半导体激光器-发散角
- 格式:ppt
- 大小:578.50 KB
- 文档页数:13
半导体激光器的工作原理及应用摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。
由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。
从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,是半导体激光器开启了激光应用发展的新纪元。
关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器The working principle of semiconductor lasers and applications ABSTRACT: The machanism of lasing by semiconductor laser,which requires set up specially designated reverse of beam of particles among energy stages,and appropriate optical syntonic coelenteronAs the specificity of structure from semiconductor and moving electrons.something interesting happens.On the one hand,the specific process in producing lase,on the other hand,the beam of light has unique advantages。
As the reasons above,we can easily found it all quartersof the society.From homojunction to heterojunction,from informatics to power,the advantages of laser are in evidence,the wide spectrum,the semiconductor open the epoch in the process of laser. Key worlds: stimulated radiation; optical field; homojunction; heterojunction; high-power semiconductor laser 0 前言半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。
课题半导体激光器实验1.了解半导体激光器的基本工作原理,掌握其使用方法;教学目的 2.掌握半导体激光器耦合、准直等光路的调节;3.学会测量半导体激光器的输出特性和光谱特性。
重难点 1.激光器与光具组的共轴调节;2.输出特性的测量方法。
教学方法讲授、讨论、实验演示相结合。
学时 3个学时一、前言光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。
其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。
半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通讯,光计算机的发展。
二、实验原理1.半导体激光器的工作原理激光器一般包括三个部分。
(1 )激光工作介质激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。
在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。
显然亚稳态能级的存在,对实现粒子数反转是非常有利的。
现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。
(2)激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。
一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。
各种激励方式被形象化地称为泵浦或抽运。
为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。
(3) 谐振腔有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。
于是人们就想到了用光学谐振腔进行放大。
所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。
一块几乎全反射,一块大部分反射、少量透射出去,以使激光可透过这块镜子而射出。
太原理工大学学生实验报告
1.根据实验记录数据,算出半导体激光器驱动电流,画出相应的光功率与注入电
流的关系曲线。
(测得电阻为Ω)
2.根据所画的P-I特性曲线,找出半导体激光器阈值电流I th的大小。
3.根据P-I特性曲线,求出半导体激光器的斜率效率。
七、注意事项
1.半导体激光器驱动电流不可超过40mA,否则有烧毁激光器的危险。
2.由于光功率计,光跳线等光学器件的插头属易损件,使用时应轻拿轻放,切忌
用力过大。
八、思考题
1.试说明半导体激光器发光工作原理。
半导体激光器工作原理是激励方式,利用半导体物质(既利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。
半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射
2.环境温度的改变对半导体激光器P-I特性有何影响
随着温度的上升,阈值电流越来越大,功率随电流变化越来越缓慢。
3.分析以半导体激光器为光源的光纤通信系统中,半导体激光器P-I特性对系统。
激光器的种类及性能参数总结半导体激光器——用半导体材料作为工作物质的一类激光器中文名称:半导体激光器英文名称:semiconductor laser定义1:用一定的半导体材料作为工作物质来产生激光的器件。
所属学科:测绘学(一级学科);测绘仪器(二级学科)定义2:以半导体材料为工作物质的激光器。
所属学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科)定义3:一种利用半导体材料PN结制造的激光器。
所属学科:通信科技(一级学科);光纤传输与接入(二级学科)半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。
(1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。
(2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。
(3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。
(4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15˚~40˚左右。
(5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6˚~ 10˚左右。
(6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。
工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。
一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。
准分子激光器——以准分子为工作物质的一类气体激光器件。
中文名称:准分子激光器英文名称:excimer laser定义:以准分子为工作物质的激光器。
所属学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科)在医学领域中使用的激光器种类非常多,常用于眼科治疗的主要有红宝石(rudy)激光、氩离子(Ar+)激光、氪离子(Kr+)、染料(dye)激光、掺钕钇铝石榴石(Nd:Y AG)激光和氟化氩(ArF)准分子激光等固体、气体和液体的激光器,用连续的、脉冲的和调Q的方式,治疗眼底部色素膜和屈光间质等部位的数十种有关眼部疾病。
高功率半导体激光器慢轴发散角波导热透镜效应1. 引言在现代科技领域,高功率半导体激光器是一种至关重要的光电器件。
它的广泛应用范围涵盖通信、医疗、材料加工等多个领域。
而在高功率半导体激光器中,慢轴发散角波导热透镜效应是一个备受关注的现象。
2. 高功率半导体激光器慢轴发散角波导热透镜效应的概念和原理慢轴发散角指的是激光器输出光束的横向发散角,而波导热透镜效应是指在高功率半导体激光器中,由于电流注入导致波导区温度升高,从而使横向光学模式发生变化的现象。
激光器的慢轴发散角波导热透镜效应是指在高功率工作状态下,由于波导区温度上升,导致激光器横向光学模式结构受到改变,使得光束传输特性发生变化的现象。
3. 高功率半导体激光器慢轴发散角波导热透镜效应的影响慢轴发散角波导热透镜效应的产生会导致激光器的输出光束横向分布发生改变,影响激光器的光束质量和传输性能。
特别是在高功率激光器中,这种效应会对激光器的稳定性和可靠性构成挑战,甚至降低整个激光系统的性能。
4. 高功率半导体激光器慢轴发散角波导热透镜效应的解决方法为了克服激光器慢轴发散角波导热透镜效应带来的负面影响,科研人员提出了许多解决方案。
通过优化波导结构和材料,以降低波导区温升;采用外部降温技术,如热沉等;调整电流注入分布,减少波导区温度梯度等。
5. 个人观点和理解对于高功率半导体激光器慢轴发散角波导热透镜效应,我认为这是一个在实际应用中非常重要的问题。
它直接关系到激光器的性能和稳定性,因此需要引起足够重视。
在解决这一问题的过程中,科研人员需要综合考虑材料、结构、制备工艺等多个方面的因素,以找到最佳的解决方案。
6. 总结高功率半导体激光器慢轴发散角波导热透镜效应是一个复杂而重要的问题,对于激光器的性能和稳定性具有重要影响。
在实际应用中,需要借助有效的解决方案来克服这一问题,以确保激光器的高效运行和稳定输出。
在知识的文章中,上述内容将按照序号标注,并在内容中多次提及“高功率半导体激光器慢轴发散角波导热透镜效应”,以满足您的要求。
实验13半导体激光器实验【实验目的】1.通过实验熟悉半导体激光器的电学特性、光学特性。
2.掌握半导体激光器耦合、准直等光路的调节。
3.根据半导体激光器的光学特性考察其在光电子技术方面的应用。
4.掌握WGD-6光学多道分析器的使用【仪器用具】半导体激光器及可调电源、WGD-6型光学多道分析器、可旋转偏振片、旋转台、多功能光学升降台、光功率指示仪【实验原理】1、半导体激光器的基本结构半导体激光器的全称为半导体结型二极管激光器,也称激光二极管,激光二极管的英文名称为laser diode,缩写为LD。
大多数半导体激光器用的是GaAs或GaAlAs材料。
P-N结激光器的基本结构和基本原理如图13-1所示,P-N结通常在N型衬底上生长P型层而形成。
在P区和N区都要制作欧姆接触,使激励电流能够通过,这电流使得附近的有源区内产生粒子数反转(载流子反转),还需要制成两个平行的端面起镜面作用,为形成激光模提供必需的光反馈。
图13-1(a)半导体激光器结构图13-1(b ) 半导体激光器工作原理图2、半导体激光器的阈值条件阈值电流作为各种材料和结构参数的函数的一个表达式:)]1ln(21[8202R a Den J Q th +∆=ληγπ这里, Q η是内量子效率,0λ是发射光的真空波长,n 是折射率, γ∆是自发辐射线宽,e 是电子电荷,D 是光发射层的厚度, α是行波的损耗系数,L 是腔长,R 为功率反射系数。
图13-2半导体激光器的P-I特性图13-3 不同温度下半导体激光器的发光特性3、伏安特性伏安特性描述的是半导体激光器的纯电学性质,通常用V-I曲线表示。
V-I曲线的变化反映了激光器结特性的优劣。
与伏安特性相关联的一个参数是LD的串联电阻。
对V-I曲线进行一次微商即可确定工作电流(I)处的串联电阻(dV/dI)。
对LD而言总是希望存在较小的串联电阻。
图13-4典型的V-I曲线和相应的dV/dI曲线3、横模特性半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。
半导体激光器光学特性测量实验报告【摘要】激光是20世纪一项重大的发明,被广泛应用于生活之中。
激光的产生原理是受激辐射,需要满足粒子数反转、谐振腔反馈和阈值三个条件。
激光的工作介质有很多类型,其中的半导体激光器具有体积小、质量轻、稳定高效、可调制等特点。
本文使用激光器、光功率指示仪、透镜、偏振器等器件测量了可见光波段的半导体激光器的输出特性曲线、发散角、偏振度和光谱等特性,对半导体激光器的光学特性进行了总结。
【关键字】激光,半导体,偏振,发散角,光谱,定标Experiment report of Semiconductor laser optical characteristic measurementAbstract : The theory of laser generation is stimulated radiation, which needs to meet the three conditions of particle number conversion,resonant cavity feedback and threshold. There are many types of laser working media, among which semiconductor lasers have the characteristics of small size, light weight, stable and efficient, and can be modulated. This article use lasers, optical power indicators, lenses, polarizer and other devices to measure the output characteristic curve, divergence angle, alignment and spectrum of visible light semiconductor lasers, and summarize the optical characteristics of semiconductor lasers.Key words: laser, semiconductor, polarization, divergence, spectrum, calibration1. 引言继相对论、量子物理、原子能技术、计算机技术之后,激光技术成为了20世纪又一大重大科学技术新成就。
2016新编激光光束发散角的测量激光光束发散角的测量一、高斯光束由激光器产生的激光束既不是平面光波,也不是均匀的球面光波。
虽然在特定位置,看似一个球面波,但它的振幅和等相位面都在变化。
从理论上来讲,光在稳定的激光谐振腔中进行无限次的反射后,激光器所发出的激光将以高斯光束的形式在空间传输。
而且反射(衍射)次数越多,其光束传输形状越接近高斯光束。
从另一方面讲,形状越接近高斯光束的激光束,在传播、偶合及光束变换过程中,其形状越不易改变,在高斯光束时,不论怎样变换,其形状依然是高斯光束。
在激光器产生的各种模式的激光中,最基本、应用最多的是基模高斯光束。
在以光束传播方向z轴为对称轴的柱面坐标系中,基模高斯光束的电矢量振动可以表示为22rrz,[()arctan,,ikz2E,,it()2()wzRzf0 (1) (,,),,,Erzteee00()wz式中,E为常数,其余各符号意义表示如下: 0222 rxy,,2,, k,z2 wzw()1(),,0f2fRzz(),, z2,w0,f,其中,wwz,,(0)为基模高斯光束的束腰半径,f称为高斯光束的共焦参数或瑞利长度,0R(z)为与传播轴线交于z点的基模高斯光束的远场发散角为高斯光束等相位面的曲率半径,w(z) 是与传播轴线相交于z点高斯光束等相位面上的光斑半径。
图1 高斯光束的横截面图2 高斯光束的纵剖面,按双曲线的规律扩展基模高斯光束具有以下基本特点:1)基模高斯光束在横截面内的电矢量振幅分布按照高斯函数规律从中心向外平滑下降,如图1所示。
由中心振幅值下降到1/e点所对应的宽度,定义为光斑半径,光斑半径是传播位置z的函数z2 (1) wzw()1(),,0f由(1)式可见,光斑半径随着传播位置坐标z按双曲线的规律展开,即22wzz() (2) ,,122wf0如图2所示,在z=0处,,光斑达到极小值,称为束腰半径。
由(2)式可wzw(),0知,知道束腰半径和瑞利长度,即可确定任何位置处的光斑半径。
半导体激光治疗仪原理半导体激光治疗仪是一种利用半导体激光器发出的激光光束对人体进行治疗的医疗设备。
它的原理是利用激光的生物刺激作用和热效应,通过选择性照射治疗部位,以达到促进组织修复、消炎止痛、促进血液循环等治疗效果。
首先,半导体激光治疗仪利用的是半导体激光器产生的激光。
半导体激光器是一种利用半导体材料产生激光的器件。
当半导体激光器通电时,激发半导体材料中的电子跃迁,产生激光。
这种激光具有单色性好、发散角小、功率密度高等特点,非常适合用于医疗治疗。
其次,半导体激光治疗仪的原理是利用激光的生物刺激作用。
激光照射到人体组织上时,能够激活细胞代谢,促进细胞再生,加速伤口愈合。
同时,激光还能够调节神经系统、内分泌系统,达到镇痛、消炎的效果。
这种生物刺激作用是半导体激光治疗仪产生治疗效果的重要原因。
另外,半导体激光治疗仪的原理还包括利用激光的热效应。
激光照射到人体组织上时,能够被组织吸收并转化为热能,提高组织温度,促进血管扩张,增加血液流动,加速新陈代谢,有利于组织修复。
同时,热效应还能够杀灭细菌、消炎止痛,对于一些炎症性疾病有一定的治疗作用。
总的来说,半导体激光治疗仪的原理主要包括利用半导体激光器产生的激光,激光的生物刺激作用和热效应。
通过这些原理的作用,半导体激光治疗仪能够达到促进组织修复、消炎止痛、促进血液循环等治疗效果。
需要注意的是,使用半导体激光治疗仪时,应该严格按照医生的建议和操作手册进行操作,以免造成不必要的伤害。
同时,对于不同病症的治疗,也需要选择合适的治疗参数和治疗时间,以达到最佳的治疗效果。
综上所述,半导体激光治疗仪利用半导体激光器产生的激光,通过激光的生物刺激作用和热效应,能够达到治疗效果。
它在医疗领域有着广泛的应用前景,对于一些慢性疾病、炎症性疾病有着良好的治疗效果,是一种非常值得推广和应用的医疗设备。
半导体激光器工作原理及主要参数OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。
常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。
激励方式有电注入、电子束激励和光泵浦激励三种形式。
半导体激光器件,一般可分为同质结、单异质结、双异质结。
同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。
半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。
半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。
半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。
电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。
电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外部注入高能电子束进行激励。
光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。
目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。
半导体光电器件的工作波长与半导体材料的种类有关。
半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。
激光光束发散角的测量一、高斯光束由激光器产生的激光束既不是平面光波,也不是均匀的球面光波。
虽然在特定位置,看似一个球面波,但它的振幅和等相位面都在变化。
从理论上来讲,光在稳定的激光谐振腔中进行无限次的反射后,激光器所发出的激光将以高斯光束的形式在空间传输。
而且反射(衍射)次数越多,其光束传输形状越接近高斯光束。
从另一方面讲,形状越接近高斯光束的激光束,在传播、偶合及光束变换过程中,其形状越不易改变,在高斯光束时,不论怎样变换,其形状依然是高斯光束。
在激光器产生的各种模式的激光中,最基本、应用最多的是基模高斯光束。
在以光束传播方向z 轴为对称轴的柱面坐标系中,基模高斯光束的电矢量振动可以表示为222[()arctan ()2()000(,,)()r r z i k z i t w z R z f E E r z t e e e w z ω-+--=⋅⋅ (1)式中,E 0为常数,其余各符号意义表示如下:222r x y =+2k πλ=()w z w = 2()f R z z z=+ 20w f πλ= 其中,0(0)w w z ==为基模高斯光束的束腰半径,f 称为高斯光束的共焦参数或瑞利长度,R (z )为与传播轴线交于z 点的基模高斯光束的远场发散角为高斯光束等相位面的曲率半径,w (z ) 是与传播轴线相交于z 点高斯光束等相位面上的光斑半径。
图1 高斯光束的横截面图2 高斯光束的纵剖面,按双曲线的规律扩展基模高斯光束具有以下基本特点:1)基模高斯光束在横截面内的电矢量振幅分布按照高斯函数规律从中心向外平滑下降,如图1所示。
由中心振幅值下降到1/e 点所对应的宽度,定义为光斑半径,光斑半径是传播位置z 的函数()w z w = (1) 由(1)式可见,光斑半径随着传播位置坐标z 按双曲线的规律展开,即22220()1w z z w f -= (2)如图2所示,在z =0处,0()w z w =,光斑达到极小值,称为束腰半径。