多旋翼无人机技术基础课件9讲课教案
- 格式:ppt
- 大小:3.37 MB
- 文档页数:50
哈尔滨四通技工学校第三教学站延寿农民工综合培训学校多旋翼无人机操作教案二0一七春季生课程名称:多旋翼无人机操作基础授课教师: 张海东程名称:多旋翼无人机操作基础授课教师: 张海东(航拍无人机)(固定翼无人机)学员对无人机的用途很有兴趣程名称:多旋翼无人机操作基础授课教师: 张海东(无人机的组成及构造)2、机架:机架是指多旋翼飞行器的机身架,是整个飞行系统的飞行载体。
一般使用高强度重量轻的材料,例如碳纤维、PA66+30GF等材料。
3、电机是由电动机主体和驱动器组成,是一种课程名称:多旋翼无人机操作基础授课教师: 张海东变螺旋桨转速,实现升力的变化,进而达到飞行姿态控制的目的。
2、以四旋翼飞行器为例,飞行原理如下图所示,电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转,因此飞行器平衡飞行时,陀螺效应和空气动力扭矩效应全被抵消。
与传统的直升机相比,四旋翼飞行器的优势:各个旋翼对机身所产生的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。
3、垂直运动,即升降控制,在图(a)中,两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
保证四个旋翼转速同步增加或减小是垂直运动的关键。
4、俯仰运动,即前后控制,在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。
为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。
由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴课程名称:多旋翼无人机操作基础授课教师: 张海东课程名称:多旋翼无人机操作基础授课教师: 张海东课程名称:多旋翼无人机操作基础授课教师: 张海东课程名称:多旋翼无人机操作基础授课教师: 张海东点,最新版本为RealFlight Generation7。
哈尔滨四通技工学校第三教学站延寿农民工综合培训学校多旋翼无人机操作教案二0一七春季生便,稳定性高且携带方便。
常见的多旋翼飞行器。
3、四旋翼,六旋翼和八旋翼,被广泛用于影视航拍、安全监控、农业植保、电力巡线等领域(多旋翼无人机)(航拍无人机)(固定翼无人机)课程后记学员对无人机的用途很有兴趣(无人机的组成及构造)2、机架:机架是指多旋翼飞行器的机身架,是整个飞行系统的飞行载体。
一般使用高强度重量轻的材料,例如碳纤维、PA66+30GF等材料。
3、电机是由电动机主体和驱动器组成,是一种典型的机电一体化产品。
在整个飞行系统中,起到提供动力的作用。
4、电调全称电子调速器,英文electronic speed controller,简称ESC。
在整个飞行系统中,电调主要提供驱动电机的指令,来控制电机,完成规定的速度和动作等。
5、电池是将化学能转化成电能的装置。
在整个气动力扭矩效应全被抵消。
与传统的直升机相比,四旋翼飞行器的优势:各个旋翼对机身所产生的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。
3、垂直运动,即升降控制,在图(a)中,两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
保证四个旋翼转速同步增加或减小是垂直运动的关键。
4、俯仰运动,即前后控制,在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。
为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。
由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。
哈尔滨四通技工学校第三教学站延寿农民工综合培训学校多旋翼无人机操作教案二0一七春季生(多旋翼无人机)(航拍无人机)(固定翼无人机)学员对无人机的用途很有兴趣(无人机的组成及构造)2、机架:机架是指多旋翼飞行器的机身架.是整个飞行系统的飞行载体。
一般使用高强度重量轻的材料.例如碳纤维、PA66+30GF等材料。
3、电机是由电动机主体和驱动器组成.是一种气动力扭矩效应全被抵消。
与传统的直升机相比.四旋翼飞行器的优势:各个旋翼对机身所产生的反扭矩与旋翼的旋转方向相反.因此当电机1和电机3逆时针旋转时.电机2和电机4顺时针旋转.可以平衡旋翼对机身的反扭矩。
3、垂直运动.即升降控制.在图(a)中.两对电机转向相反.可以平衡其对机身的反扭矩.当同时增加四个电机的输出功率.旋翼转速增加使得总的拉力增大.当总拉力足以克服整机的重量时.四旋翼飞行器便离地垂直上升;反之.同时减小四个电机的输出功率.四旋翼飞行器则垂直下降.直至平衡落地.实现了沿z轴的垂直运动。
当外界扰动量为零时.在旋翼产生的升力等于飞行器的自重时.飞行器便保持悬停状态。
保证四个旋翼转速同步增加或减小是垂直运动的关键。
4、俯仰运动.即前后控制.在图(b)中.电机1的转速上升.电机3的转速下降.电机2、电机4的转速保持不变。
为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变.旋翼1与旋翼3转速该变量的大小应相等。
由于旋翼1的升力上升.旋翼3的升力下降.产生的不平衡力矩使机身绕y轴旋转(方向如图所示).同理.当电机1的转速下降.电机3的转速上升.机身便绕y轴向另一个方向旋转.实现飞行器的俯仰运动。
最新版本为RealFlight Generation7。
、Reflex XTR 是老牌的德国模拟软件机的模拟练习.附带精选的26个飞行场景.一百多架各个厂家的直升机.一百多架各个厂家的固定翼部飞行录像。
4、AEROFLY是一款德国的模拟软件.象真度较高.适合中高级训练者使用.但价格昂贵.对电脑硬件要求较高。
多旋翼无人机教案一、教学目标1. 了解多旋翼无人机的定义、分类和应用领域。
2. 掌握多旋翼无人机的基本组成和原理。
3. 学会多旋翼无人机的基本操作和飞行技巧。
4. 培养学生的创新意识和团队合作能力。
二、教学内容1. 多旋翼无人机的定义和分类2. 多旋翼无人机的基本组成3. 多旋翼无人机的原理和飞行原理4. 多旋翼无人机的操作方法和飞行技巧5. 多旋翼无人机的应用领域三、教学方法1. 讲授法:讲解多旋翼无人机的定义、分类、基本组成、原理、操作方法和应用领域。
2. 演示法:展示多旋翼无人机的实际飞行和操作过程。
3. 实践法:学生分组进行多旋翼无人机的实际操作和飞行练习。
4. 小组讨论法:学生分组讨论多旋翼无人机的创新应用和团队合作。
四、教学准备1. 教室内安装多媒体设备,用于展示图片和视频。
2. 准备多旋翼无人机模型或实物,用于演示和操作练习。
3. 准备相关教学资料和教材,用于学生学习和参考。
五、教学过程1. 导入:通过展示多旋翼无人机的实际飞行视频,引发学生的好奇心和兴趣。
2. 讲解:讲解多旋翼无人机的定义、分类、基本组成、原理、操作方法和应用领域。
3. 演示:展示多旋翼无人机的实际飞行和操作过程,让学生直观地了解其工作原理和操作方法。
4. 实践:学生分组进行多旋翼无人机的实际操作和飞行练习,巩固所学知识和技巧。
5. 讨论:学生分组讨论多旋翼无人机的创新应用和团队合作,激发学生的创新思维和团队合作能力。
6. 总结:对本次教学内容进行总结,强调多旋翼无人机的重要性和应用前景。
7. 作业:布置相关作业,让学生进一步巩固所学知识和技能。
六、教学评估1. 课堂问答:通过提问的方式检查学生对多旋翼无人机基本知识的掌握。
2. 操作练习:观察学生在实际操作多旋翼无人机时的表现,评估其操作技能。
3. 小组讨论报告:评估学生在小组讨论中的参与程度以及提出的创新应用方案。
4. 作业完成情况:检查学生作业的完成质量,评估其对课堂内容的理解和应用能力。
哈尔滨四通技工学校第三教学站延寿农民工综合培训学校多旋翼无人机操作教案二0一七春季生便,稳定性高且携带方便。
常见的多旋翼飞行器。
3、四旋翼,六旋翼和八旋翼,被广泛用于影视航拍、安全监控、农业植保、电力巡线等领域(多旋翼无人机)(航拍无人机)(固定翼无人机)课程后记学员对无人机的用途很有兴趣(无人机的组成及构造)2、机架:机架是指多旋翼飞行器的机身架,是整个飞行系统的飞行载体。
一般使用高强度重量轻的材料,例如碳纤维、PA66+30GF等材料。
3、电机是由电动机主体和驱动器组成,是一种典型的机电一体化产品。
在整个飞行系统中,起到提供动力的作用。
4、电调全称电子调速器,英文electronic speed controller,简称ESC。
在整个飞行系统中,电调主要提供驱动电机的指令,来控制电机,完成规定的速度和动作等。
5、电池是将化学能转化成电能的装置。
在整个气动力扭矩效应全被抵消。
与传统的直升机相比,四旋翼飞行器的优势:各个旋翼对机身所产生的反扭矩与旋翼的旋转方向相反,因此当电机1和电机3逆时针旋转时,电机2和电机4顺时针旋转,可以平衡旋翼对机身的反扭矩。
3、垂直运动,即升降控制,在图(a)中,两对电机转向相反,可以平衡其对机身的反扭矩,当同时增加四个电机的输出功率,旋翼转速增加使得总的拉力增大,当总拉力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机的输出功率,四旋翼飞行器则垂直下降,直至平衡落地,实现了沿z轴的垂直运动。
当外界扰动量为零时,在旋翼产生的升力等于飞行器的自重时,飞行器便保持悬停状态。
保证四个旋翼转速同步增加或减小是垂直运动的关键。
4、俯仰运动,即前后控制,在图(b)中,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变。
为了不因为旋翼转速的改变引起四旋翼飞行器整体扭矩及总拉力改变,旋翼1与旋翼3转速该变量的大小应相等。
由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕y轴旋转(方向如图所示),同理,当电机1的转速下降,电机3的转速上升,机身便绕y轴向另一个方向旋转,实现飞行器的俯仰运动。