定量分析测定误差(二)分析
- 格式:ppt
- 大小:1.22 MB
- 文档页数:8
第一章定量分析测定中的误差本章教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。
2、掌握系统误差和偶然误差的概念。
3、掌握有效数字的概念及运算规则,并能在实践中灵活运用。
教学重点与难点:准确度和精密度表示方法;误差来源;有效数字及运算法则。
教学内容:第一节定量分析中的误差教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。
2、掌握系统误差和偶然误差的概念。
教学重点:误差、偏差的概念和计算方法,准确度和精密度表示方法教学难点:误差来源实验引题:1、每位同学测自己20秒的脉搏,测6次,记录每次脉动次数。
2、投影屏开启4~5次,记录每次所需时间。
设问:1、同一块表测得的脉动次数或开启时间相同吗?2、不同的表(定时)测得的脉动次数或开启时间相同吗?引入内容:在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等方面的限制,使测得的结果不可能和真实含量完全一致;即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。
这说明客观上存在着难于避免的误差。
一、真实值、平均值与中位值1.真实值(x T)物质中各组分的真实数值,称为该量的真实值。
显然,它是客观存在的。
一般来说,真实值是末知的,但下列情况可认为其真实值是已知的。
(1)理论真实值 如某种化合物的理论组成等。
(2)相对真实值 认定精度高一个数量级的测定值作为低一级测量值的真实值,这种真实 值是相对比较而言的。
如分析实验室中标准试样及管理试样中组分的含量等。
2.平均值(1) 算术平均值(x ) 几次测量数据的算术平均值为12311nni i x x x x x x nn =++++==∑ (1-1) (2) 总体平均值(u ) 表示总体分布集中趋势的特征值。
第二章定量分析中的误差及其处理分析结果必须达到一定的准确度,满足对分析结果准确度的要求。
因为不准确的分析结果会导致产品的报废和资源的浪费,甚至在科学上得出的错误的结论,给生产或科研造成很大的损失,人民生活造成巨大困难或灾难。
但是分析结果是由分析者对所取样品(供试品或样品)利用某种分析方法、分析仪器、分析试剂得到的,必然受到这些分析的限制,分析结果不可能和样品的真实组成或真实含量完全一致,在一定条件下分析结果只能接近于真实值而不能达到真实值。
测定值与客观存在的真实值的差异就是所谓的误差(error)。
因此分析误差是客观存在、不可避免的,我们只能得到一定误差范围内的真实含量的近似值,达到一定的准确度。
采用哪些措施可能减小误差,依赖于误差本身的性质。
所以,我们应当了解误差的有关理论,明确误差的性质和来源,根据分析目的对误差的要求,选择准确度合适的分析方法,合理安排分析实验,设法减小分析误差,使分析结果的准确度达到要求,避免追求过高的准确度。
同时,也应当了解对分析结果的评价方法,以判断分析结果的可靠程度,对分析结果做出正确的取舍和表示。
2.1 分析结果的误差一、真值、样本平均值和总体平均值1. 真值与相对真值真值(true value)是指某物理量本身具有的客观存在的真实数值,表示物质存在的数量特征,用T来表示。
由于分析误差是不可避免的,因此真值是不可能测得的,实际工作中往往将理论值、约定值和标准值当作真值来检验分析结果的准确度,分别称为理论真值、约定真值和标准真值。
理论真值是指由公认理论推导或证明的某物理量的数值。
如水的组成常数或组成分数即为理论真值:1 mol H2O含2mol H和1 mol O,再如H+与OH-的反应的化学计量关系即H+与OH-的反应量之比为1 mol H+ : 1 mol OH-,该比值也是理论真值。
约定真值是指计量组织、学会或管理部门等规定并得到公认的计量单位的数值。
如国际计量大会定义的长度、时间、质量和物质的量等物理量的基本单位:光在真空中传播(1/299 792 458)s所经过的路径长度为1 m,国际千克原器的质量为1 kg、铯-133原子基态的两个超精细能级之间跃迁所对应的辐射的9 192 631 770个周期的持续时间为1 s等。
定量分析的误差和分析结果的数据处理一、有效数字及运算规则1、有效数字•有效数字就是是技能测量得到的数字;•有效数字组成:①所有确定的数字②一位不确定数字估定试样质量 21.4561g六位有效数字液体体积 20.20mL四位有效数字注意事项1不能随意增减有效数字为了得到准确的分析结果,不仅要准确地进行测量,还要正确地记录根据分析方法和测量仪器的准确度来决定数字的保留位数;2“0”可作有效数字,也可作无效数字数据中的“0”是否为有效数字,要看其作用;例:试样质量 0.2000g3科学记数法的位数 a ×10b10.2g 改写为mg时,该如何写2、运算规则•运算原则:“先修约,后计算”•修约规则:采取“四舍六入五留双”的办法,当尾数≤4时舍弃;尾数≥6时则进入;尾数=5时,若“5”前面为偶数包括零则舍,为奇数则入; 0.52664 0.52660.87676 0.876810.3456 10.3410.3350 10.34•计算规则•1加减法•各数据及最后计算结果所保留的位数是根据各数据中小数点后位数最少的一个数字所决定的;•2乘除法各数据及最后计算结果的相对不定值是与各数据中相对不定值最大的那个数相适应,其结果所保留位数与该有效数字的位数相同;•例:0.021 2×22.62÷0.292 15=•••例:20.32+8.405 4-0.055 0=•解 20.32+8.40-0.06=28.66解:各数据的最大不定值为0.0001 ÷0.021 2 ×100%=0.5%0.01 ÷22.62×100%=0.04%0.00001 ÷0.292 15 ×100%=0.3%以0.0212的相对不定值为最大,其有效数字是三位,位数以其为准,其他各数都修约为三位有效数字;0.0212×22.6÷0.292=1.64注意a)多步计算时,最后一步前可多留一位有效数字,最后结算结果再按前述原则留弃;b)首位数字≥8时,运算过程中可多留一位有效数字;c)用计算器时注意最后修约;注意:pH, pM, lgK 等有效数字取决于小数部分的位数,因整数部分只说明该数的方次;例如: pH = 12.68 H+ = 2.1×10-13 mol/L还有一点要注意:对于整数参与运算,如:6,它可看作为1位有效数字;又可看作为无限多个有效数字:6.000……;一般以其它数字来参考;二、定量分析误差的差生及表示方法1、定量分析误差的产生测定数据与真实值并不一致,这种在数值上的差别就是误差;分析过程中的误差是客观存在的;误差可控制得越来越小,但不能使误差降低为零;误差:测定值与真实值之差;•误差•定义:指分析结果与真实值之间的数值差;•误差产生的原因①系统误差②偶然误差③过失误差系统误差或可测误差•指由测定过程中某些经常性的、固定的原因所造成的比较恒定的误差;•分类:①方法误差②仪器误差③试剂误差④操作误差个人误差特点:•①系统误差的数值大小对分析结果的影响比较固定;•②具有重现性:在相同条件下重复测定时,总是重复出现;•③确定系统有误差,系统误差具有单向性;•其主要影响结果的准确度,对精密度影响不大,可通过适当的校正来减少或消除它,以达到提高分析结果的准确度;产生原因和消除方法:1、方法误差:比较严重的原因:分析方法本身造成的;例:重量分析中的沉淀的溶解或吸附杂质;在滴定分析中反应不完全,副反应等;消除方法:作对照试验,用已知组分的标准试样进行多次测定;通过校正系数校正试样的分析结果;=校正系数标准试样标准值/标准试样测定值 校正系数试样测定值分析结⨯=果消除方法:校正仪器和作空白试验;在不加被测试样的情况下,按对试样的分析步骤和测量条件进行测定,所得结果称为空白值;分析结果 = 测定值 - 空白值注意:1若分析天平称量误差为±0.0001克,为保证测量结果在0.1%的相对误差范围内,则称样品的最低质量ms 应不低于:RE = E/xT 绝对误差/真值 ×100%0.0002/ms ×100% = 0.1%ms = 0.0002×100%/0.1% = 0.2 g2若滴定管的读数误差为±0.01ml,为保证测量结果在0.1%的相对误差范围内,溶液的最小用量V 应不低于:0.02/V ×100% = 0.1%V = 0.02×100%/0.1% = 20 ml3、个人误差原因:由操作人员的主观原因造成的误差;例:习惯性的试样分解不完全、沉淀洗涤不完全或洗涤过分;观察终点颜色偏深或偏浅;消除方法:安排不同的分析人员互相进行对照试验,此法称为“内检”;也可将部分试样送交其他单位进行对照分析,此法称为“外检”;偶然误差或不定误差、随机误差•指分析过程中有某些随即的偶然原因造成的误差;•原因:由难以控制、无法避免的因素环境的温度,湿度,气压的微小波动,仪器性能的微小变化所引起的;故又称不可测误差;•特点:•对称性•抵偿性•有限性•这类误差不仅影响到分析结果的准确度,而且影响到分析结果的精密度;•该误差不能用校正的方法减少或消除,只有通过增加测定次数,采用数理统计方法对结果作出正确的表达;根据曲线表明:分析结果偶然误差的大小是随着测定次数的增加而减少;。
第一章定量分析测定中的误差本章教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。
2、掌握系统误差和偶然误差的概念。
3、掌握有效数字的概念及运算规则,并能在实践中灵活运用。
教学重点与难点:准确度和精密度表示方法;误差来源;有效数字及运算法则。
教学内容:定量分析中的误差教学目的:1、掌握绝对误差、相对误差、平均偏差、相对平均偏差及标准偏差的概念和计算方法,明确准确度、精密度的概念及两者间的关系。
2、掌握系统误差和偶然误差的概念。
教学重点: 误差、偏差的概念和计算方法,准确度和精密度表示方法教学难点:误差来源实验引题:1、每位同学测自己20秒的脉搏,测6次,记录每次脉动次数。
2、投影屏开启4~5次,记录每次所需时间。
设问:1、同一块表测得的脉动次数或开启时间相同吗?2、不同的表(定时)测得的脉动次数或开启时间相同吗?引入内容:在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等方面的限制,使测得的结果不可能和真实含量完全一致;即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。
这说明客观上存在着难于避免的误差。
一、真实值、平均值与中位值 1.真实值(xT)物质中各组分的真实数值,称为该量的真实值。
显然,它是客观存在的。
一般来说,真实值是末知的,但下列情况可认为其真实值是已知的。
(1)理论真实值如某种化合物的理论组成等。
(2)相对真实值认定精度高一个数量级的测定值作为低一级测量值的真实值,这种真实值是相对比较而言的。
如分析实验室中标准试样及管理试样中组分的含量等。
2.平均值(1) 算术平均值() 几次测量数据的算术平均值为(1-1)(2) 总体平均值() 表示总体分布集中趋势的特征值。
(1-2) 3.中位值()中位数是将一组平行测量数据(xi)按由小到大顺序排列,若n为奇数,中位值就是位于中间的数,若n为偶数则是中间两数的平均值。