波谱解析-解谱步骤
- 格式:doc
- 大小:38.00 KB
- 文档页数:5
光谱分析基本定律——Lambert-Beer定律:电磁波的波粒二象性——Planck方程:电磁辐射按波长顺序排列称为电磁波谱(光波谱)。
分区依次(短→长)为:γ射线区→X射线区→紫外光区(UV)→可见光区→红外光区(IR)→微波区→射频区(NMR)Franck-Condon原理:①电子跃迁时认为核间距r不变,发生垂直跃迁;②电子能级跃迁时必然同时伴有多种振动能级和转动能级的变化,同理振动能级跃迁时必然同时伴有多种转动能级的变化。
有机波谱的三要素:谱峰的①位臵(定性指标)、②强度(定量指标)和③形状。
【提请注意】对《天然药物化学成分波谱解析》(以下简称“教材”)P.5图1-8不理解的同学,应注意到轨道其中的“+”“-”表示的是波函数的位相,而不是电性!E总=E0+E平+E转+E振+E电电子跃迁类型:①σ→σ*、②n→σ*、③π→π*、④n→π*,其中,后两者对紫外光谱有意义。
此外,还包括主要存在于无机物的⑤电荷迁移跃迁和⑥配位场跃迁。
分子和原子与电磁波相互作用,从一个能级跃迁到另一个能级要遵循一定的规律,这些规律称为光谱选律。
紫外光谱所遵循的选律包括:①自选旋律和②对称性选律。
影响紫外光谱最大吸收波长(λmax)的主要因素:①电子跃迁类型;②发色团(生色团)和助色团;③π-π共轭、p-π共轭和σ-π超共轭(弱);④溶剂和介质;〃规律:溶剂极性增大,n→π*跃迁发生篮移(紫移),π→π*跃迁发生红移。
〃总结:溶剂的选择原则即紫外透明、溶解度好、化学惰性。
〃例子:甲醇、95%乙醇、环己烷、1,4-二氧六环。
【相关概念】等色点:同一化合物在不同pH条件下测得的紫外光谱曲线相交于一点,此即~。
⑤顺反异构、空间位阻和跨环效应。
影响紫外光谱吸收强度(εmax)的主要因素:εmax=0.87×1020×P(跃迁几率)×α(发色团的靶面积)【提请注意】严格地说,跃迁的强度最好是用吸收峰下的面积来测量(如果是以ε对ν作图)!吸收带:跃迁类型相同的吸收峰称为~。
波谱解析pdf
波谱解析是一种科学技术,用于研究和分析物质的光谱特性。
它通过测量材料与不同波长或频率的光之间的相互作用,得到关于材料的信息。
波谱解析可以应用于各个领域,如化学、物理、生物学等。
常见的波谱解析方法包括:
1.紫外可见光谱:通过测量物质在紫外可见光波段吸收或散射光的强度变化,来推断物质的结构和浓度。
2.红外光谱:利用物质吸收红外光的特性,来研究物质的分子结构和化学键的性质。
3.核磁共振(NMR)光谱:通过观察核磁共振现象,测量样品中原子核的共振频率,从而了解分子结构、组成和化学环境。
4.质谱:通过将物质分子中的离子化,然后对离子进行质量-电荷比的测量,从而确定物质的分子量和分子结构。
5.微波光谱:研究物质分子在微波波段的转动和振动特性,从而得到物质的结构信息。
波谱解析在科学研究、材料分析、环境监测、医学诊断等领域都有广泛的应用,可以帮助人们深入理解物质的性质和特性。
波谱解析(Spectroscopic analysis )第一章紫外光谱4学时第二章红外光谱6学时第三章核磁共振氢谱6学时第四章核磁共振碳谱4学时第五章二维核磁共振谱第六章经典质谱技术6学时第七章现代质谱技术4学时第一章紫外光谱(Ultraviolet Spectroscopy)电磁波的基本性质和分类:微粒性和波动性→波粒二象性波动性有关的关系式:吸收光谱与能级跃迁:Lambert-Beer Law:分子的能级图E总= E电+E振+E转+E平Lambert-Beer LawA=-lgT=εL C Lambert Beer Law第二节紫外吸收光谱的基本知识分子轨道(molecular orbitals):概念:分子中的电子能级成键轨道(bonding orbitals)反键轨道(antibonding orbitals) 分子轨道的种类σ轨道 σs 、σs *、σp 、σp *、σsp 、σsp * π轨道 πp 、πp *、πpd 、πpd *、πdd 、πdd * 电子跃迁及类型主要有四种跃迁,所需能量ΔΕ大小顺序为:σ→σ*> n →σ*≥ π→π*> n →π* 紫外光谱图最大吸收波长:λmax 最大吸收峰ε值:εmax 横坐标——波长λ,以nm 表示。
纵坐标——吸收强度,以A (吸光度)或ε(mol 吸光系数)、log ε、T%(百分透光度)表示。
吸收带(i)R 带 [来自德文Radikalartig(基团)]由n-π*跃迁引起。
或者说,由带孤对电子的不饱和基团产生。
R 带举例:特点: λmax >250nm ,εmax <100 (ii)K 带[来自德文Konjugierte(共轭)] 由共轭体系的π-π*跃迁引起。
例如:N=O ¡¡¡¡¡特点:λmax 210-250nm ,εmax >10000 (iii)B 带和E 带均由苯环的π-π*跃迁引起。
波谱原理及解析波谱原理是指通过分析物质的光谱特性,来获取物质的结构和性质的一种方法。
波谱分析是一种非常重要的化学分析手段,它可以用来鉴定物质的种类、结构和纯度,对于化学、生物、医药等领域都有着广泛的应用。
本文将对波谱原理及其解析方法进行介绍。
首先,我们来了解一下波谱的基本原理。
波谱是指物质在吸收、发射或散射光线时产生的光谱。
光谱是由不同波长的光线组成的,它可以通过分光仪进行分析和记录。
根据物质对光的吸收、发射或散射特性,可以得到不同的光谱图像,从而推断出物质的结构和性质。
波谱分析主要包括紫外可见光谱、红外光谱、质谱、核磁共振等几种方法。
紫外可见光谱主要用于分析有机化合物的结构和含量,它通过分析物质对紫外和可见光的吸收情况来推断物质的结构。
红外光谱则是用来分析物质的功能团和分子结构,它通过分析物质对红外光的吸收情况来得出结论。
质谱是一种通过分析物质的质荷比来确定其分子结构和质量的方法,它对物质的分子结构和组成有着很高的分辨率。
核磁共振则是一种通过分析物质中核子的旋转和共振现象来得出结论的方法,它对物质的结构和构象有着很高的分辨率。
波谱解析的过程主要包括预处理、特征提取和数据分析三个步骤。
在预处理阶段,需要对采集到的波谱数据进行去噪、平滑和基线校正等处理,以提高数据的质量。
在特征提取阶段,需要通过数学和统计方法来提取波谱数据中的特征参数,以便进行后续的分析。
在数据分析阶段,需要利用化学信息学、模式识别和机器学习等方法来对波谱数据进行分析和解释,从而得出物质的结构和性质。
总之,波谱原理及解析是一种非常重要的化学分析方法,它可以用来鉴定物质的结构和性质,对于化学、生物、医药等领域都有着广泛的应用。
通过对波谱的基本原理和解析方法的了解,我们可以更好地应用波谱分析技术来解决实际问题,推动科学研究和工程应用的发展。
四大谱图基本原理及图谱解析一质谱1. 基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+J叫分子离子。
它还会发生一些化学键的断裂生成各种r =£碎片离子。
带正电荷离子的运动轨迹:经整理可写成:m _ rjH2电"2比2式中:口/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z 表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z x r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V) 一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z x H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z x 1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4〜3kV。
波谱解析(一)紫外光谱解析UV应用时顾及吸收带的位置,强度和形状三个方面。
从吸收带(K带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R 带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。
一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。
可粗略归纳为以下几点:①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环烃或它们的简单衍生物。
②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。
③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。
④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。
⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。
(二)红外光谱1. 解析红外光谱的三要素(位置、强度和峰形)在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。
吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。
每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。
只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的存在2 .确定官能团的方法对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。
因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。
只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。
例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲振动。
四大谱图基本原理及图谱解析一.质谱1.基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。
它还会发生一些化学键的断裂生成各种碎片离子。
带正电荷离子的运动轨迹:经整理可写成:式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4~3kV。
有机波谱解析技巧在化学领域中,有机波谱解析是一项至关重要的技能。
它就像是一把神奇的钥匙,能够帮助我们揭开有机化合物分子结构的神秘面纱。
对于化学专业的学生、科研工作者以及从事相关领域工作的人员来说,熟练掌握有机波谱解析技巧是必不可少的。
有机波谱分析主要包括红外光谱(IR)、紫外可见光谱(UVVis)、核磁共振谱(NMR,包括氢谱 1H NMR 和碳谱 13C NMR)以及质谱(MS)等。
每种波谱技术都有其独特的原理和特点,为我们提供了不同角度的分子结构信息。
红外光谱是通过测量分子对不同波长红外光的吸收来确定分子中的官能团。
就好像每个人都有独特的指纹,每种官能团在红外光谱中也有其特定的吸收峰位置和形状。
比如,羰基(C=O)在 1700 cm -1 左右有强烈的吸收峰,羟基(OH)在 3200 3600 cm -1 有较宽的吸收峰。
在解析红外光谱时,首先要观察整个谱图的轮廓,了解吸收峰的大致分布情况。
然后重点关注那些特征性强的吸收峰,判断可能存在的官能团。
但需要注意的是,有些官能团的吸收峰可能会受到分子中其他基团的影响而发生位移,这就需要结合具体情况进行综合分析。
紫外可见光谱则主要用于研究分子中存在的共轭体系。
共轭体系越大,吸收波长就越长。
通过测量物质对紫外和可见光的吸收,可以推断分子中是否存在双键、苯环等共轭结构。
接下来是核磁共振谱,这可是有机波谱解析中的“重头戏”。
氢谱能告诉我们分子中氢原子的种类、数量和所处的化学环境。
不同化学环境的氢原子在谱图中会出现在不同的位置,化学位移就是它们的“坐标”。
比如说,与羰基相连的氢原子化学位移通常较大,在 9 10 ppm 左右;而与甲基相连的氢原子化学位移则较小,一般在 1 2 ppm 之间。
除了化学位移,峰的裂分情况也能提供重要信息。
通过耦合常数可以判断相邻氢原子的数目和相对位置关系。
碳谱则能更直接地反映分子中碳原子的情况。
由于碳原子的天然丰度较低,碳谱的灵敏度相对较低,但它对于确定复杂分子的结构仍然具有不可替代的作用。
四大谱图基本原理及图谱解析一质谱1. 基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+J叫分子离子。
它还会发生一些化学键的断裂生成各种r =£碎片离子。
带正电荷离子的运动轨迹:经整理可写成:m _ rjH2电"2比2式中:口/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z 表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z x r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V) 一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z x H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z x 1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4〜3kV。
波谱解析
(一)紫外光谱
解析UV应用时顾及吸收带的位置,强度和形状三个方面。
从吸收带(K带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R 带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。
一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。
可粗略归纳为以下几点:
①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环烃或它们的简单衍生物。
②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。
③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。
④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。
⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。
(二)红外光谱
1. 解析红外光谱的三要素(位置、强度和峰形)
在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。
吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。
每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。
只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的存在2 .确定官能团的方法
对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。
因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。
只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。
例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲振动。
例2. 亚甲基(CH2):2920cm-1和2850cm-1为其伸缩振动,1470cm-1和720cm-1
为其弯曲振动。
例3. 酯基:νC=O为1750~1725cm-1,νC-O在1300~1050cm-1有两个吸收谱带。
3 红外光谱解析的顺序
(1)根据确定的分子,计算不饱和度,预测可能的官能团。
(2)首先观察红外光谱的官能团区,找出该化合物可能存在的官能团。
(3)查看红外光谱的指纹区,找出官能团的相关吸收峰,最后才确定该化合物存在某官能团。
(4)判断是否芳香族化合物,若为芳香化合物,找出苯的取代位置。
(5)根据红外光谱指纹区的吸收峰与已知化合物的红外光谱或标准图谱对照,确定是否为已知化合物。
(三)核磁共振氢谱
核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。
70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。
由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。
解析图谱的步骤
1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。
如果有问题,解析时要引起注意,最好重新测试图谱。
2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks)
(1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。
(2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。
(3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称
的弱峰,称为旋转边峰。
(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。
3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。
可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。
4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。
5.解析羧基、醛基、分子内氢键等低磁场的质子信号。
6.解析芳香核上的质子信号。
7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。
8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。
9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。
10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配合解析结构。
11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。
12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归属信号。
(四)核磁共振碳谱(13C—NMR)
解析图谱的步骤
1.鉴别谱图中的非真实信号峰
(1)溶剂峰:虽然碳谱不受溶剂中氢的干扰,但为兼顾氢谱的测定及磁场需要,仍常采用氘代试剂作为溶剂,氘代试剂中的碳原子均有相应的峰。
(2)杂质峰:杂质含量相对于样品少得多,其峰面积极小,与样品化合物中的碳呈现的峰不成比例。
(3)测试条件的影响:测试条件会对所测谱图有较大影响。
如脉冲倾斜角较大
而脉冲间隔不够长时,往往导致季碳不出峰;扫描宽度不够大时,扫描宽度以外的谱线会折叠到图谱中来;等等,均造成解析图谱的困难。
2.不饱和度的计算
根据分子式计算的不饱和度,推测图谱烯碳的情况。
3.分子对称性的分析
若谱线数目等于分子式中碳原子数目,说明分子结构无对称性;若谱线数目小于分子式中碳原子数目,说明分子结构有一定的对称性。
此外,化合物中碳原子数目较多时,有些核的化学环境相似,可能δ值产生重叠现象,应予以注意。
4.碳原子δ值的分区
碳原子大致可分为三个区
(1)高δ值区δ>165ppm,属于羰基和叠烯区:①分子结构中,如存在叠峰,除叠烯中有高δ值信号峰外,叠烯两端碳在双键区域还应有信号峰,两种峰同时存在才说明叠烯存在;②δ>200 ppm的信号,只能属于醛、酮类化合物;③160-180ppm的信号峰,则归属于酸、酯、酸酐等类化合物的羰基。
(2)中δ值区δ90-160ppm(一般情况δ为100-150ppm)烯、芳环、除叠烯中央碳原子外的其他SP2杂化碳原子、碳氮三键碳原子都在这个区域出峰。
(3)低δ值区δ<100ppm,主要脂肪链碳原子区:①不与氧、氮、氟等杂原子相连的饱和的δ值小于55ppm;②炔碳原子δ值在70-100ppm,这是不饱和碳原子的特例。
5.碳原子级数的确定
由低共振或APT(attached proton test)、DEPT(distortionless enhancement by polarization transfer)等技术可确定碳原子的级数,由此可计算化合物中与碳原子相连的氢原子数。
若此数目小于分子式中的氢原子数,二者之差值为化合物中活泼氢的原子数。
6.推导可能的结构式
先推导出结构单元,并进一步组合成若干可能的结构式。
7.对碳谱的指认
将碳谱中各信号峰在推出的可能结构式上进行指认,找出各碳谱信号相应的归属,从而在被推导的可能结构式中找出最合理的结构式,即正确的结构式。