数模转换电路
- 格式:ppt
- 大小:403.50 KB
- 文档页数:27
第七章数/模(D/A)和模/数(A/D)转换电路教学目的:1.掌握权电阻D/A转换器和逐次逼近型A/D转换器的工作原理、特点,输入与输出之间的关系2.了解影响精度及速度的因素3.了解D/A转换器典型芯DAC0832的特点及应用。
4. 了解A/D转换器典型芯ADC0809的特点及应用教学重点:倒T型电阻网络D/A转换器的工作原理; A/D转换的一般步骤;逐次逼近型A/D转换器的工作原理。
教学难点:D/A转换器的工作原理;A/D转换器内部电路结构、工作原理教学方法:教学过程采用理论讲解方式。
学时分配:4学时教学内容:D/A转换器及A/D转换器的种类很多,本章介绍常用的权电阻网络D/A转换器,倒T 型电阻网络D/A转换器等几种类型;逐次逼近型A/D转换器,双积分型A/D转换器。
并介绍了D/A转换器和A/D转换器的技术指标及应用。
第一节数/模转换器DAC一、数/模转换器的基本概念把数字信号转换为模拟信号称为数-模转换,简称D/A(Digital to Analog)转换,实现D/A转换的电路称为D/A转换器,或写为DAC(Digital –Analog Converter)。
随着计算机技术的迅猛发展,人类从事的许多工作,从工业生产的过程控制、生物工程到企业管理、办公自动化、家用电器等等各行各业,几乎都要借助于数字计算机来完成。
但是,计算机是一种数字系统,它只能接收、处理和输出数字信号,而数字系统输出的数字量必须还原成相应的模拟量,才能实现对模拟系统的控制。
数-模转换是数字电子技术中非常重要的组成部分。
把模拟信号转换为数字信号称为模-数转换,简称A/D(Analog to Digital)转换;。
实现A/D转换的电路称为A/D转换器,或写为ADC(Analog–Digital Converter);。
D/A 及A/D转换在自动控制和自动检测等系统中应用非常广泛。
D/A转换器及A/D转换器的种类很多,这里主要介绍常用的权电阻网络D/A转换器,倒T型电阻网络D/A转换器。
数模转换电路一、概述数模转换就是将离散的数字量转换为连接变化的模拟量,实现该功能的电路或器件称为数模转换电路,通常称为D/A转换器DAC。
二、D/A转换器的基本原理基本原理:将输入的每一位二进制代码按其权的大小转换成相应的模拟量,然后将代表各位的模拟量相加,所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。
这就是构成D/A转换器的基本思路。
D/A转换器由数码寄存器、模拟电子开关电路、解码网络、求和电路及基准电压几部分组成。
数字量以串行或并行方式输入、存储于数码寄存器中,数字寄存器输出的各位数码,分别控制对应位的模拟电子开关,使数码为1的位在位权网络上产生与其权值成正比的电流值,再由求和电路将各种权值相加,即得到数字量对应的模拟量。
1、数模转换器的转换方式(1)并行数模转换通过一个模拟量参考电压和一个电阻梯形网络产生以参考量为基准的分数值的权电流或权电压;而用由数码输入量控制的一组开关决定哪一些电流或电压相加起来形成输出量。
所谓“权”,就是二进制数的每一位所代表的值。
例如三位二进制数“111“,右边第1位的“权”是 20/23=1/8;第2位是21/23=1/4;第3位是22/23=1/2。
位数多的依次类推。
图2为这种三位数模转换器的基本电路,参考电压VREF在R1、R2、R3中产生二进制权电流,电流通过开关。
当该位的值是“0”时,与地接通;当该位的值是“1”时,与输出相加母线接通。
几路电流之和经过反馈电阻Rf产生输出电压。
电压极性与参考量相反。
输入端的数字量每变化1,仅引起输出相对量变化1/23=1/8,此值称为数模转换器的分辨率。
位数越多分辨率就越高,转换的精度也越高。
工业自动控制系统采用的数模转换器大多是10位、12位,转换精度达0.5~0.1%。
(2)串行数模转换将数字量转换成脉冲序列的数目,一个脉冲相当于数字量的一个单位,然后将每个脉冲变为单位模拟量,并将所有的单位模拟量相加,就得到与数字量成正比的模拟量输出,从而实现数字量与模拟量的转换。
数模转换电路原理
数模转换电路是指将数字信号转换为模拟信号的电路。
数模转换电路的基本原理是根据数字信号的离散特性,利用数字量与模拟量之间的转换关系来实现信号的转换。
常见的数模转换电路有数字模拟转换器(DAC)和模数转换器(ADC)。
DAC是将数字信号转换为模拟信号的电路。
它根据输入的数字信号值,在输出端生成与输入相对应的模拟信号。
DAC电路的基本原理是通过数字信号的二进制编码来确定输出模拟信号的电平大小。
具体来说,DAC电路将输入的数字信号按照一定的编码方式,将每个数字位对应到不同的电平上,然后利用各种放大、滤波等技术处理,最终生成与输入数字信号相对应的模拟信号。
ADC是将模拟信号转换为数字信号的电路。
它根据输入的模拟信号大小,在输出端生成对应的数字信号值。
ADC电路的基本原理是通过对模拟信号的抽样、量化和编码来实现信号的数字化。
具体来说,ADC电路对输入模拟信号进行周期性的抽样,将每个抽样点的电平值进行量化,即将连续的模拟电平转换为离散的数字量,然后将量化后的数字量按照一定编码方式输出。
数模转换电路在很多应用中发挥着重要作用。
在通信系统中,常用的数字音频、视频信号需要经过数模转换才能在模拟信号通路中传输。
在测量与控制系统中,传感器采集的模拟信号需要通过ADC转换为数字信号,进行计算和处理。
总之,数模
转换电路是数字与模拟领域的重要桥梁,对于实现数字与模拟信号的互相转换具有重要意义。
第九章 数模(D/A )和模数(A/D )转换电路一、 内容提要模拟信号到数字信号的转换称为模—数转换,或称为A/D (Analog to Digital ),把实现A/D 转换的电路称为A/D 转换器(Analog Digital Converter ADC );从数字信号到模拟信号的转换称为D/A (Digital to Analog )转换,把实现D/A 转换的电路称为D/A 转换器( Digital Analog Converter DAC )。
ADC 和DAC 是沟通模拟电路和数字电路的桥梁,也可称之为两者之间的接口。
二、 重点难点本章重点内容有:1、D/A 转换器的基本工作原理(包括双极性输出),输入与输出关系的定量计算;2、A/D 转换器的主要类型(并联比较型、逐次逼近型、双积分型),他们的基本工作原理和综合性能的比较;3、D/A 、A/D 转换器的转换速度与转换精度及影响他们的主要因素。
三、本章习题类型与解题方法 DAC网络DAC 权电阻 ADC 直接ADC间接ADC权电流型DAC权电容型DAC开关树型DAC输入/输出方式 并行 串行 倒梯形电阻网络DAC这一章的习题可大致分为三种类型。
第一种类型是关于A/D 、D/A 转换的基本概念、转换电路基本工作原理和特点的题目,其中包括D/A 转换器输出电压的定量计算这样基本练习的题目。
第二种类型是D/A 转换器应用的题目,这种类型的题目数量最大。
第三种类型的题目是D/A 转换器和A/D 转换器中参考电压V REF 稳定度的计算,这种题目虽然数量不大,但是概念性比较强,而且有实用意义。
(一)D/A 转换器输出电压的定量计算【例9 -1】图9 -1是用DAC0830接成的D/A 转换电路。
DAC0830是8位二进制输入的倒T 形电阻网络D/A 转换器,若REF V =5 V ,试写出输出电压2O V 的计算公式,并计算当输人数字量为0、12n - (72)和2n -1(82-1)时的输出电压。
单片机数模转换电路设计
数模转换电路也叫模数转换电路,是将模拟信号转换成数字信号的一种电子电路。
在单片机系统中,常常需要将模拟信号转换成数字信号以满足系统对数据的处理和控制要求。
一般来说,数模转换电路由运放、电阻、电容、开关等元器件组成。
常见的数模转换电路有以下类型:
1. 逐次逼近型数模转换电路
逐次逼近型数模转换电路是一种经典的数模转换电路,它由一组电阻、运放和模拟开关组成,通过不断逼近模拟输入信号来完成转换。
其主要优点是精度高,但缺点是速度慢。
2. 闪存型数模转换电路
闪存型数模转换电路是一种速度较快的数模转换电路,由一组比较器、电阻和开关组成。
其主要优点是速度快,但成本较高。
3. 互补输出型数模转换电路
互补输出型数模转换电路是一种功耗低、速度快的数模转换电路,由一组比较器、运放和开关组成。
其主要优点是速度快,功耗低,但精度稍低。
以上是常见的数模转换电路类型,具体选择哪一种类型,需要根据具体应用场景来选择。
同时,还需要考虑输入信号的范围、分辨率、采样率等因素。
在设计过程中,需要注意保证信号的质量和可靠性。