 8°,tan16°,tan 32°为有理数,所以tan 30°=tan 32°-tan 2°1+tan 32°tan 2°,等式左边=33为无理数,等式右边为有理数,从而矛盾,则知识点二 用反证法证明“至少”“至多”问题3.用反证法证明“若x ,y 都是正实数,且x +y >2,则1+x y <2或1+yx<2中至少有一个成立”时,应假设( )A.1+x y ≥2且1+y x ≥2B.1+x y ≥2或1+y x ≥2C.1+x y ≥2且1+y x <2D.1+x y ≥2或1+y x <2解析:假设1+x y <2和1+y x <2都不成立,即1+x y ≥2且1+y x≥2,故选A.答案:A4.用反证法证明:当m 为任何实数时,关于x 的方程x 2-5x +m =0与2x 2+x +6-m =0至少有一个方程有实数根.证明:假设关于x 的方程x 2-5x +m =0与2x 2+x +6-m =0都没有实数根, 则有Δ=25-4m <0,且Δ′=1-8(6-m )=8m -47<0,解得m >254,且m <478,矛盾,a ,b ,c 中存在偶数”时,假设应为( )A .a ,b ,c 都是偶数B .a ,b ,c 都不是偶数C .a ,b ,c 中至多有一个是偶数D .a ,b ,c 中至多有两个偶数解析:结合题意,得a ,b ,c 中存在偶数,即至少有一个偶数,其否定为:a ,b ,c 都不是偶数,故选B.答案:B6.若函数f (x )在区间[a ,b ]上的图象连续,且f (a )<0,f (b )>0,f (x )在[a ,b ]上单调递增,求证:f (x )在(a ,b )内有且只有一个零点.证明:由于f (x )在[a ,b ]上的图象连续,且f (a )<0,f (b )>0,即f (a )·f (b )<0, 所以f (x )在(a ,b )内至少存在一个零点,设零点为m ,则f (m )=0. 假设f (x )在(a ,b )内还存在另一个零点n , 即f (n )=0,则n ≠m .若n >m ,则f (n )>f (m ),即0>0,矛盾; 若n <m ,则f (n )< f (m ),即0<0,矛盾.7.(1)(2)已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( ) A .(1)与(2)的假设都错误 B .(1)与(2)的假设都正确C .(1)的假设正确;(2)的假设错误D .(1)的假设错误;(2)的假设正确解析:(1)的假设应为p +q >2. (2)的假设正确,选D.8.设函数f (x )=ax 2+bx +c 且f (1)=-a2,3a >2c >2b .(1)试用反证法证明:a >0;(2)证明:-3<b a <-34.证明:(1)假设a ≤0,∵3a >2c >2b ,∴3a ≤0,2c <0,2b <0, 将上述不等式相加,得3a +2c +2b <0. ∵f (1)=-a2,∴3a +2c +2b =0,这与3a +2c +2b <0矛盾, ∴假设不成立,∴a >0.(2)∵f (1)=a +b +c =-a 2,∴c =-32a -b ,∴3a >2c =-3a -2b ,∴3a >-b . ∵2c >2b ,∴-3a >4b .∵a >0,∴-3<b a <-34.基础达标一、选择题1.下列关于反证法的说法,正确的是( ) ①反证法的应用需要逆向思维;②反证法是一种间接证明方法,否定结论时,一定要全面否定; ③反证法推出的矛盾不能与已知相矛盾;④使用反证法必须先否定结论,当结论的反面出现多种可能时,论证一种即可. A .①② B .①③ C .②③ D .③④解析:反证法推出的矛盾可以与已知相矛盾,故③不正确,从而排除选项BCD ,故选A. 答案:A2.“已知:△ABC 中,AB =AC ,求证:∠B <90°.”下面写出了用反证法证明这个命题过程中的四个推理步骤:(1)所以∠A +∠B +∠C >180°,这与三角形内角和定理相矛盾; (2)所以∠B <90°; (3)假设∠B ≥90°;(4)那么,由AB =AC ,得∠B =∠C ≥90°,即∠B +∠C ≥180°. 这四个步骤正确的顺序应是( ) A .(1)(2)(3)(4) B .(4)(3)(2)(1) C .(3)(4)(1)(2) D .(3)(4)(2)(1) 解析:根据反证法的步骤,可知正确的顺序应是(3)(4)(1)(2),故选C. 答案:C3.有下列叙述:①“a >b ”的反面是“a <b ”;②“x =y ”的反面是“x >y 或x <y ”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有( )A .0个B .1个C .2个D .3个解析:①中,“a >b ”的反面是“a =b 或a <b ”,∴①不正确;②显然正确;③中“三角形的外心在三角形外”的反面是“三角形的外心在三角形内或三角形上”,∴③不正确;④中,“三角形最多有一个钝角”的反面是“三角形至少有两个钝角”,∴④不正确,故选B.答案:B 4.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不能确定解析:分△ABC 的直线只能过一个顶点与其对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为锐角,则∠ADC 为钝角,而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD与△ACD 不可能相似,与已知矛盾,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意,故选B.答案:B5.下列四个命题中错误的是( ) A .在△ABC 中,若∠A =90°,则∠B 一定是锐角 B.17,13,11不可能成等差数列 C .在△ABC 中,若a >b >c ,则∠C >60° D .若n 为整数且n 2为偶数,则n 是偶数解析:显然A 、B 、D 命题均为真,C 选项中,若a >b >c ,则A >B >C ,若∠C >60°,则∠A >60°,∠B >60°,∴A +B +C >180°,这与A +B +C =180°矛盾,故选C. 答案:C6.设a ,b ,c 是正数,P =a +b -c ,Q =b +c -a ,R =c +a -b ,则“PQR >0”是“P ,Q ,R 同时大于零”的( )A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件解析:若“P ,Q ,R 同时大于零”则“PQR >0”成立, ∵a ,b ,c ∈R +,且PQR >0.∴若P >0,则Q <0,R <0或Q >0,R >0,若Q <0,R <0,则b +c -a <0,c +a -b <0,∴a >b +c ,a <b -c .∵c >0,∴b +c >b -c ,∴不等式a >b +c ,a <b -c 不成立,即Q <0,R <0不成立, ∴必有Q >0,R >0,即P ,Q ,R 同时大于零成立,∴“PQR >0”是“P ,Q ,R 同时大于零”的充要条件,故选C. 答案:C7.设p ,q ,r ∈(-∞,0),x =p +1q ,y =q +1r ,z =r +1p,则x ,y ,z 三个数( )A .都大于-2B .至少有一个不大于-2C .都小于-2D .至少有一个不小于-2解析:(反证法)假设x ,y ,z 三个数均大于-2,即x >-2,y >-2,z >-2, 则x +y +z >-6 ①.又∵x +y +z =p +1q +q +1r +r +1p =-⎣⎢⎡⎦⎥⎤(-p )+1-p -⎣⎢⎡⎦⎥⎤(-q )+1-q -⎣⎢⎡⎦⎥⎤(-r )+1-r ≤-2p ·1p-2q ·1q-2r ·1r=-6,即x +y +z ≤-6 ②, ①②矛盾,∴假设不成立,∴x ,y ,z 三个数至少有一个不大于-2.故选B. 答案:B 二、填空题 8.用反证法证明命题“若a ,b ∈R ,且a 2+|b |=0,则a ,b 全为0”时,应假设____________. 解析:用反证法证明命题“若a ,b ∈R ,且a 2+|b |=0,则a ,b 全为0”时,应假设“a ,b 中至少有一个不为0”.答案:a ,b 中至少有一个不为09.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则________________为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0.但0≠奇数,这一矛盾说明p 为偶数.解析:证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数, 因为奇数个奇数之和为奇数,故有奇数=(a 1-1)+(a 2-2)+…+(a 7-7)=(a 1+a 2+…+a 7)-(1+2+…+7)=0, 但奇数≠偶数,0为偶数,这一矛盾说明假设错误,从而P 为偶数.答案:a 1-1,a 2-2,...,a 7-7 (a 1-1)+(a 2-2)+...+(a 7-7) (a 1+a 2+...+a 7)-(1+2+ (7)10.△ABC 中,若AB =AC ,P 是△ABC 内的一点,∠APB >∠APC ,求证:∠BAP <∠CAP ,用反证法证明时的假设为____________.解析:反证法对结论的否定是全面否定,∠BAP <∠CAP 的对立面是∠BAP =∠CAP 或∠BAP >∠CAP .答案:∠BAP =∠CAP 或∠BAP >∠CAP11.和两条异面直线AB ,CD 都相交的两条直线AC ,BD 的位置关系是________.解析:假设AC ,BD 共面,均在平面α内,即AC ⊂α,BD ⊂α,∴A ∈α,B ∈α,C ∈α,D ∈α,∴AB ⊂α,CD ⊂α,这与AB 、CD 异面矛盾,∴AC 、BD 异面.答案:异面12.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;④ab >1.其中能推出“a ,b 中至少有一个大于1”的条件是________(填序号).解析:若a =12,b =23,则a +b >1,但a <1,b <1,故①推不出;若a =b =1,则a +b =2,故②推不出;若a =-2,b =-3,则a 2+b 2>2,故④推不出;若a =-2,b =-3,则ab >1,故⑤推不出;对于③,a +b >2,则a ,b 中至少有一个大于1,用反证法证明如下:假设a ≤1且b ≤1,则a +b ≤2,与a +b >2矛盾,因此假设不成立,故a ,b 中至少有一个大于1.答案:③ 三、解答题13.已知三个正数a ,b ,c 成等比数列,但不成等差数列,求证: a ,b ,c 不成等差数列.解析:假设a ,b ,c 成等差数列 则a +c =2b , ∴a +c +2ac =4b ①, ∵a ,b ,c 成等比数列, ∴b 2=ac ,即b =ac ② 由①②得a =c ,∴b =a =c ,这与a 、b 、c 不成等差数列矛盾∴a ,b ,c 不成等差数列.14.已知直线m 与直线a 和b 分别交于A ,B 且a ∥b ,求证:过a 、b 、m 有且只有一个平面.证明:∵a ∥b ,∴过a 、b 有一个平面α. 又m ∩a =A ,m ∩b =B , ∴A ∈a ,B ∈b ,∴A ∈α,B ∈α,又A ∈m ,B ∈m ,∴m ⊂α. 即过a 、b 、m 有一个平面α假设过a 、b 、m 还有一个平面β异于平面α.则a ⊂α,b ⊂α,a ⊂β,b ⊂β,这与a ∥b ,过a 、b 有且只有一个平面相矛盾. 因此,过a 、b 、m能力提升15.已知方程x 2-4ax -4a ax -2a =0中至少有一个方程有实数,求实数a 的取值范围.解析:假设三个方程均没有实根,则 ⎩⎪⎨⎪⎧16a 2-4(3-4a )<0,(a -1)2-4a 2<0,4a 2+8a <0,解得-32<a <-1,∴三个方程至少有一个方程有实根的a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪a ≤-32或a ≥-1. 16.设函数f (x )=ax 2+bx +c (a ≠0),a ,b ,c 均为整数,且f (0),f (1)均为奇数,求证:f (x )=0无整数根.证明:假设f (x )=0有整数根n ,则an 2+bn +c =0(n ∈Z )而f (0),f (1)均为奇数,即c 为奇数,a +b 为偶数,则a ,b ,c 同时为奇数,或a ,b 同时为偶数,c 为奇数, 当n 为奇数时,an 2+bn 为偶数;当n 为偶数时,an 2+bn 也为偶数,即an 2+bn +c 为奇数,与an 2+bn +c =0矛盾.所以f (x )=0无整数根.。
[教学设计•高中数学]《反证法》教学设计《反证法》教学设计第一部分:教学内容解析本节课是《普通高中课程标准实验教科书选修2-2》(人教A版)第一章《推理与证明》的第3节《反证法》.“逻辑推理能力”是高中数学核心素养中非常重要的一个环节,也是人们学习和生活中,经常使用的思维方式。
推理与证明贯穿于高中数学的整个体系,也是学数学、做数学的基本功。
这一部分的学习是新课标教材的一个亮点,是对以前所学知识与方法的总结、归纳,并对后继学习起到引领的作用第二部分:学生学情诊断学生在初中已经接触过反证法,但是不够系统和详细。
也已经在选修2-1《逻辑与推理》环节接触过命题的真假、逆否命题。
但用反证法证明数学问题却是学生学习的一个难点。
究其原因,主要是反证法的应用需要逆向思维,但在中小学阶段,逆向思维的训练和发展都是不充分的,所以本节课要引导学生联系已学过的教学实例学习新内容进行教学。
由于所教学生基础较好,但是数学思维相对欠缺,对于反证法证明简单命题问题不大,但由于对数论基础知识不是特别专长、对生活中的逻辑学生对数的了解不多,研究不够,所以例1能顺利解决,但是例2例3,解决起来还是会出现一定困难。
第三部分:教学目标设置(1)知识与能力:了解反证法证题的基本步骤,会用反证法证明简单的命题。
通过实例,培养学生用反证法证明简单问题的推理技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力。
(2)过程与方法:通过直观感知—观察—操作确认的认识方法培养学生观察、探究、发现的能力和逻辑思维能力。
让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
(3)情感、态度、价值观:通过体验数学活动,渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想。
在学习和生活中遇到困难的时候,要学会换个角度思考问题,也许会使问题出现转机。
核心素养:逻辑推理能力第四部分:重点难点分析重点:1、理解反证法的概念。
选修2-2 2.2.2 反证法一、选择题1.否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解C.至少有三个解D.至少有两个解[答案] C[解析] 在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C.2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为( )A.a、b、c都是奇数B.a、b、c或都是奇数或至少有两个偶数C.a、b、c都是偶数D.a、b、c中至少有两个偶数[答案] B[解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;④三个偶数.因为要否定②,所以假设应为“全是奇数或至少有两个偶数”.故应选B.3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反设正确的是( )A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°[答案] B[解析] “至少有一个不大于”的否定是“都大于60°”.故应选B.4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是( )A.假设a,b,c都是偶数B.假设a、b,c都不是偶数C.假设a,b,c至多有一个偶数D.假设a,b,c至多有两个偶数[答案] B[解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a ,b ,c 都不是偶数.5.命题“△ABC 中,若∠A >∠B ,则a >b ”的结论的否定应该是( )A .a <bB .a ≤bC .a =bD .a ≥b[答案] B[解析] “a >b ”的否定应为“a =b 或a <b ”,即a ≤b .故应选B.6.已知a ,b 是异面直线,直线c 平行于直线a ,那么c 与b 的位置关系为( )A .一定是异面直线B .一定是相交直线C .不可能是平行直线D .不可能是相交直线[答案] C[解析] 假设c ∥b ,而由c ∥a ,可得a ∥b ,这与a ,b 异面矛盾,故c 与b 不可能是平行直线.故应选C.7.设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c中( ) A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2[答案] C[解析] ⎝ ⎛⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫c +1a +⎝⎛⎭⎪⎫b +1c =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b +⎝⎛⎭⎪⎫c +1c ∵a ,b ,c ∈(-∞,0),∴a +1a =-⎣⎢⎡⎦⎥⎤-a +⎝ ⎛⎭⎪⎫-1a ≤-2 b +1b =-⎣⎢⎡⎦⎥⎤-b +⎝ ⎛⎭⎪⎫-1b ≤-2 c +1c =-⎣⎢⎡⎦⎥⎤-c +⎝ ⎛⎭⎪⎫-1c ≤-2∴⎝ ⎛⎭⎪⎫a +1b +⎝⎛⎭⎪⎫c +1a +⎝ ⎛⎭⎪⎫b +1c ≤-6 ∴三数a +1b 、c +1a 、b +1c 中至少有一个不大于-2,故应选C.8.若P 是两条异面直线l 、m 外的任意一点,则( )A .过点P 有且仅有一条直线与l 、m 都平行B .过点P 有且仅有一条直线与l 、m 都垂直C .过点P 有且仅有一条直线与l 、m 都相交D .过点P 有且仅有一条直线与l 、m 都异面[答案] B[解析] 对于A ,若存在直线n ,使n ∥l 且n ∥m则有l ∥m ,与l 、m 异面矛盾;对于C ,过点P 与l 、m 都相交的直线不一定存在,反例如图(l ∥α);对于D ,过点P 与l 、m 都异面的直线不唯一.9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”,四位歌手的话只有两句是对的,则获奖的歌手是( )A .甲B .乙C .丙D .丁[答案] C[解析] 因为只有一人获奖,所以丙、丁只有一个说对了,同时甲、乙中只有一人说对了,假设乙说的对,这样丙就错了,丁就对了,也就是甲也对了,与甲错矛盾,所以乙说错了,从而知甲、丙对,所以丙为获奖歌手.故应选C.10.已知x 1>0,x 1≠1且x n +1=x n (x 2n +3)3x 2n +1(n =1,2…),试证“数列{x n }或者对任意正整数n 都满足x n <x n +1,或者对任意正整数n 都满足x n >x n +1”,当此题用反证法否定结论时,应为( )A .对任意的正整数n ,都有x n =x n +1B .存在正整数n ,使x n =x n +1C .存在正整数n ,使x n ≥x n +1且x n ≤x n -1D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0[答案] D[解析] 命题的结论是“对任意正整数n ,数列{x n }是递增数列或是递减数列”,其反设是“存在正整数n ,使数列既不是递增数列,也不是递减数列”.故应选D.二、填空题11.命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.[答案] 没有一个是三角形或四边形或五边形[解析] “至少有一个”的否定是“没有一个”.12.用反证法证明命题“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”,那么反设的内容是________________.[答案] a,b都不能被5整除[解析] “至少有一个”的否定是“都不能”.13.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A =∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________.[答案] ③①②[解析] 由反证法证明的步骤知,先反证即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.14.用反证法证明质数有无限多个的过程如下:假设______________.设全体质数为p1、p2、…、p n,令p=p1p2…p n+1.显然,p不含因数p1、p2、…、p n.故p要么是质数,要么含有______________的质因数.这表明,除质数p1、p2、…、p n之外,还有质数,因此原假设不成立.于是,质数有无限多个.[答案] 质数只有有限多个除p1、p2、…、p n之外[解析] 由反证法的步骤可得.三、解答题15.已知:a+b+c>0,ab+bc+ca>0,abc>0.求证:a>0,b>0,c>0.[证明] 用反证法:假设a,b,c不都是正数,由abc>0可知,这三个数中必有两个为负数,一个为正数,不妨设a<0,b<0,c>0,则由a+b+c>0,可得c>-(a+b),又a+b<0,∴c(a+b)<-(a+b)(a+b)ab+c(a+b)<-(a+b)(a+b)+ab即ab+bc+ca<-a2-ab-b2∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,这与已知ab +bc +ca >0矛盾,所以假设不成立.因此a >0,b >0,c >0成立.16.已知a ,b ,c ∈(0,1).求证:(1-a )b ,(1-b )c ,(1-c )a 不能同时大于14. [证明] 证法1:假设(1-a )b 、(1-b )c 、(1-c )a 都大于14.∵a 、b 、c 都是小于1的正数,∴1-a 、1-b 、1-c 都是正数.(1-a )+b 2≥(1-a )b >14=12, 同理(1-b )+c 2>12,(1-c )+a 2>12. 三式相加,得(1-a )+b 2+(1-b )+c 2+(1-c )+a 2>32, 即32>32,矛盾. 所以(1-a )b 、(1-b )c 、(1-c )a 不能都大于14. 证法2:假设三个式子同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得 (1-a )b (1-b )c (1-c )a >⎝ ⎛⎭⎪⎫143① 因为0<a <1,所以0<a (1-a )≤⎝ ⎛⎭⎪⎫1-a +a 22=14. 同理,0<b (1-b )≤14,0<c (1-c )≤14. 所以(1-a )a (1-b )b (1-c )c ≤⎝ ⎛⎭⎪⎫143.② 因为①与②矛盾,所以假设不成立,故原命题成立.17.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R .(1)若a +b ≥0,求证:f (a )+f (b )≥f (-a )+f (-b );(2)判断(1)中命题的逆命题是否成立,并证明你的结论.[解析] (1)证明:∵a +b ≥0,∴a ≥-b .由已知f (x )的单调性得f (a )≥f (-b ).又a +b ≥0⇒b ≥-a ⇒f (b )≥f (-a ).两式相加即得:f (a )+f (b )≥f (-a )+f (-b ).(2)逆命题:f (a )+f (b )≥f (-a )+f (-b )⇒a +b ≥0.下面用反证法证之.假设a +b <0,那么:a +b <0⇒a <-b ⇒f (a )<f (-b )a +b <0⇒b <-a ⇒f (b )<f (-a )⇒f (a )+f (b )<f (-a )+f (-b ).这与已知矛盾,故只有a +b ≥0.逆命题得证.18.(2010·湖北理,20改编)已知数列{b n }的通项公式为b n =14⎝ ⎛⎭⎪⎫23n -1.求证:数列{b n }中的任意三项不可能成等差数列.[解析] 假设数列{b n }存在三项b r 、b s 、b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b t >b s >b r ,则只可能有2b s =b r +b t 成立. ∴2·14⎝ ⎛⎭⎪⎫23s -1=14⎝ ⎛⎭⎪⎫23r -1+14⎝ ⎛⎭⎪⎫23t -1. 两边同乘3t -121-r ,化简得3t -r +2t -r =2·2s -r 3t -s ,由于r <s <t ,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列{b n }中任意三项不可能成等差数列.。
2.2.2 反证法1.了解反证法是间接证明的一种基本方法.2.理解反证法的思考过程,会用反证法证明数学问题.基础梳理1.定义:一般地,由证明p⇒q转向证明:綈q⇒r⇒…⇒t,t与假设矛盾,或与某个真命题矛盾.从而判定┐q为假,推出q为真的方法,叫做反证法.2.反证法常见的矛盾类型:反证法的关键是在正确的推理下得出矛盾.这个矛盾可以是与假设矛盾或与数学公理、定理、公式、定义或与公认的简单事实矛盾等.想一想:(1)反证法的实质是什么?(2)反证法属于直接证明还是间接证明?其证明过程属合情推理还是演绎推理?(1)解析:反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的.(2)解析:反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理.自测自评1.用反证法证明命题“三角形的内角中至少有一个大于60°”时,反设正确的是(A) A.假设三内角都不大于60°B.假设三内角都大于60°C.假设三内角至多有一个大于60°D.假设三内角至多有两个大于60°解析:“至少有一个”的否定是“一个都没有”,则反设为“三个内角都不大于60°”.2.有以下结论:①已知p3+q3=2,求证p+q≤2,用反证法证明时,可假设p+q≥2;②已知a,b∈R,|a|+|b|<1,求证方程x2+ax+b=0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1.下列说法中正确的是(D)A.①与②的假设都错误B.①与②的假设都正确C.①的假设正确;②的假设错误D.①的假设错误;②的假设正确解析:用反证法证明问题时,其假设是原命题的否定,故①的假设应为“p+q>2”;②的假设为“两根的绝对值不都小于1”,故①假设错误.②假设正确.3.“实数a,b,c不全大于0”等价于(D)A.a,b,c均不大于0B.a,b,c中至少有一个大于0C.a,b,c中至多有一个大于0D.a,b,c中至少有一个不大于0解析:“不全大于零”即“至少有一个不大于0”,它包括“全不大于0”.故选D.基础巩固1.(2014·微山一中高二期中)用反证法证明命题“如果a>b>0,那么a2>b2”时,假设的内容应是(C)A.a2=b2 B.a2<b2C.a2≤b2 D.a2<b2,且a2=b22.否定“至多有两个解”的说法中,正确的是(D)A.有一个解 B.有两个解C.至少有两个解 D.至少有三个解3.用反证法证明命题“若直线AB、CD是异面直线,则直线AC、BD也是异面直线”的过程归纳为以下三个步骤:①则A、B、C、D四点共面,所以AB、CD共面,这与AB、CD是异面直线矛盾;②所以假设错误,即直线AC、BD也是异面直线;③假设直线AC、BD是共面直线.则正确的序号顺序为(B)A.①②③ B.③①②C.①③② D.②③①解析:结合反证法的证明步骤可知,其正确步骤为③①②.4.命题“a,b∈R,若|a-1|+|b-1|=0,则a=b=1”用反证法证明时应假设为________.解析:“a=b=1”的反面是“a≠1或b≠1”,所以设为a≠1或b≠1.答案:a≠1或b≠1能力提升5.下列命题不适合用反证法证明的是(C)A.同一平面内,分别与两条相交直线垂直的两条直线必相交B.两个不相等的角不是对顶角C.平行四边形的对角线互相平分D.已知x,y∈R,且x+y>2,求证:x,y中至少有一个大于1.解析:选项A中命题条件较少,不足以正面证明;选项B中命题是否定性命题,可以反证法证明;选项D中命题是至少性命题,可以反证法证明.选项C不适合用反证法证明.故选C.6.设a、b、c∈R+,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的(C)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:首先若P、Q、R同时大于零,则必有PQR>0成立.其次,若PQR>0,且P、Q、R 不都大于0,则必有两个为负,不妨设P<0,Q<0,即a+b-c<0,b+c-a<0,∴b<0与b∈R P、Q、R都大于0.故选C.+矛盾,故7.已知数列{a n},{b n}的通项公式分别为a n=an+2,b n=bn+1(a,b是常数,且a>b),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n使得a n=b n,由题意a>b,n∈N*,则恒有an>bn,从而an+2>bn+1恒成立,所以不存在n使a n=b n.答案:08.有下列叙述:①“a>b”的反面是“a<b”;②“x=y”的反面是“x>y或x<y”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形最多有一个钝角”的反面是“三角形没有钝角”.其中正确的叙述有__________(填序号).解析:“x=y”的反面是“x≠y”,即是“x>y或x<y”,所以②正确;“a>b”的反面是“a ≤b ”;“三角形的外心在三角形外”的反面是“三角形的外心不在三角形外”;“三角形最多有一个钝角”的反面是“三角形至少有两个钝角”.所以这三个都错.答案:②9.如果非零实数a ,b ,c 两两不相等,且2b =a +c .证明:2b =1a +1c不成立. 证明:假设2b =1a +1c 成立,则2b =a +c ac =2b ac,∴b 2=ac . 又∵b =a +c 2,∴⎝ ⎛⎭⎪⎫a +c 22=ac ,即a 2+c 2=2ac ,即(a -c )2=0, ∴a =c ,这与a ,b ,c 两两不相等矛盾,∴2b =1a +1c不成立. 10.已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负实根.证明:(1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0. 所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0,所以x 2-2x 2+1-x 1-2x 1+1 =(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1) =3(x 2-x 1)(x 1+1)(x 2+1)>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0,故函数f (x )在(-1,+∞)上为增函数. (2)设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1. 又0<ax 0<1,所以0<-x 0-2x 0+1<1,即12<x 0<2. 与假设x 0<0矛盾,故f (x )=0没有负实根.。