2024届高考一轮复习物理教案(新教材粤教版):电学实验基础
- 格式:docx
- 大小:1.83 MB
- 文档页数:18
考情分析闭合电路欧姆定律及其应用 2022·北京卷·T13 2022·江苏卷·T2 2020·北京卷·T12 2020·江苏卷·T6含容电路的电流和电压2022·北京卷·T9 2020·全国卷Ⅰ·T17电阻定律2020·浙江1月选考·T6 含电动机的电路2019·浙江4月选考·T8测电阻类实验 2022·全国甲卷·T22 2022·全国乙卷·T23 2022·北京卷·T15 2022·广东卷·T12 2022·山东卷·T14 2021·山东卷·T14 2021·浙江6月选考·T18 2021·广东卷·T12 2021·北京卷·T16 2020·全国卷Ⅰ·T22 2018·全国卷Ⅰ·T23 2018·全国卷Ⅲ·T23 实验:测量电源的电动势和内阻 2022·湖北卷·T13 2021·全国乙卷·T23 2021·天津卷·T10 2021·湖南卷·T12 2020·山东卷·T14 2020·浙江7月选考·T18 电表改装 实验:用多用电表测量电学中的物理量 2022·辽宁卷·T11 2022·河北卷·T12 2022·湖南卷·T12 2021·辽宁卷·T12 2019·全国卷Ⅰ·T23 2019·全国卷Ⅲ·T23 2018·全国卷Ⅱ·T22试题情境 生活实践类 家用电器、新能源电动汽车、超级电容器、手机充电等 学习探究类 电表改装、导体电阻率的测量、测量电源的电动势和内阻、用多用电表测量电学中的物理量第1讲 电路的基本概念及规律目标要求 1.了解电流的定义及I =qt ,会推导电流的微观表达式.2.理解电阻的概念,掌握电阻定律.3.掌握串并联电路的特点,理解电表改装的原理.4.理解电功、电功率、焦耳定律,会区分纯电阻电路和非纯电阻电路.考点一 电流的概念及表达式1.电流电荷的定向移动形成电流,I =qt.2.电流形成的条件:导体中有自由电荷;导体两端存在电压.3.电流的标矢性:电流是标量,但有方向,规定正电荷定向移动的方向为电流的方向.1.由I =qt 可知,I 与q 成正比,与t 成反比.( × )2.虽然电流有方向,但电流为标量.( √ )3.电荷定向移动产生电流,所以电荷的移动速率就是电流的传导速率.( × )电流的三种表达式及其比较公式 适用范围字母含义公式含义 I =q t一切电路q 为时间t 内通过导体横截面的电荷量qt反映了I 的大小,但不能说I ∝q 、I ∝1tI =nqS v一切电路n :导体单位体积内的自由电荷数q :每个自由电荷的电荷量 S :导体横截面积 v :电荷定向移动速率从微观上看,n 、q 、S 、v 决定了I 的大小I =U R 金属、电解液U :导体两端的电压 R :导体本身的电阻I 由U 、R 决定,I ∝U 、I ∝1R考向1 公式I =q /t 的应用例1 如图所示,电解池内有一价的电解液,t 时间内通过溶液内面积为S 的截面的正离子数是n 1,负离子数是n 2,设元电荷为e ,以下说法中正确的是( )A .当n 1=n 2时电流大小为零B .当n 1<n 2时,电流方向从B →A ,电流大小为I =(n 2-n 1)et C .当n 1>n 2时,电流方向从A →B ,电流大小为I =(n 1-n 2)etD .溶液内电流方向从A →B ,电流大小为I =(n 1+n 2)et答案 D解析 电流的方向与正离子定向移动方向相同,则溶液内电流方向从A 到B ,t 时间内通过溶液截面S 的电荷量为q =n 1e +n 2e ,则根据电流的定义式可得I =q t =n 1e +n 2e t =(n 1+n 2)e t ,A 、B 、C 错误,D 正确. 考向2 电流的微观表达式例2 在长度为l 、横截面积为S 、单位体积内自由电子数为n 的金属导体两端加上电压,导体中就会产生匀强电场.导体内电荷量为e 的自由电子在电场力作用下先做加速运动,然后与做热运动的阳离子碰撞而减速,如此往复,所以我们通常将自由电子的这种运动简化成速率为v (不随时间变化)的定向运动.已知阻碍电子运动的阻力大小与电子定向移动的速率v 成正比,即f =k v (k 是常量),则该导体的电阻应该等于( ) A.kl neS B.kl ne 2S C.kS nel D.kSne 2l 答案 B解析 电子定向移动,由平衡条件得k v =e U l ,则U =k v l e ,导体中的电流I =neS v ,电阻R =U I =klne 2S,选项B 正确. 考点二 欧姆定律及电阻定律1.部分电路欧姆定律(1)内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比. (2)表达式:I =UR.(3)适用范围:金属导电和电解质溶液导电,不适用于气态导体或半导体元件. 2.对U -I 图像和I -U 图像的理解(如图甲、乙所示)(1)图线a 、e 、d 、f 表示线性元件,b 、c 表示非线性元件.(2)图线b 的斜率不断变小,电阻不断变小;图线c 的斜率不断变大,电阻不断变小. (3)图中R a >R e ,R d <R f .(选填“>”“<”或“=”)(4)对于非线性元件,应根据R =UI 计算某点的电阻,而不是该点切线的斜率(或斜率的倒数).3.电阻定律(1)内容:同种材料的导体,其电阻R 与它的长度l 成正比,与它的横截面积S 成反比;导体电阻还与构成它的材料有关. (2)公式:R =ρlS.其中l 是导体的长度,S 是导体的横截面积.ρ是导体的电阻率,其国际单位是欧·米,符号为Ω·m . (3)电阻率①物理意义:反映导体的导电性能,是导体材料本身的属性. ②电阻率与温度的关系金属:电阻率随温度升高而增大;负温度系数半导体:电阻率随温度升高而减小;超导体:一些金属和合金在温度低到临界温度时,电阻可以降到0.1.由R =UI 知,导体的电阻与导体两端的电压成正比,与流过导体的电流成反比.( × )2.由ρ=RSl知,导体的电阻率与导体的电阻和横截面积的乘积成正比,与导体的长度成反比.( × )3.电阻率越大,导体对电流的阻碍作用就越大.( × ) 4.U -I 图像斜率的变化反映阻值的变化.( √ )电阻的决定式和定义式的区别公式R =ρl SR =U I区别电阻的决定式 电阻的定义式说明了电阻的决定因素 提供了一种测电阻的方法,并不说明电阻与U 和I 有关只适用于粗细均匀的金属导体和浓度均匀的电解质溶液适用于任何纯电阻导体考向1 欧姆定律的理解和应用例3 小灯泡通电后其电流I 随所加电压U 变化的图线如图所示,P 为图线上一点,PN 为图线在P 点的切线,PQ 为U 轴的垂线,PM 为I 轴的垂线,则下列说法中错误的是( )A .随着所加电压的增大,小灯泡的电阻增大B .对应P 点,小灯泡的电阻为R =U 1I 2C .对应P 点,小灯泡的电阻为R =U 1I 2-I 1D .对应P 点,小灯泡的功率等于图中矩形PQOM 所围的面积 答案 C解析 由题图可知,U 越大,小灯泡的电阻越大,故A 说法正确;R =UI 中的U 、I 与小灯泡所处状态下的电压、电流相对应,故B 说法正确,C 说法错误;对应P 点,小灯泡的功率P =U 1I 2,与题图中PQOM 所围的面积相等,故D 说法正确.考向2 电阻定律的理解和应用例4 两根材料相同的均匀导线x 和y ,其中x 长为l ,y 长为2l ,串联在电路上时沿长度方向的电势φ随位置的变化规律如图所示,那么x 和y 两导线的电阻之比和横截面积之比分别为( )A .3∶1 1∶6B .2∶3 1∶6C .3∶2 1∶5D .3∶1 5∶1答案 A解析 由题图可知导线x 两端的电压U 1=6 V ,导线y 两端的电压U 2=2 V ,由串联电路特点可知,x 和y 两导线的电阻之比为R 1∶R 2=U 1∶U 2=3∶1,故B 、C 错误;由R =ρlS 可知,x和y 两导线的横截面积之比S 1∶S 2=l R 1·R 22l=1∶6,故A 正确,D 错误.考点三 串、并联电路的特点 电流表、电压表的改装原理串、并联电路的特点串联电路 并联电路 电流 I =I 1=I 2=…=I n I =I 1+I 2+…+I n 电压 U =U 1+U 2+…+U n U =U 1=U 2=…=U n 电阻R =R 1+R 2+…+R n 1R =1R 1+1R 2+…+1R n 功率分配P 1R 1=P 2R 2=…=P n R nP 1R 1=P 2R 2=…=P n R nP 总=P 1+P 2+…+P n1.串联电路的总电阻一定大于其中任一部分电路的电阻.( √ ) 2.并联电路的总电阻一定大于其中某一支路的电阻.( × )3.串联电路中某一电阻增大,总电阻增大,并联电路中某一电阻增大,总电阻减小.( × ) 4.若将分压电阻串联在电流表上改装成电压表后,增大了原电流表的满偏电压.( × )1.串、并联电路的几个推论(1)串联电路的总电阻大于其中任一部分电路的总电阻.(2)并联电路的总电阻小于其中任一支路的总电阻,且小于其中最小的电阻. (3)无论是串联电路还是并联电路,电路中任意一个电阻变大时,电路的总电阻变大. 2.电表的两种改装的比较改装成大量程电压表改装成大量程电流表内部电路改装原理 串联分压 并联分流 所需电阻阻值 R =UI g -R gR =U gI -I g改装后的量程U =I g (R g +R )I =R +R g R I g校准电路例5 如图所示,当电路a 、b 两端接入100 V 电压时,则c 、d 两端输出电压为20 V ;当电路c 、d 两端接入100 V 电压时,则a 、b 两端输出电压为50 V .据此可知R 1∶R 2∶R 3为( )A .4∶2∶1B .2∶1∶1C .3∶2∶2D .1∶1∶2答案 A解析 当a 、b 两端接入电压时,根据欧姆定律得20 V =100 V2R 1+R 2R 2,解得R 1∶R 2=2∶1;当c 、d 两端接入电压时,有50 V =100 V2R 3+R 2R 2,解得R 2∶R 3=2∶1,联立得R 1∶R 2∶R 3=4∶2∶1,故A 正确,B 、C 、D 错误.例6(多选)四个相同的小量程电流表(表头)分别改装成两个电流表A1、A2和两个电压表V1、V2.已知电流表A1的量程大于A2的量程,电压表V1的量程大于V2的量程,改装好后把它们按如图所示连接法连入电路,则()A.电流表A1的读数大于电流表A2的读数B.电流表A1指针的偏转角小于电流表A2指针的偏转角C.电压表V1的读数小于电压表V2的读数D.电压表V1指针的偏转角等于电压表V2指针的偏转角答案AD解析电流表A1与电流表A2由相同表头与不同电阻并联改装而成,并联在电路中,电流表A1与电流表A2的指针偏转角相同,电流表A1的量程较大,则电流表A1的读数较大,A正确,B错误;电压表V1与电压表V2由相同表头与不同电阻串联改装而成,串联在电路中,通过表头的电流相同,故指针的偏转角相同,因V1量程较大,所以电压表V1的读数大于电压表V2的读数,C错误,D正确.例7如图所示,某学习小组进行电表改装的实验,已知表头内阻为100 Ω,满偏电流为300 mA,使用OA接线柱时它是量程为0~3 A的电流表,使用OB接线柱时它是量程为0~0.6 A 的电流表,使用OC接线柱时它是量程为0~60 V的电压表,则图中的R1=________ Ω,R2=________ Ω,R3=________ Ω.答案208050解析使用OA接线柱时,量程为0~3 A,则有I OA=3 A=I g+I g(R g+R2)R1使用OB接线柱时,量程为0~0.6 A,则有I OB=0.6 A=I g+I g R gR1+R2其中I g=0.3 A,R g=100 Ω联立解得R 1=20 Ω,R 2=80 Ω 使用OC 接线柱时,量程为0~60 V ,则有U OC =60 V =I OB R g (R 1+R 2)R g +R 1+R 2+I OB R 3,解得R 3=50 Ω.考点四 电功、电功率 电热、热功率1.电功(1)定义:导体中的恒定电场对自由电荷的电场力做的功. (2)公式:W =qU =IUt (适用于任何电路).(3)电流做功的实质:电能转化成其他形式能的过程. 2.电功率(1)定义:单位时间内电流所做的功,表示电流做功的快慢. (2)公式:P =Wt =IU (适用于任何电路).3.焦耳定律(1)内容:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻及通电时间成正比. (2)公式:Q =I 2Rt (适用于任何电路).1.公式W =UIt =U 2R t =I 2Rt 适用于所有电路.( × )2.在非纯电阻电路中P =UI =I 2R +P 其他.( √ )3.焦耳定律只适用于纯电阻电路,不适用于非纯电阻电路.( × ) 考向1 纯电阻电路中的功率例8 如图所示,当AB 间加上电压时,R 1、R 2、R 3三个电阻上消耗的功率相等,则三电阻的阻值之比R 1∶R 2∶R 3为( )A .1∶1∶4B .1∶1∶1C .1∶1∶2D .2∶2∶1答案 A解析 因R 1与R 2串联,电流相等,且消耗的功率相等,根据P =I 2R 可知R 1=R 2;因R 1和R 2与R 3并联,支路电压相等,上面支路的功率等于R 3功率的2倍,根据P =U 2R 可知,R 3=2(R 1+R 2)=4R 1,即R 1∶R 2∶R 3=1∶1∶4,选项A 正确.电功率P =IU 和热功率P =I 2R 的比较1.不论是纯电阻电路还是非纯电阻电路,电流的电功率均为P 电=IU ,热功率均为P 热=I 2R .只有在纯电阻电路中P 电=P 热,IU =I 2R =U 2R才成立. 2.对于非纯电阻电路:P 电=P 热+P 其他,即IU =I 2R +P 其他,I ≠UR (欧姆定律不适用).考向2 非纯电阻电路中的功和功率例9 一台小型电动机在3 V 电压下工作,用此电动机提升重力为4 N 的物体时,通过它的电流是0.2 A ,在30 s 内可使该物体被匀速提升3 m .若不计一切摩擦和阻力,求: (1)电动机的输入功率;(2)在提升重物的30 s 内,电动机线圈所产生的热量; (3)电动机线圈的电阻. 答案 (1)0.6 W (2)6 J (3)5 Ω 解析 (1)电动机的输入功率为 P 入=UI =3×0.2 W =0.6 W (2)物体被匀速提升的速度 v =x t =330 m/s =0.1 m/s电动机提升物体的机械功率 P 机=F v =G v =0.4 W根据能量关系有P 入=P 机+P Q 产生的热功率 P Q =0.2 W电动机线圈在30 s 内产生的热量Q =P Q t =0.2×30 J =6 J(3)由焦耳定律得Q =I 2Rt 电动机线圈电阻R =5 Ω.课时精练1.(2023·安徽芜湖市月考)除颤仪是通过电容器放电时的脉冲电流作用于心脏,实施电击治疗,使患者心脏恢复正常跳动的仪器.某除颤仪的电容器电容为10 μF ,充电后电容器电压为 5 kV ,如果电容器在5.0 ms 时间内通过人体放电至两极板间电压为0,下列说法正确的是( )A .这次放电有0.05 C 的电荷通过人体B .这次放电有0.1C 的电荷通过人体 C .放电过程通过人体的平均电流大小为0.5 AD .放电过程通过人体的平均电流大小为1 A 答案 A解析 电容器充电后带电荷量为Q =CU =10×10-6×5 000 C =0.05 C ,则这次放电有0.05 C 的电荷通过人体,A 正确,B 错误;放电过程通过人体的平均电流大小为I =Q t =0.050.005 A =10 A ,C 、D 错误.2.某一导体的伏安特性曲线如图中AB 段(曲线)所示,以下关于导体的电阻说法正确的是( )A .B 点对应的电阻为12 Ω B .B 点对应的电阻为40 ΩC .工作状态从A 变化到B 时,导体的电阻因温度的影响改变了1 ΩD .工作状态从A 变化到B 时,导体的电阻因温度的影响改变了9 Ω 答案 B解析 B 点时导体电阻为R B =U B I B =60.15Ω=40 Ω,故A 错误,B 正确;A 点时导体电阻为R A =U A I A =30.1Ω=30 Ω,工作状态从A 变化到B 时,导体的电阻因温度的影响改变ΔR =R B-R A =10 Ω,故C 、D 错误.3.(2023·浙江省模拟)在我国边远乡村的电路上常用熔断保险丝.当电路中有较强电流通过时,保险丝会快速熔断,及时切断电源,保障用电设备和人身安全.经测量,有一段电阻为R 、熔断电流为2 A 的保险丝,直径约0.5毫米.若将这段保险丝对折后绞成一根,那么保险丝的电阻和熔断电流将变为( ) A.14R 、4 A B.12R 、4 A C.14R 、0.5 A D.12R 、1 A 答案 A解析 根据r =ρlS 可知,对折后电阻为R ′=ρ12l 2S =14R ,而两段最大电流为2 A 的保险丝并联,其允许通过的最大电流I ′=2I max =4 A ,故选A.4.电阻R 1、R 2的I -U 图像如图所示,则下列说法正确的是( )A .R 1∶R 2=3∶1B .将R 1与R 2串联后接于电源上,则电压比U 1∶U 2=1∶3C .将R 1与R 2并联后接于电源上,则电流比I 1∶I 2=1∶3D .将R 1与R 2并联后接于电源上,则功率比P 1∶P 2=1∶3 答案 B解析 由题图可知,当I =1 A 时,U 1=1 V ,U 2=3 V ,所以R 1=U 1I =1 Ω,R 2=U 2I =3 Ω,则R 1∶R 2=1∶3,A 错误;R 1与R 2串联时,U 1∶U 2=R 1∶R 2=1∶3,B 正确;R 1与R 2并联时,I 1∶I 2=R 2∶R 1=3∶1,P 1∶P 2=R 2∶R 1=3∶1,C 、D 错误.5.一车载加热器(额定电压为24 V)发热部分的电路如图所示,a 、b 、c 是三个接线端点,设ab 、ac 、bc 间的功率分别为P ab 、P ac 、P bc ,则( )A .P ab >P bcB .P ab =P acC .P ac =P bcD .P ab <P ac答案 D解析 电压接ab ,则电路的总电阻为R ab =9R (R +9R )R +9R +9R =90R19;电压接ac ,则电路的总电阻为R ac =R (9R +9R )R +9R +9R =18R19;电压接bc ,则电路的总电阻为R bc =9R (R +9R )R +9R +9R =90R 19;由题可知,不管接哪两个点,电压不变,为U =24 V ,根据P =U 2R可知P ab =P bc <P ac ,故选D.6.(2023·广东深圳市模拟)如图所示,电源的电动势为E =6 V ,内阻r =1 Ω,保护电阻R 0=4 Ω,ab 是一段粗细均匀且电阻率较大的电阻丝,总阻值为10 Ω,长度l =1 m ,横截面积为0.2 cm 2.下列说法正确的是( )A .当电阻丝接入电路的阻值为1 Ω时,电阻丝的功率最大B .当电阻丝接入电路的阻值为4 Ω时,保护电阻的功率最大C .电源效率的最小值为80%D .电阻丝的电阻率为1×10-4 Ω·m 答案 C解析 当外电阻与电源内阻相等时,电源的输出功率最大.将保护电阻等效为内阻的一部分,当电阻丝接入电路的阻值为5 Ω时,电阻丝的功率最大,选项A 错误;电路中电流越大,保护电阻的功率越大,当电阻丝接入电路的阻值为0时,保护电阻的功率最大,选项B 错误;外电阻越小,电源效率越小,当电阻丝接入电路的阻值为0时,电源效率的最小值为80%,选项C 正确;根据电阻定律R =ρlS ,代入数据可得电阻丝的电阻率为ρ=2×10-4 Ω·m ,选项D 错误.7.(2023·广东中山市检测)如图所示,当开关S 闭合后,小型直流电动机M 和指示灯L 都恰能正常工作.已知电源电动势为E ,内阻为r ,指示灯L 的电阻为R 0,额定电流为I ,电动机M 的线圈电阻为R ,则( )A .电动机的额定电压为IRB .电动机的输出功率为IE -I 2(R 0+R +r )C .电源的输出功率为IED .整个电路的热功率为I 2(R 0+R ) 答案 B解析 电动机正常工作时不是纯电阻元件,其额定电压不等于IR ,而是U M =E -I (r +R 0),故A 错误;根据能量守恒定律可知,电动机的输出功率为P M =EI -I 2(r +R 0+R ),故B 正确;根据能量守恒定律可知,电源的输出功率为P =EI -I 2r ,故C 错误;整个电路的热功率为P ′=I 2(R +R 0+r ),故D 错误.8.如图所示,同种材料制成且厚度相等的长方体合金块A 和B ,上表面为正方形,边长之比为2∶1.A 、B 分别与同一电源相连,电源内阻忽略不计,则( )A .通过A 、B 的电流之比为2∶1 B .通过A 、B 的电流之比为1∶2C .A 、B 中自由电荷定向移动速率之比为2∶1D .A 、B 中自由电荷定向移动速率之比为1∶2 答案 D解析 设正方形边长为L ,厚度为d ,则R =ρL Ld =ρd ,可知R A =R B ,与同一电源相连时,通过A 、B 的电流之比为1∶1,A 、B 错误;根据I =nqS v ,因S A ∶S B =2∶1,则v A ∶v B =1∶2,C 错误,D 正确.9.(2023·广东汕头市模拟)图示为新买的扫地机器人,从使用说明书上得到了以下信息:由规格为DC 14.8 V/2 200 mA·h 的锂电池供电,电机的额定功率为35 W ,当锂电池剩余电量为总容量的20%时,扫地机器人就自动回座机充电.结合上述信息,下列说法正确的是( )A .DC 14.8 V/2 200 mA·h 表示该电池输出的是交流电B .该机器人电机的额定电流约为0.42 AC .正常工作时机器人电动机每秒输出35 J 动能D .电池充满电后机器人正常工作约45 min 后回座机充电 答案 D解析 DC 14.8V/2 200 mAh 表示该电池输出的是直流电,选项A 错误;该机器人电机的额定电流为I =P U =3514.8 A ≈2.36 A ,选项B 错误;正常工作时机器人电动机内阻要产生部分内能,则每秒输出动能小于35 J ,选项C 错误;机器人人正常工作的时间t =q I =0.8×2 200 mA·h 2.36 A ≈0.75 h =45 min ,选项D 正确.10.(多选)(2023·广东广州市质检)一电动自行车动力电源上的铭牌标有“36 V 10 A·h ”字样,假设工作时电源(不计内阻)的输出电压恒为36 V ,额定输出功率为180 W ,由于电动机发热造成损耗(其他损耗不计),电动自行车的效率为80%,则下列说法正确的是( ) A .额定工作电流为10 AB .电池充满电后总电荷量为3.6×104C C .自行车电动机的内阻为7.2 ΩD .自行车保持额定功率行驶的最长时间是2 h 答案 BD解析 由P =UI 可知,额定电流I =PU =5 A ,A 错误;电池充满电后总电荷量Q =10 A·h =10×3 600 C =3.6×104 C ,B 正确;电动自行车的热功率P 热=I 2r =180 W ×20%=36 W ,可得r =1.44 Ω,C 错误;根据电池容量Q =10 A·h 和I =5 A ,得t =QI =2 h ,D 正确.11.(多选)(2023·福建省厦门一中模拟)如图所示,把两只完全相同的表头进行改装,已知表头内阻为100 Ω,下列说法正确的是( )A .由甲图可知,该表头满偏电流I g =2 mAB .甲图是改装成的双量程电压表,其中b 量程为9 VC .乙图中R 1=109 Ω,R 2=10 ΩD .乙图中R 1=5 Ω,R 2=45 Ω 答案 BC解析 由题图甲可知I g =U R g +R =3100+2.9×103A =0.001 A =1 mA ,b 的量程为U ′=I g (R g+R +R ′)=0.001×(100+2.9×103+6×103) V =9 V ,故A 错误,B 正确;在题图乙中,改装为I 1=10 mA =0.01 A 电流表时,并联电阻的分流电流为I ′=I 1-I g =10 mA -1 mA =9 mA =0.009 A ,分流电阻的阻值为R 1+R 2=I g R g I ′=0.001×1000.009 Ω=1009 Ω,改装为I 2=100 mA =0.1 A 电流表时,可得分流电阻的阻值R 1=I g (R g +R 2)I 2-I g ,联立解得R 1=109 Ω,R 2=10 Ω,故D错误,C 正确.12.在图甲所示的电路中,电源的电动势为3.0 V ,内阻不计,灯L 1、L 2、L 3为三个相同规格的小灯泡,这种小灯泡的伏安特性曲线如图乙所示.当开关闭合后,下列说法中正确的是( )A .灯泡L 1的电流为灯泡L 2电流的2倍B .灯泡L 1的电阻为7.5 ΩC .灯泡L 2的电阻为12 ΩD .灯泡L 3两端的电压为1.5 V 答案 D解析 灯泡L 2、L 3串联,灯泡规格相同,故电压U 2=U 3=1.5 V ,由题图乙读出其电流I 2=I 3=0.20 A ,灯泡L 1的电压U 1=3.0 V ,由题图乙读出其电流I 1=0.25 A ,所以I 1I 2=1.25,故A错误,D 正确;灯泡L 1的电阻R 1=U 1I 1=12 Ω,故B 错误;灯泡L 2的电阻为R 2=U 2I 2=7.5 Ω,故C 错误.13.如图所示的电路中,电阻R 1、R 2、R 3的阻值均为2 Ω.电流表内阻不计,在B 、C 两点间加上6 V 的电压时,电流表的示数为( )A .0B .1 AC .1.5 AD .2 A 答案 B解析 电流表内阻不计,则A 、C 两点相当于用导线连在一起,当在B 、C 两点间加上6 V 的电压时,R 2与R 3并联,然后与R 1串联,电流表测量的是通过电阻R 2的电流,等效电路图如图所示.电路中的总电阻R 总=R 1+R 2R 3R 2+R 3=3 Ω,干路中的电流为I 总=U R 总=63A =2 A ,由于R 2与R 3阻值相等,所以电流表的示数为1 A ,B 正确.。
专题强化二十二 带电粒子在立体空间中的运动 目标要求 1.会处理带电粒子在匀强磁场中的螺旋线运动和叠加场中的旋进运动.2.掌握带电粒子在立体空间中的运动的解题思路和处理方法.题型一 带电粒子的螺旋线运动和旋进运动空间中匀强磁场的分布是三维的,带电粒子在磁场中的运动情况可以是三维的.现在主要讨论两种情况:(1)空间中只存在匀强磁场,当带电粒子的速度方向与磁场的方向不平行也不垂直时,带电粒子在磁场中就做螺旋线运动.这种运动可分解为平行于磁场方向的匀速直线运动和垂直于磁场平面的匀速圆周运动.(2)空间中的匀强磁场和匀强电场(或重力场)平行时,带电粒子在一定的条件下就可以做旋进运动,这种运动可分解为平行于磁场方向的匀变速直线运动和垂直于磁场平面的匀速圆周运动.例1 如图所示,质子以初速度v 进入磁感应强度为B 且足够大的匀强磁场中,速度方向与磁场方向的夹角为θ.已知质子的质量为m 、电荷量为e .质子重力不计,则下列说法正确的是( )A .质子运动的轨迹为螺旋线,螺旋线的中轴线方向垂直于纸面向里B .质子在垂直于磁场平面做圆周运动的半径为m v cos θeBC .质子做螺旋线运动的周期为2πm eB sin θD .一个周期内,质子沿着螺旋线轴线方向运动的距离(即螺距)为2πm v cos θeB答案 D解析 将质子的初速度分解为垂直于磁场方向的速度v 1=v sin θ,沿磁场方向的速度v 2=v cos θ,质子沿垂直磁场方向做匀速圆周运动,沿磁场方向做匀速直线运动,则质子运动的轨迹为螺旋线,螺旋线的中轴线方向平行磁场方向,选项A 错误;质子做螺旋线运动的半径为r =m v 1eB=m v sin θeB ,选项B 错误;质子做螺旋线运动的周期为T =2πr v 1=2πm eB,选项C 错误;一个周期内,质子沿着螺旋线轴线方向运动的距离(即螺距)为x =v 2T =2πm v cos θeB,选项D 正确. 例2 (2023·山东菏泽市模拟)在空间中存在水平向右的匀强磁场和匀强电场,磁感应强度大小为B ,电场强度大小为E ,方向均沿x 轴水平向右.在O 点,一个α粒子(氦原子核)以速度v 0沿与x 轴夹角为60°的方向射入电、磁场,已知质子质量为m 、电荷量为q ,不计α粒子的重力.求:(1)α粒子离x 轴的最远距离;(2)α粒子从O 点射出后,第3次与x 轴相交时的动能.答案 (1)23m v 0qB (2)2m v 02+12πmE B (v 0+6πE B) 解析 (1)由题意可知α粒子的质量为m α=4m 、电荷量为q α=2q ,将α粒子的初速度分解成沿x 轴方向的分速度v x 与垂直x 轴方向的分速度v y ,则有v x =v 0cos 60°=12v 0,v y =v 0sin 60°=32v 0 由于v x 与磁场方向平行,不受洛伦兹力影响,电场方向沿着x 轴方向,只影响v x ,不影响v y ,故α粒子在电、磁场中的运动可分解为:垂直于x 轴的平面内做匀速圆周运动,沿x 轴方向做匀加速直线运动.对于垂直于x 轴平面内的匀速圆周运动,有q αv y B =m αv y 2r,解得圆周运动半径r =m αv y q αB =4m v y 2qB =3m v 0qB ,故α粒子离x 轴的最远距离是直径的长度,即为23m v 0qB ; (2)α粒子从O 点射出后,第3次与x 轴相交时,由于在垂直于x 轴的平面内做匀速圆周运动,可知此过程经历的时间t =3T =3×2πm αq αB =12πm qB,沿x 轴方向的匀加速直线运动所通过的位移x =v x t +12at 2,又加速度a =q αE m α=qE 2m ,解得x =6πm qB (v 0+6πE B) α粒子从O 点射出后到第3次与x 轴相交的过程,由动能定理有q αEx =E k -12m αv 02 联立解得α粒子从O 点射出后,第3次与x 轴相交时的动能E k =2m v 02+12πmE B (v 0+6πE B).题型二 带电粒子在立体空间中的偏转分析带电粒子在立体空间中的运动时,要发挥空间想象力,确定粒子在空间的位置关系.带电粒子依次通过不同的空间,运动过程分为不同的阶段,只要分析出每个阶段上的运动规律,再利用两个空间交界处粒子的运动状态和关联条件即可解决问题.有时需要将粒子的运动分解为两个互相垂直的平面内的运动(比如螺旋线运动和旋进运动)来求解.例3 (2022·山东卷·17)中国“人造太阳”在核聚变实验方面取得新突破,该装置中用电磁场约束和加速高能离子,其部分电磁场简化模型如图所示,在三维坐标系Oxyz 中,0<z ≤d 空间内充满匀强磁场Ⅰ,磁感应强度大小为B ,方向沿x 轴正方向;-3d ≤z <0,y ≥0的空间内充满匀强磁场Ⅱ,磁感应强度大小为22B ,方向平行于xOy 平面,与x 轴正方向夹角为45°;z <0,y ≤0的空间内充满沿y 轴负方向的匀强电场.质量为m 、带电量为+q 的离子甲,从yOz 平面第三象限内距y 轴为L 的点A 以一定速度出射,速度方向与z 轴正方向夹角为β,在yOz 平面内运动一段时间后,经坐标原点O 沿z 轴正方向进入磁场Ⅰ.不计离子重力.(1)当离子甲从A 点出射速度为v 0时,求电场强度的大小E ;(2)若使离子甲进入磁场后始终在磁场中运动,求进入磁场时的最大速度v m ;(3)离子甲以qBd 2m的速度从O 点沿z 轴正方向第一次穿过xOy 面进入磁场Ⅰ,求第四次穿过xOy 平面的位置坐标(用d 表示);(4)当离子甲以qBd 2m的速度从O 点进入磁场Ⅰ时,质量为4m 、带电量为+q 的离子乙,也从O 点沿z 轴正方向以相同的动能同时进入磁场Ⅰ,求两离子进入磁场后,到达它们运动轨迹第一个交点的时间差Δt (忽略离子间相互作用).答案 (1)m v 02sin βcos βqL (2)qBd m(3)(d ,d ,0) (4)(2+22)πm qB解析 (1)如图所示将离子甲在A 点的出射速度v 0分解到沿y 轴方向和z 轴方向,离子受到的电场力沿y 轴负方向,可知离子沿z 轴方向做匀速直线运动,沿y 轴方向做匀减速直线运动,从A 到O 的过程,有L =v 0cos β·t ,v 0sin β=at ,a =qE m联立解得E =m v 02sin βcos βqL; (2)如图所示离子从坐标原点O 沿z 轴正方向进入磁场Ⅰ中,由洛伦兹力提供向心力可得q v 1B =m v 12r Ⅰ离子经过磁场Ⅰ偏转后从y 轴进入磁场Ⅱ中,由洛伦兹力提供向心力可得q v 1·22B =m v 12r Ⅱ,可得r Ⅱ=2r Ⅰ 为了使离子在磁场中运动,需满足r Ⅰ≤d ,r Ⅱ≤3d则可得v 1≤qBd m故要使离子甲进入磁场后始终在磁场中运动,进入磁场时的最大速度为qBd m; (3)离子甲以v =qBd 2m的速度从O 点沿z 轴正方向第一次穿过xOy 面进入磁场Ⅰ,离子在磁场Ⅰ中的轨迹半径为r 1=m v qB =d 2离子在磁场Ⅱ中的轨迹半径为r 2=2d 2离子从O 点第一次穿过到第四次穿过xOy 平面的运动情景,如图所示离子第四次穿过xOy 平面的x 坐标为x 4=2r 2sin 45°=d离子第四次穿过xOy 平面的y 坐标为y 4=2r 1=d故离子第四次穿过xOy 平面的位置坐标为(d ,d ,0);(4)设离子乙的速度为v ′,根据离子甲、乙动能相同,可得12m v 2=12×4m v ′2 可得v ′=v 2=qBd 4m离子乙在磁场Ⅰ中的轨迹半径为r 1′=4m v ′qB=d =2r 1 离子乙在磁场Ⅱ中的轨迹半径为r 2′=4m v ′q ·22B =2d =2r 2 根据几何关系可知离子甲、乙运动轨迹第一个交点如图所示,从O 点进入磁场到轨迹第一个交点的过程,有t 甲=T 1+T 2=2πm qB +2πm q ·22B =(2+22)πm qB t 乙=12T 1′+12T 2′=12×2π·4m qB +12×2π·4m q ·22B =(4+42)πm qB可得离子甲、乙到达它们运动轨迹第一个交点的时间差为Δt =t 乙-t 甲=(2+22)πm qB. 课时精练1.(2022·重庆卷·5)2021年中国全超导托卡马克核聚变实验装置创造了新的纪录.为粗略了解等离子体在托卡马克环形真空室内的运动状况,某同学将一小段真空室内的电场和磁场理想化为方向均水平向右的匀强电场和匀强磁场(如图),电场强度大小为E ,磁感应强度大小为B .若某电荷量为q 的正离子在此电场和磁场中运动,其速度平行于磁场方向的分量大小为v 1,垂直于磁场方向的分量大小为v 2,不计离子重力,则( )A .电场力的瞬时功率为qE v 12+v 22B .该离子受到的洛伦兹力大小为q v 1BC .v 2与v 1的比值不断变大D .该离子的加速度大小不变答案 D解析 根据功率的计算公式可知P =F v cos θ,则电场力的瞬时功率为P =Eq v 1,A 错误;由于v 1与磁场B 平行,则根据洛伦兹力的计算公式知F 洛=q v 2B ,B 错误;根据运动的叠加原理可知,离子在垂直于磁场方向做匀速圆周运动,沿磁场方向做加速运动,则v 1增大,v 2不变,v 2与v 1的比值不断变小,C 错误;离子受到的安培力不变,电场力不变,则该离子的加速度大小不变,D 正确.2.如图所示,竖直平面MNRS 的右侧存在方向竖直向上且足够大的匀强磁场,从平面MNRS 上的O 点处以初速度v 0=10 m/s 垂直MNRS 面向右抛出一带电荷量为q 、质量为m 的小球.若磁感应强度大小B =πm q,g 取10 m/s 2.求:(1)小球离开磁场时的速度大小;(2)小球离开磁场时的位置与抛出点的距离.答案 (1)10 2 m/s (2)5ππ2+16 m 解析 (1)小球在水平方向做匀速圆周运动,在竖直方向做自由落体运动,水平方向小球恰好转半个周期离开磁场,故离开磁场的时间为t =T 2=πm qB=1 s ,则离开磁场时在竖直方向上的速度v y =gt =10 m/s ,故小球离开磁场时的速度大小为v =v 02+v y 2=10 2 m/s.(2)小球离开磁场时在竖直方向的位移大小为y =12gt 2=5 m ,小球在水平方向做匀速圆周运动有q v 0B =m v 02R ,解得R =m v 0qB ,水平方向位移为直径,即x =2R =2m v 0qB =20π m ,则小球离开磁场时的位置与抛出点的距离为s =x 2+y 2=5ππ2+16 m.3.某离子实验装置的基本原理图如图所示,截面半径为R 的圆柱腔分为两个工作区,Ⅰ区长度d =4R ,内有沿y 轴正向的匀强电场,Ⅱ区内既有沿z 轴负向的匀强磁场,又有沿z 轴正向的匀强电场,电场强度与Ⅰ区电场强度等大.现有一正离子从左侧截面的最低点A 处以初速度v 0沿z 轴正向进入Ⅰ区,经过两个区域分界面上的B 点进入Ⅱ区,在以后的运动过程中恰好未从圆柱腔的侧面飞出,最终从右侧截面上的C 点飞出,B 点和C 点均为所在截面处竖直半径的中点(如图中所示),已知离子质量为m 、电荷量为q ,不计离子重力,求:(1)电场强度的大小;(2)离子到达B 点时速度的大小;(3)Ⅱ区中磁感应强度的大小;(4)Ⅱ区的长度L 应为多大.答案 (1)3m v 0216Rq (2)54v 0 (3)2m v 0qR (4)n πR +3n 2π232R (n =1,2,3,…) 解析 (1)离子在Ⅰ区做类平抛运动,根据类平抛运动的规律有4R =v 0t ,3R 2=12at 2,根据牛顿第二定律有a =Eq m ,解得电场强度的大小为E =3m v 0216Rq. (2)类平抛过程由动能定理有3EqR 2=12m v 2-12m v 02,解得离子到达B 点时速度的大小为v =54v 0. (3)离子在Ⅱ区内做复杂的旋进运动.将该运动分解为圆柱腔截面上的匀速圆周运动和z 轴正方向的匀加速直线运动,根据题意可得,在圆柱腔截面上的匀速圆周运动轨迹如图所示.设临界圆轨迹半径为r ,根据几何知识有(R -r )2=r 2+R 24,解得离子的轨迹半径为 r =38R ,离子沿y 轴正方向的速度为 v y =v 2-v 02=34v 0,则根据洛伦兹力提供向心力有 q v y B =m v y 2r解得Ⅱ区中磁感应强度大小为B =2m v 0qR. (4)离子在圆柱腔截面上做匀速圆周运动的周期为 T =2πr v y,由题意知离子在Ⅱ区运动的时间为T 的整数倍,离子在z 轴正方向上做匀加速直线运动,根据匀变速直线运动的位移公式可得L =v 0nT +12a (nT )2(n =1,2,3,…),联立解得 Ⅱ 区的长度为L =n πR +3n 2π232R (n =1,2,3,…). 4.如图所示,一些质量为m 、电荷量为+q 的带电粒子从一线状粒子源射出(初速度可视为0),经过电压为U 的电场加速后,粒子以一定的水平初速度从MS 段垂直射出(S 为MF 中点),进入棱长为L 的正方体电磁修正区内(内部有垂直面MPRG 的方向如图,磁感应强度B 和电场强度E 大小未知的匀强磁场与匀强电场).距离正方体底部3L 处有一与RNAG 平行且足够大平板.现以正方体底面中心O 在平板的垂直投影点为原点,在平板内建立直角坐标系(其中x 轴与GR 平行).所有带电粒子都从正方体底面离开,且从M 点进入正方体的粒子在正方体中运动的时间满足2πm 3qB.不计粒子重力.(1)求粒子进入棱长为L 的正方体电磁修正区时速度的大小;(2)粒子射出正方体电磁修正区后到达平板所需的时间;(3)若满足关系式E =qUB 22π2m,求从M 点入射的粒子最后打到平板上的位置坐标.(结果用L 表示)答案 (1)2qU m (2)2L m 2qU(3)⎝⎛⎭⎪⎫-9-236L ,9+4π54L 解析 (1)设粒子进入棱长为L 的正方体电磁修正区时的速度大小为v ,根据动能定理有qU =12m v 2,解得v =2qU m(2)在正方体中,粒子在平行于MPRG 平面方向的分运动为匀速圆周运动,在垂直于MPRG 平面方向的分运动为匀加速直线运动,设粒子做圆周运动的周期为T ,根据洛伦兹力提供向心力有q v B =m v 2R ,又T =2πR v ,联立解得T =2πm Bq从M 点进入正方体的粒子在正方体中的运动时间为t 1=2πm 3qB =T 3,所以粒子做圆周运动转过的圆心角为120°,根据几何关系可知粒子离开正方体时的速度在垂直于平板方向的分量大小为v 2=v cos 30°.离开正方体后粒子做匀速直线运动,到达平板所需的时间为t 2=3L v 2,联立解得t 2=2L m 2qU (3)根据几何关系有R +R cos 60°=L ,解得R =23L ,粒子在正方体中做匀加速直线运动的加速度大小为a =qE m =q m qUB 22π2m ,粒子在正方体中沿y 轴方向的位移大小为y 1=12at 12,粒子离开正方体时的速度沿y 轴方向的分速度大小为v y =at 1,从M 点入射的粒子最后打到平板上的位置的纵坐标为y =y 1+v y t 2-L 2,联立解得y =9+4π54L ,根据几何关系可知粒子在正方体中沿x 轴方向的位移大小为x 1=R sin 60°=33L 粒子离开正方体时的速度沿-x 轴方向的分速度大小为v 1=v sin 30°,从M 点入射的粒子最后打到平板上的位置的横坐标为x =x 1-v 1t 2-L 2,联立解得x =-9-236L 综上所述可知从M 点入射的粒子最后打到平板上的位置坐标为⎝ ⎛⎭⎪⎫-9-236L ,9+4π54L .。
高考物理第一轮复习教案本教案是针对高考物理考试的第一轮复习内容而制定,旨在帮助学生巩固基础知识,提高解题能力。
本教案内容全面、系统、科学,具有很好的可操作性和实用性。
通过本教案的学习,相信学生们能够在物理考试中取得好成绩。
一、基础知识复习1. 电学基础(1) 电荷守恒定律电路中的电荷守恒定律是指:在任何时刻,电路中封闭表面内的总电量不变,即电路中的电荷守恒。
(2) 电流和电量电流是电荷在电路中运动所产生的效应,是单位时间内通过导体横截面的电量。
电量是电荷的数量单位。
(3) 电势差和电场强度电势差是一个物理量,描述两点之间发送电场力所需要的能量,记作V。
电场强度是受力电荷单位所受的电场力,记作E。
2. 光学基础(1) 光的传播方式光线传播方式包括直线传播和弯曲传播两种,其中直线传播是光在同一均匀介质中直线传播,弯曲传播是光在介质分界面反射、折射、绕射、散射等情况下的传播方式。
(2) 光的物理特性光的物理特性包括反射、折射、干涉、衍射等。
光线从一种介质到另一种介质时,会发生反射和折射。
干涉是指两束光线相遇时发生的相长、相消的现象。
衍射是指光线遇到物体在它们的背后弯曲或弯曲而通过物质时,光线被散射以产生图案。
二、解题技巧提高1. 答题方法在做物理题目时,需要结合基础知识和解题技巧,进行分析、计算和判断。
特别是在考试中,要注重解题速度和准确性,根据题目要求进行分类讨论,并在解答中加上必要的图像。
2. 常见难点在物理学习中,对于电学和光学方面的知识,并不如力学那么直观,因此很容易出现一些难点。
如电荷分布和场强方向的计算、光线的衍射现象等,这些难点需要同学们进行反复训练。
三、课堂实践操作1. 电路实验电路实验是检验电学知识的重要手段,可以将理论知识和实际操作相结合。
学生们可以通过实验来深入了解电路中的电流、电势差、电容器和电阻的作用,提高实验技能和解决问题的能力。
2. 光学实验光学实验是学生了解光的性质和传播方式的有效方式。
专题强化二十三电磁感应中的电路及图像问题目标要求 1.掌握电磁感应中电路问题的求解方法.2.会计算电磁感应电路问题中电压、电流、电荷量、热量等物理量.3.能够通过电磁感应图像,读取相关信息,应用物理规律求解问题.题型一电磁感应中的电路问题1.电磁感应中的电源(1)做切割磁感线运动的导体或磁通量发生变化的回路相当于电源.电动势:E=BL v或E=n ΔΦΔt,这部分电路的阻值为电源内阻.(2)用右手定则或楞次定律与安培定则结合判断,感应电流流出的一端为电源正极.2.分析电磁感应电路问题的基本思路3.电磁感应中电路知识的关系图考向1感生电动势的电路问题例1如图所示,单匝正方形线圈A边长为0.2m,线圈平面与匀强磁场垂直,且一半处在磁场中,磁感应强度随时间变化的规律为B=(0.8-0.2t)T.开始时开关S未闭合,R1=4Ω,R2=6Ω,C=20μF,线圈及导线电阻不计.闭合开关S,待电路中的电流稳定后.求:(1)回路中感应电动势的大小;(2)电容器所带的电荷量.答案(1)4×10-3V(2)4.8×10-8C解析(1)由法拉第电磁感应定律有E =ΔB Δt S ,S =12L 2,代入数据得E =4×10-3V (2)由闭合电路的欧姆定律得I =ER 1+R 2,由部分电路的欧姆定律得U =IR 2,电容器所带电荷量为Q =CU =4.8×10-8C.考向2动生电动势的电路问题例2(多选)如图所示,光滑的金属框CDEF 水平放置,宽为L ,在E 、F 间连接一阻值为R的定值电阻,在C 、D 间连接一滑动变阻器R 1(0≤R 1≤2R ).框内存在着竖直向下的匀强磁场.一长为L 、电阻为R 的导体棒AB 在外力作用下以速度v 匀速向右运动.金属框电阻不计,导体棒与金属框接触良好且始终垂直,下列说法正确的是()A .ABFE 回路的电流方向为逆时针,ABCD 回路的电流方向为顺时针B .左右两个闭合区域的磁通量都在变化且变化率相同,故电路中的感应电动势大小为2BL vC .当滑动变阻器接入电路中的阻值R 1=R 时,导体棒两端的电压为23BL vD .当滑动变阻器接入电路中的阻值R 1=R2时,滑动变阻器的电功率为B 2L 2v 28R 答案AD解析根据楞次定律可知,ABFE 回路电流方向为逆时针,ABCD 回路电流方向为顺时针,故A 正确;根据法拉第电磁感应定律可知,感应电动势E =BL v ,故B 错误;当R 1=R 时,外电路总电阻R 外=R 2,因此导体棒两端的电压即路端电压应等于13BL v ,故C 错误;该电路电动势E =BL v ,电源内阻为R ,当滑动变阻器接入电路中的阻值R 1=R2时,干路电流为I =3BL v 4R ,滑动变阻器所在支路电流为23I ,容易求得滑动变阻器电功率为B 2L 2v 28R,故D 正确.例3(多选)如图所示,ab 为固定在水平面上的半径为l 、圆心为O 的金属半圆弧导轨,Oa间用导线连接一电阻M .金属棒一端固定在O 点,另一端P 绕过O 点的轴,在水平面内以角速度ω逆时针匀速转动,该过程棒与圆弧接触良好.半圆弧内磁场垂直纸面向外,半圆弧外磁场垂直纸面向里,磁感应强度大小均为B ,已知金属棒由同种材料制成且粗细均匀,棒长为2l 、总电阻为2r ,M 阻值为r ,其余电阻忽略不计.当棒转到图中所示的位置时,棒与圆弧的接触处记为Q 点,则()A .通过M 的电流方向为O →aB .通过M 的电流大小为Bl 2ω6r C .QO 两点间电压为Bl 2ω4D .PQ 两点间电压为3Bl 2ω2答案CD解析根据右手定则可知金属棒O 端为负极,Q 端为正极,则通过M 的电流方向从a →O ,A 错误;金属棒转动产生的电动势为E =Bl ·ωl2,则有I =E R 总=Bl 2ω4r ,B 错误;由于其余电阻忽略不计,则QO 两点间电压,即电阻M 上的电压,根据欧姆定律有U =Ir =Bl 2ω4,C 正确;金属棒PQ 转动产生的电动势为E ′=Bl 2lω+lω2=3Bl 2ω2,由于PQ 没有连接闭合回路,则PQ 两点间电压,即金属棒PQ 转动产生的电动势,为3Bl 2ω2,D 正确.题型二电磁感应中电荷量的计算计算电荷量的导出公式:q =nΔФR 总在电磁感应现象中,只要穿过闭合回路的磁通量发生变化,闭合回路中就会产生感应电流,设在时间Δt 内通过导体横截面的电荷量为q ,则根据电流定义式I =qΔt 及法拉第电磁感应定律E =n ΔΦΔt ,得q =I Δt =E R 总Δt =n ΔΦR 总Δt Δt =n ΔΦR 总,即q =n ΔΦR 总.例4在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1m 2,线圈电阻为1Ω.规定线圈中感应电流I 的正方向从上往下看是顺时针方向,如图甲所示.磁场的磁感应强度B 随时间t 的变化规律如图乙所示.以下说法正确的是()A .在0~2s 时间内,I 的最大值为0.02AB .在3~5s 时间内,I 的大小越来越小C .前2s 内,通过线圈某横截面的总电荷量为0.01CD .第3s 内,线圈的发热功率最大答案C解析0~2s 时间内,t =0时刻磁感应强度变化率最大,感应电流最大,I =E R =ΔB ·SΔtR=0.01A ,A 错误;3~5s 时间内电流大小不变,B 错误;前2s 内通过线圈的电荷量q =ΔΦR =ΔB ·S R=0.01C ,C 正确;第3s 内,B 没有变化,线圈中没有感应电流产生,则线圈的发热功率最小,D 错误.例5(2018·全国卷Ⅰ·17)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于()A.54B.32C.74D .2答案B解析在过程Ⅰ中,根据法拉第电磁感应定律,有E 1=ΔΦ1Δt 1=B (12πr 2-14πr 2)Δt 1,根据闭合电路的欧姆定律,有I 1=E 1R ,且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2R,q 2=I 2Δt 2又q1=q2,即B(12πr2-14πr2)R=(B′-B)12r2R所以B′B=32,故选B.题型三电磁感应中的图像问题1.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.2.解题步骤(1)明确图像的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;对切割磁感线产生感应电动势和感应电流的情况,还常涉及E-x图像和i-x图像;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、闭合电路的欧姆定律、牛顿运动定律等知识写出相应的函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图像或判断图像.3.常用方法(1)排除法:定性地分析电磁感应过程中物理量的正负,增大还是减小,以及变化快慢,来排除错误选项.(2)函数法:写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断.考向1感生问题的图像例6(多选)(2023·广东湛江市模拟)如图甲所示,正方形导线框abcd放在范围足够大的匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示.t =0时刻,磁感应强度B的方向垂直纸面向外,感应电流以逆时针为正方向,cd边所受安培力的方向以垂直cd边向下为正方向.下列关于感应电流i和cd边所受安培力F随时间t变化的图像正确的是()答案BD解析设正方形导线框边长为L ,电阻为R ,在0~2s ,垂直纸面向外的磁场减弱,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =ΔBS Δt ·R =2B 0S2R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由2F 0=2B 0iL 减小到零.2~3s 内,垂直纸面向里的磁场增强,由楞次定律可知,感应电流的方向为逆时针方向,为正方向,感应电流大小i =ΔΦΔt ·R =B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,由零变化到-F 0=-B 0iL .3~4s 内垂直纸面向里的磁场减弱,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向下,为正方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由F 0=B 0iL 减小到零.4~6s 内垂直纸面向外的磁场增强,由楞次定律可知,感应电流的方向为顺时针方向,为负方向,感应电流大小i =ΔΦΔt ·R=B 0SR,电流是恒定值.由左手定则可知,cd 边所受安培力方向向上,为负方向,大小为F =BiL ,安培力与磁感应强度成正比,数值由零变化到-2F 0=-2B 0iL ,由以上分析计算可得A 、C 错误,B 、D 正确.考向2动生问题的图像例7如图所示,将一均匀导线围成一圆心角为90°的扇形导线框OMN ,圆弧MN 的圆心为O 点,将O 点置于直角坐标系的原点,其中第二和第四象限存在垂直纸面向里的匀强磁场,其磁感应强度大小为B ,第三象限存在垂直纸面向外的匀强磁场,磁感应强度大小为2B .t =0时刻,让导线框从图示位置开始以O 点为圆心沿逆时针方向做匀速圆周运动,规定电流方向ONM 为正,在下面四幅图中能够正确表示电流i 与时间t 关系的是()答案C解析在0~t 0时间内,线框沿逆时针方向从题图所示位置开始(t =0)转过90°的过程中,产生的感应电动势为E 1=12BωR 2,由闭合电路的欧姆定律得,回路中的电流为I 1=E 1r =BR 2ω2r ,根据楞次定律判断可知,线框中感应电流方向为逆时针方向(沿ONM 方向).在t 0~2t 0时间内,线框进入第三象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 2=12Bω·R 2+12·2BωR 2=32BωR 2=3E 1,感应电流为I 2=3I 1.在2t 0~3t 0时间内,线框进入第四象限的过程中,回路中的电流方向为逆时针方向(沿ONM 方向),回路中产生的感应电动势为E 3=12Bω·R 2+12·2Bω·R 2=32BωR 2=3E 1,感应电流为I 3=3I 1,在3t 0~4t 0时间内,线框出第四象限的过程中,回路中的电流方向为顺时针方向(沿OMN 方向),回路中产生的感应电动势为E 4=12BωR 2,回路电流为I 4=I 1,故C 正确,A 、B 、D 错误.例8(2023·广东珠海市模拟)图中两条平行虚线之间存在匀强磁场,虚线间的距离为L ,磁场方向垂直纸面向里.abcd 是位于纸面内的直角梯形线圈,ab 与dc 间的距离也为L .t =0时刻,ab 边与磁场区域边界重合(如图).现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域.取沿a →d →c →b →a 的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是()答案A解析线圈移动0~L ,即在0~Lv时间内,线圈进磁场,垂直纸面向里通过线圈的磁通量增大,线圈中产生逆时针方向的感应电流(正),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR 均匀增大;线圈移动L ~2L ,即在L v ~2L v 时间内,线圈出磁场,垂直纸面向里通过线圈的磁通量减少,线圈中产生顺时针方向的感应电流(负),线圈切割磁感线的有效长度l 均匀增大,感应电流I =E R =B v lR均匀增大,因此A 正确,B 、C 、D 错误.课时精练1.如图所示是两个相互连接的金属圆环,小金属环的电阻是大金属环电阻的二分之一,匀强磁场垂直穿过大金属环所在区域,当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E ,则a 、b 两点间的电势差为()A.12EB.13EC.23E D .E答案B解析a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故a 、b 间电势差为U=13E ,选项B 正确.2.如图甲所示,在线圈l 1中通入电流i 1后,在l 2上产生的感应电流随时间变化的规律如图乙所示,l 1、l 2中电流的正方向如图甲中的箭头所示.则通入线圈l 1中的电流i 1随时间t 变化的图像是图中的()答案D解析因为l 2中感应电流大小不变,根据法拉第电磁感定律可知,l 1中磁场的变化是均匀的,即l 1中电流的变化也是均匀的,A 、C 错误;根据题图乙可知,0~T4时间内l 2中的感应电流产生的磁场方向向左,所以线圈l 1中感应电流产生的磁场方向向左并且减小,或方向向右并且增大,B 错误,D 正确.3.(多选)(2023·广东省华南师大附中模拟)如图所示,在磁感应强度大小为B 、方向竖直向下的匀强磁场中,有两根光滑的平行导轨,间距为L ,导轨两端分别接有电阻R 1和R 2,导体棒以某一初速度从ab 位置向右运动距离x 到达cd 位置时,速度为v ,产生的电动势为E ,此过程中通过电阻R 1、R 2的电荷量分别为q 1、q 2.导体棒有电阻,导轨电阻不计.下列关系式中正确的是()A .E =BL vB .E =2BL vC .q 1=BLx R 1D.q 1q 2=R 2R 1答案AD解析导体棒做切割磁感线的运动,速度为v 时产生的感应电动势E =BL v ,故A 正确,B错误;设导体棒的电阻为r ,根据法拉第电磁感应定律得E =ΔΦΔt =BLxΔt ,根据闭合电路欧姆定律得I =Er +R 1R 2R 1+R 2,通过导体棒的电荷量为q =I Δt ,导体棒相当于电源,电阻R 1和R 2并联,则通过电阻R 1和R 2的电流之比I 1I 2=R 2R 1,通过电阻R 1、R 2的电荷量之比q 1q 2=I 1Δt I 2Δt =R2R 1,结合q =q 1+q 2,解得q 1=BLxR 2(R 1+R 2)r +R 1R 2,故C 错误,D 正确.4.(多选)如图甲所示,单匝正方形线框abcd 的电阻R =0.5Ω,边长L =20cm ,匀强磁场垂直于线框平面向里,磁感应强度的大小随时间变化规律如图乙所示,则下列说法中正确的是()A .线框中的感应电流沿逆时针方向,大小为2.4×10-2AB .0~2s 内通过ab 边横截面的电荷量为4.8×10-2CC .3s 时ab 边所受安培力的大小为1.44×10-2ND .0~4s 内线框中产生的焦耳热为1.152×10-3J 答案BD解析由楞次定律判断感应电流为顺时针方向,由法拉第电磁感应定律得电动势E =SΔB Δt=1.2×10-2V ,感应电流I =E R=2.4×10-2A ,故选项A 错误;电荷量q =I Δt ,解得q =4.8×10-2C ,故选项B 正确;安培力F =BIL ,由题图乙得,3s 时B =0.3T ,代入数值得:F =1.44×10-3N ,故选项C 错误;由焦耳定律得Q =I 2Rt ,代入数值得Q =1.152×10-3J ,故D 选项正确.5.在水平光滑绝缘桌面上有一边长为L 的正方形线框abcd ,被限制在沿ab 方向的水平直轨道上自由滑动.bc 边右侧有一正直角三角形匀强磁场区域efg ,直角边ge 和ef 的长也等于L ,磁场方向竖直向下,其俯视图如图所示,线框在水平拉力作用下向右以速度v 匀速穿过磁场区,若图示位置为t =0时刻,设逆时针方向为电流的正方向.则感应电流i -t 图像正确的是(时间单位为L v)()答案D 解析bc 边的位置坐标x 从0~L 的过程中,根据楞次定律判断可知线框中感应电流方向沿a →b →c →d →a ,为正值.线框bc 边有效切线长度为l =L -v t ,感应电动势为E =Bl v =B (L-v t )·v ,随着t 均匀增加,E 均匀减小,感应电流i =E R,即知感应电流均匀减小.同理,x 从L ~2L 的过程中,根据楞次定律判断出感应电流方向沿a →d →c →b →a ,为负值,感应电流仍均匀减小,故A 、B 、C 错误,D 正确.6.如图所示,线圈匝数为n ,横截面积为S ,线圈电阻为R ,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k ,磁场方向水平向右且与线圈平面垂直,电容器的电容为C ,两个电阻的阻值均为2R .下列说法正确的是()A .电容器上极板带负电B .通过线圈的电流大小为nkS 2RC .电容器所带的电荷量为CnkS 2D .电容器所带的电荷量为2CnkS 3答案D解析由楞次定律和右手螺旋定则知,电容器上极板带正电,A 错误;因E =nkS ,I =E 3R =nkS 3R,B 错误;又U =I ×2R =2nkS 3,Q =CU =2CnkS 3,C 错误,D 正确.7.如图甲所示,一长为L 的导体棒,绕水平圆轨道的圆心O 匀速顺时针转动,角速度为ω,电阻为r ,在圆轨道空间存在有界匀强磁场,磁感应强度大小为B .半径小于L 2的区域内磁场竖直向上,半径大于L 2的区域内磁场竖直向下,俯视图如图乙所示,导线一端Q 与圆心O 相连,另一端P 与圆轨道连接给电阻R 供电,其余电阻不计,则()A .电阻R 两端的电压为BL 2ω4B .电阻R 中的电流方向向上C .电阻R 中的电流大小为BL 2ω4(R +r )D .导体棒的安培力做功的功率为0答案C 解析半径小于L 2的区域内,E 1=B L 2·ωL 22=BL 2ω8,半径大于L 2的区域,E 2=B L 2·ωL 2+ωL 2=3BL 2ω8,根据题意可知,两部分电动势相反,故总电动势E =E 2-E 1=BL 2ω4,根据右手定则可知圆心为负极,圆环为正极,电阻R 中的电流方向向下,电阻R 上的电压U =R R +r E =RBL 2ω4(R +r ),故A 、B 错误;电阻R 中的电流大小为I =E R +r =BL 2ω4(R +r ),故C 正确;回路有电流,则安培力不为零,故导体棒的安培力做功的功率不为零,故D 错误.8.(多选)如图,PAQ 为一段固定于水平面上的光滑圆弧导轨,圆弧的圆心为O ,半径为L .空间存在垂直导轨平面、磁感应强度大小为B 的匀强磁场.电阻为R 的金属杆OA 与导轨接触良好,图中电阻R 1=R 2=R ,其余电阻不计.现使OA 杆在外力作用下以恒定角速度ω绕圆心O 顺时针转动,在其转过π3的过程中,下列说法正确的是()A .流过电阻R 1的电流方向为P →R 1→OB .A 、O 两点间电势差为BL 2ω2C .流过OA 的电荷量为πBL 26RD .外力做的功为πωB 2L 418R答案AD 解析由右手定则判断出OA 中电流方向由O →A ,可知流过电阻R 1的电流方向为P →R 1→O ,故A 正确;OA 产生的感应电动势为E =BL 2ω2,将OA 当成电源,外部电路R 1与R 2并联,则A 、O 两点间的电势差为U =ER +R 2·R 2=BL 2ω6,故B 错误;流过OA 的电流大小为I =E R +R 2=BL 2ω3R ,转过π3弧度所用时间为t =π3ω=π3ω,流过OA 的电荷量为q =It =πBL 29R ,故C 错误;转过π3弧度过程中,外力做的功为W =EIt =πωB 2L 418R,故D 正确.9.(多选)(2019·全国卷Ⅱ·21)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是()答案AD 解析根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,PQ 通过磁场区域后MN 进入磁场区域,MN 同样匀速直线运动通过磁场区域,故流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,感应电动势和感应电流为零,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于刚开始仅PQ 切割磁感线时的感应电流I 1,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D.10.如图甲所示,虚线MN 左、右两侧的空间均存在与纸面垂直的匀强磁场,右侧匀强磁场的方向垂直纸面向外,磁感应强度大小恒为B 0;左侧匀强磁场的磁感应强度B 随时间t 变化的规律如图乙所示,规定垂直纸面向外为磁场的正方向.一硬质细导线的电阻率为ρ、横截面积为S 0,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.求:(1)t =t 02时,圆环受到的安培力;(2)在0~320内,通过圆环的电荷量.答案(1)3B 02r 2S 04ρt 0,垂直于MN 向左(2)3B 0rS 08ρ解析(1)根据法拉第电磁感应定律,圆环中产生的感应电动势E =ΔB Δt S 上式中S =πr 22由题图乙可知ΔB Δt =B 0t 0根据闭合电路的欧姆定律有I =ER 根据电阻定律有R =ρ2πrS 0t =12t 0时,圆环受到的安培力大小F =B 0I ·(2r )+B 02I ·(2r )联立解得F =3B 02r 2S 04ρt 0由左手定则知,方向垂直于MN 向左.(2)通过圆环的电荷量q =I ·Δt根据闭合电路的欧姆定律和法拉第电磁感应定律有I =E R ,E =ΔΦΔt在0~32t 0内,穿过圆环的磁通量的变化量为ΔΦ=B 0·12πr 2+B 02·12πr 2联立解得q =3B 0rS 08ρ.11.(2023·广东广州市模拟)在同一水平面中的光滑平行导轨P 、Q 相距L =1m ,导轨左端接有如图所示的电路.其中水平放置的平行板电容器两极板M 、N 间距离d =10mm ,定值电阻R 1=R 2=12Ω,R 3=2Ω,金属棒ab 电阻r =2Ω,其他电阻不计.磁感应强度B =1T 的匀强磁场竖直穿过导轨平面,当金属棒ab 沿导轨向右匀速运动时,悬浮于电容器两极板之间、质量m =1×10-14kg 、带电荷量q =-1×10-14C 的微粒(图中未画出)恰好静止不动.取g =10m/s 2,在整个运动过程中金属棒与导轨接触良好.且运动速度保持恒定.求:(1)匀强磁场的方向;(2)ab 两端的电压;(3)金属棒ab 运动的速度大小.答案(1)竖直向下(2)0.4V (3)0.5m/s 解析(1)带负电的微粒受到重力和电场力处于静止状态,因重力竖直向下,则电场力竖直向上,故M 板带正电.ab 棒向右切割磁感线产生感应电动势,ab 棒相当于电源,感应电流方向由b →a ,其a 端为电源的正极,由右手定则可判断,磁场方向竖直向下;(2)由平衡条件,得mg =EqE =U MNd所以MN 间的电压U MN =mgd q =1×10-14×10×10×10-31×10-14V =0.1VR 3两端电压与电容器两端电压相等,由欧姆定律得通过R 3的电流I =U MN R 3=0.12A =0.05A ab 棒两端的电压为U ab=U MN+R1R2·I=0.1V+0.05V×6V=0.4VR1+R2(3)由闭合电路欧姆定律得ab棒产生的感应电动势为E感=U ab+Ir=0.4+0.05×2V=0.5V由法拉第电磁感应定律得感应电动势E=BL v感联立解得v=0.5m/s.。
第2讲 法拉第电磁感应定律、自感和涡流目标要求 1.理解法拉第电磁感应定律,会应用E =n ΔΦΔt 进行有关计算.2.会计算导体切割磁感线产生的感应电动势.3.了解自感现象、涡流、电磁驱动和电磁阻尼.考点一 法拉第电磁感应定律的理解及应用1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关. 2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比. (2)公式:E =n ΔΦΔt ,其中n 为线圈匝数.(3)感应电流与感应电动势的关系:I =ER +r.(4)说明:E 的大小与Φ、ΔΦ无关,决定于磁通量的变化率ΔΦΔt.1.Φ=0,ΔΦΔt不一定等于0.( √ )2.穿过线圈的磁通量变化越大,感应电动势也越大.( × ) 3.穿过线圈的磁通量变化越快,感应电动势越大.( √ )4.线圈匝数n 越多,磁通量越大,产生的感应电动势也越大.( × )对公式E =n ΔΦΔt的理解1.若已知Φ-t 图像,则图线上某一点的切线斜率为ΔΦΔt.2.当ΔΦ仅由B 的变化引起时,E =n ΔB ·SΔt,其中S 为线圈在磁场中的有效面积.若B =B 0+kt ,则ΔBΔt=k .3.当ΔΦ仅由S 的变化引起时,E =nB ΔSΔt.4.当B 、S 同时变化时,则E =n B 2S 2-B 1S 1Δt ≠n ΔB ·ΔSΔt.例1 (2022·全国甲卷·16)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为I 1、I 2和I 3.则( )A .I 1<I 3<I 2B .I 1>I 3>I 2C .I 1=I 2>I 3D .I 1=I 2=I 3答案 C解析 设圆线框的半径为r ,则由题意可知正方形线框的边长为2r ,正六边形线框的边长为r ;所以圆线框的周长为C 2=2πr ,面积为S 2=πr 2.同理可知正方形线框的周长和面积分别为C 1=8r ,S 1=4r 2,正六边形线框的周长和面积分别为C 3=6r ,S 3=33r 22,三个线框材料粗细相同,根据电阻定律R =ρLS 横截面,可知三个线框电阻之比为R 1∶R 2∶R 3=C 1∶C 2∶C 3=8∶2π∶6 根据法拉第电磁感应定律有I =E R =ΔB Δt ·SR可得电流之比为I 1∶I 2∶I 3=2∶2∶ 3 即I 1=I 2>I 3,故选C.例2 (多选)(2023·广东名校联考)如图甲所示,等边三角形金属框ACD 的边长均为L ,单位长度的电阻为r ,E 为CD 边的中点,三角形ADE 所在区域内有磁感应强度垂直纸面向外、大小随时间变化的匀强磁场,图乙是匀强磁场的磁感应强度B 随时间t 变化的图像.下列说法正确的是( )A .t 0时刻,穿过金属框的磁通量为3B 0L 24B .5t 0时刻,金属框内的感应电流由大变小C .0~5t 0时间内的感应电动势小于5t 0~8t 0时间内的感应电动势D .5t 0~8t 0时间内,A 、E 两点的电势差的绝对值恒为3B 0L 248t 0答案 CD解析 t 0时刻,穿过金属框的磁通量Φ=15B 0×12×12L ×32L =3B 0L 240,A 错误;根据法拉第电磁感应定律可知E =ΔΦΔt ,结合题图乙可知,0~5t 0时间内的感应电动势小于5t 0~8t 0时间内的感应电动势,结合闭合电路欧姆定律可知,5t 0时刻,金属框内的感应电流由小变大,B 错误,C 正确;5t 0~8t 0时间内,A 、E 两点的电势差的绝对值恒为U =I ×12R =ΔΦR Δt ×12R =3B 0L 248t 0,D 正确.考点二 动生电动势1.导体平动切割磁感线产生感应电动势的算式E =BL v 的理解(1)直接使用E =BL v 的条件是:在匀强磁场中,B 、L 、v 三者互相垂直.如果不相互垂直,应取垂直分量进行计算. (2)有效长度公式E =BL v 中的L 为导体两端点连线在垂直于速度方向上的投影长度.如图,导体的有效长度分别为:图甲:L =cd sin β.图乙:沿v 方向运动时,L =MN .图丙:沿v 1方向运动时,L =2R ;沿v 2方向运动时,L =R . (3)相对速度E =BL v 中的速度v 是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系. 2.导体转动切割磁感线如图,当长为L 的导体在垂直于匀强磁场(磁感应强度为B )的平面内,绕一端以角速度ω匀速转动,当导体运动Δt 时间后,转过的弧度θ=ωΔt ,扫过的面积ΔS =12L 2ωΔt ,则E =ΔΦΔt =B ΔS Δt =12BL 2ω(或E =BL v =BL v A +vC 2=BL ωL 2=12BL 2ω).1.公式E =BL v 中的L 是导体棒的总长度.( × )2.磁场相对导体棒运动,导体棒中也可能产生感应电动势.( √ ) 考向1 有效长度问题例3 如图所示,由均匀导线制成的半径为R 的圆环,以速度v 匀速进入一磁感应强度大小为B 的匀强磁场.当圆环运动到图示位置(∠aOb =90°)时,a 、b 两点的电势差U ab 为( )A.2BR vB.22BR v C .-24BR v D .-324BR v答案 D解析 有效切割长度即a 、b 连线的长度,如图所示由几何关系知有效切割长度为2R ,所以产生的电动势为E =BL v =B ·2R v ,电流的方向为a →b ,所以U ab <0,由于在磁场部分的阻值为整个圆的14,所以U ab =-34B ·2R v =-324BR v ,故选D.考向2 平动切割磁感线例4 (多选)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )A .磁感应强度的大小为0.5 TB .导线框运动速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N 答案 BC解析 由题图(b)可知,导线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2 m/s =0.5 m/s ,选项B 正确;由题图(b)可知,cd 边切割磁感线产生的感应电动势E =0.01 V ,根据E =Bl v 得,B =E l v =0.010.1×0.5 T =0.2 T ,选项A 错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流I =E R =0.010.005A =2 A, 所受的安培力大小为F =BIl =0.2×2×0.1 N =0.04 N ,选项D 错误.考向3 转动切割磁感线例5 (多选)金属棒ab 长度L =0.5 m ,阻值r =1 Ω,放在半径分别为r 1=0.5 m 和 r 2=1.0 m 的水平同心圆环导轨上,两圆环之间有竖直向上的匀强磁场,磁感应强度为B =2 T ;从两圆环下端引出导线连接一阻值为R =2 Ω的电阻,ab 在外力作用下以角速度ω=4 rad/s 绕圆心顺时针(从上往下看)做匀速圆周运动,不计圆环导轨的电阻和一切摩擦,下列说法正确的是( )A .a 点的电势高于b 点的电势B .电阻R 两端的电压为2 VC .在金属棒旋转一周的时间内,金属棒上产生的焦耳热为π4 JD .在金属棒旋转半周的时间内,金属棒上产生的焦耳热为π4 J答案 ABD解析 由右手定则可知,金属棒顺时针转动时,感应电流方向由b 到a ,金属棒充当电源,则a 点的电势高于b 点的电势,故A 正确;金属棒产生的感应电动势E =BLω·r 1+r 22=3 V ,则电阻R 两端的电压为U R =R R +r·E =2 V ,故B 正确;金属棒旋转半周的时间t ′=πω=π4 s ,通过的电流I =E R +r=1 A ,产生的焦耳热为Q =I 2rt ′=π4 J ,故C 错误,D 正确.考点三 自感现象1.概念:当一个线圈中的电流变化时,它所产生的变化的磁场在线圈本身激发出感应电动势.这种现象称为自感,由于自感而产生的感应电动势叫作自感电动势. 2.表达式:E =L ΔIΔt.3.自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.1.线圈中电流越大,自感系数也越大.(×)2.对于同一个线圈,电流变化越快,线圈中的自感电动势也越大.(√) 3.自感电动势总是阻止原电流的变化.(×)通电自感和断电自感的比较电路图器材要求A1、A2同规格,R=R L,L较大L很大(有铁芯)通电时在S闭合瞬间,灯A2立即亮起来,灯A1逐渐变亮,最终一样亮灯A立即亮,然后逐渐变暗达到稳定断电时回路电流减小,灯泡逐渐变暗,A1电流方向不变,A2电流反向①若I2≤I1,灯泡逐渐变暗;②若I2>I1,灯泡闪亮后逐渐变暗.两种情况下灯泡中电流方向均改变总结自感电动势总是阻碍原电流的变化例6(2023·湖南省长郡中学模拟)某同学想对比自感线圈和小灯泡对电路的影响,他设计了如图甲所示的电路,电路两端电压U恒定,A1、A2为完全相同的电流传感器.先闭合开关K 得到如图乙所示的i-t图像,等电路稳定后,断开开关(断开开关的实验数据未画出).下列关于该实验的说法正确的是()A.闭合开关时,自感线圈中电流为零,其自感电动势也为零B.图乙中的a曲线表示电流传感器A2测得的数据C.断开开关时,小灯泡会明显闪亮后逐渐熄灭D.t1时刻小灯泡与线圈的电阻相等答案 D解析闭合开关时,其线圈自感电动势等于电源电动势,自感线圈中电流为零,故A错误;A2中电流等于自感线圈中电流,自感线圈中电流从零开始逐渐增大,最后趋于稳定,故A2中数据应为题图乙中b曲线,故B错误;断开开关前,两支路中电流相等,刚断开开关时,回路中的电流不变,故灯泡不会发生明显闪亮,而是逐渐熄灭,故C错误;t1时刻,两支路中电压相等,电流相等,则电阻相等,即小灯泡与线圈的电阻相等,故D正确.分析自感问题的三个技巧考点四涡流电磁阻尼和电磁驱动1.涡流现象(1)涡流:块状金属放在变化磁场中,或者让它在非均匀磁场中运动时,金属块内产生的漩涡状感应电流.(2)产生原因:金属块内磁通量变化→感应电动势→感应电流.2.电磁阻尼当导体在磁场中运动时,感应电流会使导体受到安培力,安培力总是阻碍导体的运动.3.电磁驱动如果磁场相对于导体转动,在导体中会产生感应电流使导体受到安培力而运动起来.1.电磁阻尼体现了能量守恒定律.(√)2.电磁阻尼阻碍相对运动,电磁驱动促进二者相对运动.(×)例7如图所示,关于涡流的下列说法中错误的是()A.真空冶炼炉是利用涡流来熔化金属的装置B.家用电磁炉锅体中的涡流是由恒定磁场产生的C.阻尼摆摆动时产生的涡流总是阻碍其运动D.变压器的铁芯用相互绝缘的硅钢片叠成能减小涡流答案 B例8(2023·广东深圳市建文外国语学校模拟)如图是汽车上使用的电磁制动装置示意图.电磁制动是一种非接触的制动方式,其原理是当导体在通电线圈产生的磁场中运动时,会产生涡流,使导体受到阻碍运动的制动力.下列说法正确的是()A.制动过程中,导体不会产生热量B.如果导体反向转动,此装置将不起制动作用C.制动力的大小与线圈中电流的大小无关D.线圈中电流一定时,导体运动的速度越大,制动力就越大答案 D解析电磁制动的原理是当导体在通电线圈产生的磁场中运动时,会产生涡流,电流流过导体时会产生热量,A错误;如果改变线圈中的电流方向,铁芯产生的磁感线的方向反向,此时产生的涡流方向也相反,电流和磁场方向同时反向,安培力方向不变,故仍使导体受到阻碍运动的制动力,B错误;线圈中电流越大,则产生的磁场越强,转盘转动产生的涡流越强,则制动器对转盘的制动力越大,C错误;线圈电流一定时,导体运动的速度越大,转盘转动产生的涡流越强,制动力就越大,D正确.课时精练1.如图所示,在某次阅兵盛典上,我国预警机“空警-2000”在通过天安门上空时机翼保持水平,以4.5×102 km/h的速度自东向西飞行.该机的翼展(两翼尖之间的距离)为50 m,北京地区地磁场向下的竖直分量大小为4.7×10-5 T,则()A .两翼尖之间的电势差为2.9 VB .两翼尖之间的电势差为1.1 VC .飞机左方翼尖的电势比右方翼尖的电势高D .飞机左方翼尖的电势比右方翼尖的电势低 答案 C解析 飞机的飞行速度为 4.5×102 km/h =125 m/s ,飞机两翼尖之间的电动势为E =Bl v =4.7×10-5×50×125 V ≈0.29 V ,A 、B 项错误;飞机从东向西飞行,磁场竖直分量向下,根据右手定则可知,飞机左方翼尖的电势高于右方翼尖的电势,C 项正确,D 项错误. 2.(2022·江苏卷·5)如图所示,半径为r 的圆形区域内有垂直于纸面的匀强磁场,磁感应强度B 随时间t 的变化关系为B =B 0+kt ,B 0、k 为常量,则图中半径为R 的单匝圆形线圈中产生的感应电动势大小为( )A .πkr 2B .πkR 2C .πB 0r 2D .πB 0R 2答案 A解析 由题意可知磁场的变化率为ΔB Δt =kt t =k ,根据法拉第电磁感应定律可知E =ΔΦΔt =ΔB πr 2Δt =k πr 2,故选A.3.(2023·广东广州市模拟)如图所示,电路中A 、B 是规格相同的灯泡,L 是电阻可忽略不计的自感线圈,那么( )A .合上S ,A 、B 一起亮,然后A 变暗,最后熄灭 B .合上S ,B 先亮,A 逐渐变亮,最后A 、B 一样亮C .断开S ,A 立即熄灭,B 由亮变暗,最后熄灭D.断开S,A、B同时熄灭答案 A解析合上S,线圈中电流要增加,会产生自感电动势,故只能缓慢增加,所以A、B一起亮,然后A变暗,最后熄灭,B更亮,故A正确,B错误;断开S,线圈中电流要减小,会产生自感电动势,故只能缓慢减小,通过灯泡A构成回路,所以B立即熄灭,A闪亮一下后熄灭,故C、D错误.4.(2023·广东省模拟)在油电混合小轿车上有一种装置,刹车时能将车的动能转化为电能,启动时再将电能转化为动能,从而实现节能减排.图中,甲、乙磁场方向与轮子的转轴平行,丙、丁磁场方向与轮子的转轴垂直,轮子是绝缘体,则采取下列哪个措施,能有效地借助磁场的作用,让转动的轮子停下()A.如图甲,在轮上固定如图绕制的线圈B.如图乙,在轮上固定如图绕制的闭合线圈C.如图丙,在轮上固定一些细金属棒,金属棒与轮子转轴平行D.如图丁,在轮上固定一些闭合金属线框,线框长边与轮子转轴平行答案 D解析题图甲和题图乙中当轮子转动时,穿过线圈的磁通量都是不变的,不会产生感生电流,则不会有安培力阻碍轮子的运动,选项A、B错误;题图丙中在轮上固定一些细金属棒,当轮子转动时会产生感应电动势,但是不会形成感应电流,则也不会产生安培力阻碍轮子转动,选项C错误;题图丁中在轮上固定一些闭合金属线框,线框长边与轮子转轴平行,当轮子转动时会产生感应电动势,形成感应电流,则会产生安培力阻碍轮子转动,使轮子很快停下来,选项D正确.5.(2023·广东深圳市模拟)电磁阻尼可以无磨损地使运动的线圈快速停下来.如图所示,扇形铜框abcd在绝缘细杆作用下绕转轴O在同一水平面内快速逆时针转动,虚线把圆环分成八等份,扇形铜框恰好可以与其中一份重合.为使线框快速停下来,实验小组设计了以下几种方案,其中虚线为匀强磁场的理想边界,边界内磁场大小均相同,其中最合理的是()答案 C解析扇形铜框逆时针转动时,对于A、D选项,通过铜框的磁通量不发生变化,无感应电流产生,则线圈不会受到安培力作用;对于B、C选项,通过铜框的磁通量发生变化,产生感应电流,B项的铜框只有单边ad或bc受到安培力作用,而C项的铜框ad边、bc边同时受到安培力作用,所以最合理的是C选项.6.(多选)(2023·湖北省模拟)如图所示,在距地面高h=1.25 m处固定有两根间距为l=0.5 m 水平放置的平行金属导轨,导轨的左端接有电源E,右端边缘处静置有一长l=0.5 m、质量m=0.2 kg、电阻R=5.0 Ω的导体棒ab,导体棒所在空间有磁感应强度大小B=1.0 T、方向竖直向上的匀强磁场.闭合开关后,导体棒ab以某一初速度水平向右抛出,已知导体棒落地点到抛出点的水平距离d=2.5 m,重力加速度g=10 m/s2,则()A.在空中运动过程中,导体棒a端的电势低于b端的电势B.导体棒抛出时的初速度大小为5 m/sC.在空中运动过程中,导体棒上产生的感应电动势大小恒定D.在空中运动过程中,导体棒的速度逐渐变大,棒上产生的感应电动势增大答案BC解析由右手定则可知,导体棒在空中运动过程中,在水平方向上要切割磁感线,从而产生感应电动势,但无感应电流,不受安培力,故导体棒在平抛运动过程中水平方向上的速度v0不变,由E =Bl v 0可知,导体棒上产生的感应电动势大小不变,且a 端电势高于b 端电势,故A 、D 错误,C 正确;导体棒从抛出到落地的时间为t =2h g =0.5 s ,故导体棒做平抛运动的初速度v 0=d t=5 m/s ,故B 正确. 7.(多选)如图所示,一导线弯成半径为a 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B 的范围足够大的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是( )A .CD 段直导线不受安培力B .CD 段直导线受安培力C .感应电动势最大值E m =2Ba vD .感应电动势平均值E =14πBa v 答案 BD解析 由楞次定律可知,感应电流始终沿逆时针方向,由左手定则判断,CD 段直导线所受安培力始终向下,A 错误,B 正确;当线框有一半进入磁场时,切割磁感线的有效长度最大,最大感应电动势为E m = Ba v ,C 错误;根据法拉第电磁感应定律可得,平均感应电动势E=BS Δt =B ·πa 222a v=14πBa v ,D 正确.8.(多选)如图所示,固定在水平面上的半径为r 的金属圆环内存在方向竖直向上、磁感应强度大小为B 的匀强磁场.长为l 的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO ′上,随轴以角速度ω匀速转动.在圆环的A 点和电刷间接有阻值为R 的电阻和电容为C 、板间距为d 的平行板电容器,有一带电微粒在电容器极板间处于静止状态.已知重力加速度为g ,不计其他电阻和摩擦,下列说法正确的是( )A .电阻R 两端的电势差为12Br 2ωB .微粒的电荷量与质量之比为2gd Br 2ωC .电阻消耗的电功率为πB 2r 4ω2RD .若增大角速度ω和电阻R 的阻值,微粒有可能仍保持静止状态答案 AB解析 如图所示,金属棒绕OO ′轴切割磁感线转动,棒产生的电动势即为电阻R 两端的电势差,E =Br ·ωr 2=12Br 2ω,故A 正确;电容器两极板间电压等于电源电动势E ,带电微粒在两极板间处于静止状态,则q E d =mg ,即q m =dg E =dg 12Br 2ω=2dg Br 2ω,故B 正确;电阻消耗的功率P =E 2R =B 2r 4ω24R,故C 错误;若增大角速度ω,则电动势增大,即电容器的电压E ′增大,q E ′d>mg ,则微粒向上运动,故D 错误. 9.(多选)(2023·广东深圳市光明区高级中学模拟)发光竹蜻蜓是一种常见的儿童玩具.某同学对竹蜻蜓的电路作如下简化:如图所示,导电圆环绕垂直于圆环平面、通过圆心O 的金属轴O 1O 2以角速度ω逆时针(俯视)匀速转动.圆环上接有三根金属辐条OP 、OQ 、OR ,辐条互成120°角.在圆环左半部分张角也为120°角的范围内(两条虚线之间)分布着垂直圆环平面向下、磁感应强度大小为B 的匀强磁场,在转轴O 1O 2与圆环的边缘之间通过电刷M 、N 与一个LED 灯(二极管)相连.除LED 灯电阻外,其他电阻不计.下列说法中正确的是( )A .若OP 棒进入磁场中,P 点电势小于O 点电势B .金属辐条在磁场中旋转产生的是正弦式交变电流C .若导电圆环顺时针转动(俯视),也能看到LED 灯发光D .角速度比较大时,能看到LED 灯更亮答案 AD解析 由右手定则可知OP 切割磁感线产生的感应电流在OP 辐条上从P 流向O ,则OP 为电源时O 为正极,P 为负极,所以P 点电势小于O 点电势,故A 正确;金属辐条在磁场中旋转产生的感应电流大小和方向都恒定,为直流电,故B 错误;导电圆环顺时针(俯视)转动产生的感应电流与逆时针转动时产生的感应电流方向相反,逆时针转动时二极管发光,由二极管的单向导电性可知顺时针转动时二极管不发光,故C 错误;假设辐条长度为L ,辐条切割磁感线产生的感应电动势大小为E =BL v =BL ωL 2=BωL 22, 可知角速度变大时,感应电动势变大,感应电流变大,则LED 灯更亮,故D 正确.10.(2022·重庆卷·13)某同学以金属戒指为研究对象,探究金属物品在变化磁场中的热效应.如图所示,戒指可视为周长为L 、横截面积为S 、电阻率为ρ的单匝圆形线圈,放置在匀强磁场中,磁感应强度方向垂直于戒指平面.若磁感应强度大小在Δt 时间内从0均匀增加到B 0,求:(1)戒指中的感应电动势和电流;(2)戒指中电流的热功率.答案 (1)B 0L 24πΔt B 0LS 4πρΔt (2)B 02L 3S 16π2ρ(Δt )2解析 (1)设戒指环的半径为r ,则有L =2πr磁感应强度大小在Δt 时间内从0均匀增加到B 0,产生的感应电动势为E =B 0Δt·πr 2 可得E =B 0L 24πΔt戒指的电阻为R =ρL S则戒指中的感应电流为I =E R =B 0LS 4πρΔt(2)戒指中电流的热功率为P =I 2R =B 02L 3S 16π2ρ(Δt )2.11.(2023·广东广州市第七中学月考)如图甲所示,ACD 是固定在水平面上的半径为2r 、圆心为O 的金属半圆弧导轨,EF 是半径为r 、圆心也为O 的半圆弧,在半圆弧EF 与导轨ACD 之间的半圆环区域内存在垂直导轨平面向外的匀强磁场,磁感应强度大小为B ,B 随时间t 变化的图像如图乙所示.OA 间接有电阻P ,金属杆OM 可绕O 点转动,M 端与轨道接触良好,金属杆OM 与电阻P 的阻值均为R ,其余电阻不计.(1)0~t 0时间内,OM 杆固定在与OA 夹角为θ1=π3的位置不动,求这段时间内通过电阻P 的感应电流大小和方向;(2)t 0~2t 0时间内,OM 杆在外力作用下以恒定的角速度逆时针转动,2t 0时转过角度θ2=π3到达OC 位置,求电阻P 在这段时间内产生的焦耳热Q .答案 (1)πB 0r 24t 0R 方向为A →O (2)π2B 02r 416t 0R解析 (1)0~t 0时间内的感应电动势E 1=ΔΦΔt =ΔB Δt ·S 1其中ΔB Δt =B 0t 0S 1=16·π(2r )2-16πr 2=πr 22感应电流I 1=E 12R联立解得I 1=πB 0r 24t 0R由楞次定律可判断通过电阻P 的感应电流方向为A →O .(2)t 0~2t 0时间内,OM 转动的角速度为ω=π3t 0感应电动势为E 2=B 0r v其中v =ωr +2ωr 2又I 2=E 22R则电阻P 在这段时间内产生的焦耳热Q =I 22Rt 0联立得Q=π2B02r416t0R.。
第3讲电容器实验:观察电容器的充、放电现象带电粒子在电场中的直线运动目标要求 1.了解电容器的充电、放电过程,会计算电容器充、放电电荷量.2.了解影响平行板电容器电容大小的因素,能利用公式判断平行板电容器电容的变化.3.利用动力学、功能观点分析带电粒子在电场中的直线运动.考点一实验:观察电容器的充、放电现象1.实验原理(1)电容器的充电过程如图所示,当开关S接1时,电容器接通电源,在电场力的作用下自由电子从正极板经过电源向负极板移动,正极板因失去电子而带正电,负极板因获得电子而带负电.正、负极板带等量的正、负电荷.电荷在移动的过程中形成电流.在充电开始时电流比较大(填“大”或“小”),以后随着极板上电荷的增多,电流逐渐减小(填“增大”或“减小”),当电容器两极板间电压等于电源电压时,电荷停止定向移动,电流I =0.(2)电容器的放电过程如图所示,当开关S接2时,相当于将电容器的两极板直接用导线连接起来,电容器正、负极板上电荷发生中和.在电子移动过程中,形成电流.放电开始电流较大(填“大”或“小”),随着两极板上的电荷量逐渐减小,电路中的电流逐渐减小(填“增大”或“减小”),两极板间的电压也逐渐减小到零.2.实验步骤(1)按图连接好电路.(2)把单刀双掷开关S打在上面,使触点1与触点2连通,观察电容器的充电现象,并将结果记录在表格中.(3)将单刀双掷开关S打在下面,使触点3与触点2连通,观察电容器的放电现象,并将结果记录在表格中.(4)记录好实验结果,关闭电源.3.注意事项(1)电流表要选用小量程的灵敏电流计.(2)要选择大容量的电容器.(3)实验要在干燥的环境中进行.考向1电容器充、放电现象的定性分析例1(2022·北京卷·9)利用如图所示电路观察电容器的充、放电现象,其中E为电源,R为定值电阻,C为电容器,A为电流表,V为电压表.下列说法正确的是()A.充电过程中,电流表的示数逐渐增大后趋于稳定B.充电过程中,电压表的示数迅速增大后趋于稳定C.放电过程中,电流表的示数均匀减小至零D.放电过程中,电压表的示数均匀减小至零答案 B解析充电过程中,随着电容器C两极板电荷量的积累,电路中的电流逐渐减小,电容器充电结束后,电流表示数为零,A错误;充电过程中,随着电容器C两极板电荷量的积累,电压表测量电容器两端的电压,电容器两端的电压迅速增大,电容器充电结束后,最后趋于稳定,B正确;电容器放电过程的I-t图像如图所示,可知电流表和电压表的示数不是均匀减小至0的,C、D错误.考向2 电容器充、放电现象的定量计算例2 (2023·山东省实验中学模拟)电容器是一种重要的电学元件,在电工、电子技术中应用广泛.使用图甲所示电路观察电容器的充、放电过程.电路中的电流传感器与计算机相连,可以显示电路中电流随时间的变化关系.图甲中直流电源电动势E =8 V ,实验前电容器不带电.先使S 与“1”端相连给电容器充电,充电结束后,使S 与“2”端相连,直至放电完毕.计算机记录的电流随时间变化的i -t 曲线如图乙所示.(1)乙图中阴影部分的面积S 1________S 2;(选填“>”“<”或“=”)(2)计算机测得S 1=1 203 mA·s ,则该电容器的电容为________F ;(保留两位有效数字) (3)由甲、乙两图可判断阻值R 1________R 2.(选填“>”“<”或“=”) 答案 (1)= (2)0.15 (3)<解析 (1)题图乙中阴影面积S 1和S 2分别表示充电和放电中电容器上的总电荷量,所以两者相等.(2)由阴影面积代表电容器上的电荷量得q =S 1=1.203 C ,U =E =8 V ,则C =q U =1.2038F ≈0.15 F.(3)由题图乙可知充电瞬间电流大于放电瞬间电流,且充电瞬间电源电压与放电瞬间电容器两极板电压相等,由E R 0+R 1>ER 0+R 2,解得R 1<R 2.考点二 电容器及平行板电容器的动态分析1.电容器(1)组成:由两个彼此绝缘又相距很近的导体组成. (2)带电荷量:一个极板所带电荷量的绝对值. (3)电容器的充、放电:①充电:使电容器带电的过程,充电后电容器两极板带上等量的异种电荷,电容器中储存电场能.②放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能. 2.电容(1)定义:电容器所带的电荷量与电容器两极板之间的电势差之比. (2)定义式:C =QU.(3)单位:法拉(F)、微法(μF )、皮法(pF).1 F =106 μF =1012 pF. (4)意义:表示电容器容纳电荷本领的高低.(5)决定因素:由电容器本身物理条件(大小、形状、极板相对位置及电介质)决定,与电容器是否带电及电压无关. 3.平行板电容器的电容(1)决定因素:两极板的正对面积、电介质的相对介电常数、两板间的距离. (2)决定式:C =εr S4πkd.1.电容器的电荷量等于两个极板所带电荷量绝对值的和.( × ) 2.电容器的电容与电容器所带电荷量成正比,与电压成反比.( × ) 3.放电后电容器的电荷量为零,电容也为零.( × )1.两类典型问题(1)电容器始终与恒压电源相连,电容器两极板间的电势差U 保持不变. (2)电容器充电后与电源断开,电容器两极板所带的电荷量Q 保持不变. 2.两类典型动态分析思路比较考向1 两极板间电势差不变例3 (2022·重庆卷·2)如图为某同学采用平行板电容器测量材料竖直方向尺度随温度变化的装置示意图,电容器上极板固定,下极板可随材料尺度的变化上下移动,两极板间电压不变.若材料温度降低时,极板上所带电荷量变少,则( )A .材料竖直方向尺度减小B .极板间电场强度不变C .极板间电场强度变大D .电容器电容变大 答案 A解析 根据题意可知极板之间电压U 不变,极板上所带电荷量Q 变少,根据电容定义式C =Q U 可知,电容器的电容C 减小,D 错误;根据电容的决定式C =εr S 4πkd 可知,极板间距d 增大,极板之间形成匀强电场,根据E =Ud 可知,极板间电场强度E 减小,B 、C 错误;极板间距d 增大,材料竖直方向尺度减小,A 正确. 考向2 两极板电荷量不变例4 (多选)(2023·广东汕头市模拟)兴趣小组利用图示器材探究平行板电容器,保持正对面积S 不变,缓慢增大两极板间距离d ,描绘出电容器两端电压U 、电容器电容C 、极板带电荷量Q 、板间电场强度E 与d 的关系图像,以下描述可能正确的是( )答案 ACD解析 因为电容器负极板接地,正极板与静电计的金属球相连,二者之间保持开路状态,不会使电容器发生充、放电现象,所以Q 不变,故C 正确;根据平行板电容器的电容决定式C =εr S4πkd可知C 随d 的增大而减小,且满足反比例关系,即C -d 图像为双曲线的一支,故B 错误;两极板间电场强度为E =U d =Q Cd =4πkQεr S ,因为Q 和S 均不变,所以E 不变,故D 正确;根据U =Ed 可知U 随d 的增大而增大,成正比关系,故A 正确. 考向3 电容器的综合分析例5 (2023·广东深圳市模拟)M 、N 两金属板竖直放置,使其带电,悬挂在其中的带电小球P 如图偏离竖直方向.下列哪一项措施会使OP 悬线与竖直方向的夹角增大(P 球不与金属极板接触).( )A .增大M 、N 两极板间的电势差B .减小M 、N 两极板的带电荷量C .保持板间距不变,将M 、N 板一起向右平移D .保持极板带电荷量不变,将N 板向右平移 答案 A解析 使OP 悬线与竖直方向的夹角增大,即增大小球所受的电场力.增大M 、N 两极板间的电势差,根据E =Ud ,d 不变,可知电场强度将变大,根据F =Eq 可知电场力将增大,A正确;减小M 、N 两极板的带电荷量,根据U =QC ,C 不变,可知电势差减小,则电场强度减小,小球所受电场力将减小,B 错误;保持板间距不变,将M 、N 一起向右平移,电势差不变,OP 悬线与竖直方向的夹角不变,C 错误;根据C =εr S 4πkd =Q U ,可得电场强度E =U d =4πkQεr S,保持极板带电荷量不变,将N 板向右平移,可知E 不变,所以电场力不变,D 错误.考点三 带电粒子(带电体)在电场中的直线运动考向1 带电粒子在电场中的直线运动1.对带电粒子进行受力分析时应注意的问题(1)要掌握电场力的特点.电场力的大小和方向不仅跟电场强度的大小和方向有关,还跟带电粒子的电性和电荷量有关. (2)是否考虑重力依据情况而定.基本粒子:如电子、质子、α粒子、离子等除有特殊说明或明确的暗示外,一般不考虑重力(但不能忽略质量).带电颗粒:如液滴、油滴、尘埃、小球等,除有特殊说明或明确的暗示外,一般都不能忽略重力.2.做直线运动的条件(1)粒子所受合外力F 合=0,粒子静止或做匀速直线运动.(2)粒子所受合外力F 合≠0且与初速度共线,带电粒子将做加速直线运动或减速直线运动. 3.用动力学观点分析 a =qE m ,E =Ud ,v 2-v 02=2ad .4.用功能观点分析匀强电场中:W =Eqd =qU =12m v 2-12m v 02非匀强电场中:W =qU =E k2-E k1例6 (2023·广东省华师附中、省实、广雅、深中四校联考)电子枪是示波器构造的一部分,如图是电子枪的示意图.A 是电阻丝,加热后电子可以从电阻丝中逃逸出来,U 1是加在电阻丝两端的电压.B 是金属板,在A 、B 之间加电压U 2,逃逸出来的电子经A 、B 间电场加速后从金属板中间的小孔射出.电子从电阻丝出来时的速度近似为零,U 2远远大于U 1,电阻丝与板间的距离为d ,电子电荷量为e 、质量为m ,不计电子间的相互作用及重力,以下选项正确的是( )A .金属板的电势低于电阻丝的电势B .电阻丝与金属板间的电场强度大小为E =U 2dC .电子从小孔射出时的速度大小为v =2eU 1m D .电子从小孔射出时的速度大小为v =2eU 2m答案 D解析 A 、B 间电场使电子加速,电子要受到向右的电场力,所以金属板电势要高于电阻丝的电势,故A 错误;电阻丝与金属板间的电场并不是匀强电场,所以不能用E =Ud 来计算电场强度,故B 错误;电子从电阻丝出来时的速度近似为零,经A 、B 间电场加速后从金属板中间的小孔射出,初、末位置电势差为U 2,根据动能定理有e ·U 2=12m v 2,得v =2eU 2m,故C 错误,D 正确.考向2 带电体在电场力和重力作用下的直线运动例7 如图,长度为L 的轻质绝缘细杆两端连接两个质量均为m 的绝缘带电小球A 和B ,两小球均可看作质点,带电荷量为q A =+6q 、q B =-2q .将小球从图示位置由静止释放,下落一段时间后B 进入位于下方的匀强电场区域.匀强电场方向竖直向上,场强E =mgq,重力加速度为g .求:(1)小球A 刚进入电场时的速度大小;(2)要使小球B 第一次下落时不穿出电场下边界,电场区域的最小高度H .答案 (1)5gL (2)3.5L解析 (1)设小球A 刚进入电场时的速度大小为v 0,由动能定理可得 2mg (L +L 2)+|q B |EL =12×2m v 02-0解得v 0=5gL (2)由动能定理可得2mg (H +L2)+|q B |EH -q A E (H -L )=0-0解得H =3.5L .考向3 带电粒子在交变电场中的直线运动1.常见的交变电场常见的产生交变电场的电压波形有方形波、锯齿波、正弦波等. 2.常见的题目类型 (1)粒子做单向直线运动. (2)粒子做往返运动. 3.解题技巧(1)按周期性分段研究.(2)将⎭⎪⎬⎪⎫φ-t 图像U -t 图像E -t 图像――→转换a -t 图像――→转化v -t 图像. 例8 如图所示,在两平行金属板中央有一个静止的电子(不计重力),当两板间的电压分别如图中甲、乙、丙、丁所示时,电子在板间运动(假设不与板相碰),下列说法正确的是( )A .电压如甲图所示时,在0~T 时间内,电子的电势能一直减少B .电压如乙图所示时,在0~T2时间内,电子的电势能先增加后减少C .电压如丙图所示时,电子在板间做往复运动D .电压如丁图所示时,电子在板间做往复运动 答案 D解析 若电压如题图甲时,在0~T 时间内,电场力先向左后向右,则电子先向左做匀加速直线运动,后做匀减速直线运动,即电场力先做正功后做负功,电势能先减少后增加,故A 错误;电压如题图乙时,在0~12T 时间内,电子向右先加速后减速,即电场力先做正功后做负功,电势能先减少后增加,故B 错误;电压如题图丙时,电子向左先做加速运动,过了12T后做减速运动,到T 时速度减为0,之后重复前面的运动,故电子一直朝同一方向运动,故C 错误;电压如题图丁时,电子先向左加速,到14T 后向左减速,12T 后向右加速,34T 后向右减速,T 时速度减为零,之后重复前面的运动,则电子做往复运动,故D 正确.例9 (多选)某电场的电场强度E 随时间t 变化规律的图像如图所示.当t =0时,在该电场中由静止释放一个带电粒子,设带电粒子只受电场力作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .0~3 s 内电场力对带电粒子的冲量为0C .2 s 末带电粒子回到原出发点D .0~2 s 内,电场力做的总功不为零 答案 BD解析 由牛顿第二定律可得带电粒子在第1 s 内的加速度大小为a 1=qE 1m ,第2 s 内加速度大小为a 2=qE 2m, 因E 2=2E 1,则a 2=2a 1,则带电粒子先匀加速运动1 s 再匀减速0.5 s 时速度为零,接下来的0.5 s 将反向匀加速,再反向匀减速,t =3 s 时速度为零,v -t 图像如图所示.由图可知,带电粒子在电场中做往复运动,故A 错误;由v -t 图像可知,t =3 s 时,v =0,根据动量定理可知,0~3 s 内电场力对带电粒子的冲量为0,故B 正确;由v -t 图像面积表示位移可知,t =2 s 时,带电粒子位移不为零,没有回到出发原点,故C 错误;由v -t 图像可知,t =2 s 时,v ≠0,根据动能定理可知,0~2 s 内电场力做的总功不为零,故D 正确.课时精练1.(多选)关于电容器的电容,下列说法中正确的是( )A .根据C =Q U可知,电容器的电容与其所带电荷量成正比,跟两极板间的电压成反比 B .对于确定的电容器,其所带电荷量与两板间的电压成正比C .无论电容器电压如何变化(小于击穿电压且不为零),它所带的电荷量与电压的比值都恒定不变D .电容器所带电荷量增加2倍,则电容增大2倍答案 BC解析 电容是电容器本身的性质,一个确定的电容器的电容是不变的,与所带的电荷量和两板间的电压无关,故A 、D 错误;根据Q =CU ,对于确定的电容器,其所带电荷量与两板间的电压成正比,故B 正确;根据电容的定义式C =Q U可知,电容器所带的电荷量与电压的比值是电容,故C 正确.2.心脏除颤器是目前临床上广泛使用的抢救设备之一,如图所示.心脏除颤器通过接触皮肤的电极板使电容器放电,实施电击治疗.已知某款心脏除颤器,在短于一分钟内使40 μF 电容器充电到4 000 V ,存储320 J 能量.抢救病人时,一部分能量在4 ms 的脉冲时间内通过电极板放电进入身体,此脉冲电流的平均功率为64 kW.下列说法正确的是( )A .电容器放电过程中电流恒定B .电容器充电至2 000 V 时,电容为20 μFC .电容器充电至4 000 V 时,电荷量为0.16 CD .一个脉冲时间内通过电极板放电进入人身体的能量是320 J答案 C解析 电容器放电过程中,电荷量减少,电压减小,电流减小,A 错误;电容不随电压、电荷量的变化而变化,即电容保持不变,B 错误;根据C =Q U,可得Q =CU =40×10-6×4 000 C =0.16 C ,C 正确;一个脉冲时间内通过电极板放电进入人身体的能量为E =P t =64×103×4×10-3 J =256 J ,D 错误.3.(2023·四川省成都七中高三检测)如图所示,将一平行板电容器和二极管串联接在直流电源上,二极管具有单向导电性,现将开关闭合等到电路稳定.下列说法正确的是( )A .若增大两极板间的距离,则电容器电容增大B .若增大两极板间的距离,则两极板间的电场强度减小C .若减小两极板间的距离,则两极板间的电压不变D .若减小两极板间的距离,则电容器的带电荷量Q 减小答案 C解析 根据C =εr S 4πkd 可知,若增大两极板间的距离d ,电容器电容减小,A 错误;由于C =Q U,E =U d ,联立可得E =4πkQ εr S,若增大两极板间的距离d ,电容器电容减小,由于二极管具有单向导电性,电容器带电荷量保持不变,从而电容器内部电场强度保持不变,B 错误;由C =εr S 4πkd可知,若减小两极板间的距离,电容器的电容增大,又由C =Q U可知,两极板电压降低,二极管正向导通,继续给电容器充电,最终电容器两极板间的电压仍等于电源电压,因此两极板间的电压保持不变,电容器的带电荷量Q 增大,C 正确,D 错误.4.(多选)(2023·广东茂名市模拟)把电容器、电流传感器、电阻、电源、单刀双掷开关按图甲所示连接.先使开关S 与1端相连,电源给电容器充电;然后把开关S 掷向2端,电容器放电.电流传感器中的电流i 随时间t 变化的关系如图乙所示.下列说法正确的是( )A .在t 1~t 2时间内,电容器两极板间电压逐渐增大B .在t 3~t 4时间内,电容器的电容逐渐减小C .曲线1与横轴所围面积等于曲线2与横轴所围面积D .S 接1端,只要时间足够长,电容器两极板间的电压就能大于电源电动势E答案 AC解析 在t 1~t 2时间内,即形成电流曲线1的过程中,开关S 与1端相连,电容器在充电,所带电荷量增大,电容不变,根据U =Q C知,两极板间电压逐渐增大,故A 正确;在t 3~t 4时间内,即形成电流曲线2的过程中,开关S 与2端相连,电容器在放电,在放电的过程中,电容器的电荷量减小,但电容反映电容器本身的特性,与电压和电荷量无关,保持不变,故B 错误;根据q =It ,可知I -t 图线与时间轴围成的面积表示电荷量.由于电容器充电和放电的电荷量相等,所以曲线1与横轴所围面积等于曲线2与横轴所围面积,故C 正确;S 接1端,电容器充电,最终两端电势差等于电源的电动势,故D 错误.5.静电火箭的工作过程简化图如图所示,离子源发射的离子经过加速区加速,进入中和区与该区域里面的电子中和,最后形成中性高速射流喷射而产生推力.根据题目信息可知( )A .M 板电势低于N 板电势B .进入中和区的离子速度与离子带电荷量无关C .增大加速区MN 极板间的距离,可以增大射流速度而获得更大的推力D .增大MN 极板间的电压,可以增大射流速度而获得更大的推力答案 D解析 由于加速后的离子在中和区与电子中和,所以被加速的离子带正电,则加速区的极板M 电势高,A 错误;由动能定理知qU =12m v 2,解得v =2qU m,所以进入中和区的离子速度与离子的比荷、加速电压的大小有关,加速电压越大离子速度越大,与极板间的距离无关,故D 正确,B 、C 错误.6.(多选)一质量为m 、电荷量为q 的带正电粒子(重力不计)以速度v 0逆着电场线方向射入有左边界的匀强电场,电场强度为E (如图所示),则( )A .粒子射入的最大深度为m v 02qEB .粒子射入的最大深度为m v 022qEC .粒子在电场中运动的最长时间为m v 0qED .粒子在电场中运动的最长时间为2m v 0qE答案 BD解析 粒子从射入到运动至速度为零,由动能定理得-Eqx max =0-12m v 02,最大深度x max =m v 022qE ,由v 0=at ,a =Eq m 可得t =m v 0Eq,由对称性可得粒子在电场中运动的最长时间为t max =2t =2m v 0Eq,故选B 、D. 7.(2023·广东深圳市外国语学校模拟)如图甲所示,两平行金属板A 、B 放在真空中,间距为d ,P 点在A 、B 板间,A 板接地,B 板的电势φ随时间t 变化情况如图乙所示,t =0时,在P 点由静止释放一质量为m 、电荷量为e 的电子,当t =2T 时,电子回到P 点.电子运动中没与极板相碰,不计重力,则( )A .φ1∶φ2=1∶2B .φ1∶φ2=1∶4C .在0~2T 时间内,当t =T 时电子的电势能最大D .在0~2T 时间内,电子的电势能减小了2e 2T 2φ12md 2答案 D解析 0~T 时间内平行板间的电场强度大小为E 1=φ1d ,电子的加速度大小a 1=eE 1m =eφ1md,电子向上做匀加速直线运动,经过时间T 的位移s 1=12a 1T 2,速度v 1=a 1T ,T ~2T 时间内平行板间电场强度E 2=φ2d ,加速度大小a 2=eφ2md,电子以v 1的速度向上做匀减速直线运动,速度变为0后开始向下做匀加速直线运动,位移s 2=v 1T -12a 2T 2,2T 时刻回到P 点,则s 1+s 2=0,联立解得φ2=3φ1,选项A 、B 错误;0~T 内电子做匀加速运动,电场力做正功,电子的动能增大,电势能减小,所以在T 时刻电子电势能不是最大,选项C 错误;电子在2T 时刻回到P 点,此时速度v 2=v 1-a 2T =-2eTφ1md (负号表示方向向下),电子的动能为E k =12m v 22=2e 2T 2φ12md 2,此过程动能增加了ΔE k =2e 2T 2φ12md 2,根据能量守恒定律可知,电势能的减小量等于动能的增加量,即电子的电势能减小了2e 2T 2φ12md 2,选项D 正确.8.如图所示,一质量为m 、电荷量为q 的小球在电场强度大小为E 、区域足够大的匀强电场中,以初速度v 0沿ON 在竖直面内做匀变速直线运动.ON 与水平面的夹角为30°,重力加速度为g ,且mg =qE ,则( )A .电场方向竖直向上B .小球运动的加速度大小为g 2C .小球上升的最大高度为v 024gD .若小球在初始位置的电势能为零,则小球电势能的最大值为12m v 02 答案 C解析 小球做匀变速直线运动,合力应与速度在同一直线上,即在ON 直线上,因mg =qE ,所以电场力qE 与重力关于ON 对称,根据数学知识可知,电场力qE 与水平方向的夹角应为30°,即电场方向不是竖直向上的,受力情况如图所示.合力沿ON方向向下,大小为mg,所以加速度大小为g,方向沿ON向下,A、B错误;小球做匀减速直线运动,由运动学公式可得最大位移为s=v022g,则小球上升的最大高度为h=s sin30°=v024g,C正确;若小球在初始位置的电势能为零,在减速运动至速度为零的过程中,小球克服电场力做功和克服重力做功是相等的,由能量守恒可知,小球的初动能一半转化为电势能,一半转化为重力势能,初动能为12m v02,则小球的最大电势能为14m v02,D错误.9.(多选)(2023·广东佛山市模拟)如图所示的直线加速器由沿轴线分布的金属圆筒(又称漂移管)A、B、C、D、E组成,相邻金属圆筒分别接在电源的两端.质子以初速度v0从O点沿轴线进入加速器,质子在金属圆筒内做匀速运动且时间均为T,在金属圆筒之间的狭缝被电场加速,加速时电压U大小相同.质子电荷量为e、质量为m,不计质子经过狭缝的时间,则()A.M、N所接电源的极性应周期性变化B.金属圆筒的长度应与质子进入圆筒时的速度成正比C.质子从圆筒E射出时的速度大小为10eUm+v02D.圆筒E的长度为8eUm+v02T答案AB解析因由直线加速器加速质子,其运动方向不变,由题图可知,A的右边缘为正极时,则在下一次加速时需B右边缘为正极,所以MN所接电源的极性应周期性变化,A正确;因质子在金属圆筒内做匀速运动且时间均为T,由L=v T可知,金属圆筒的长度应与质子进入圆筒时的速度成正比,B正确;质子以初速度v0从O点沿轴线进入加速器,质子经4次加速,由动能定理可得4eU=12m v E2-12m v02,解得质子从圆筒E射出时的速度大小为v E=8eUm+v02,C错误;质子在圆筒内做匀速运动,所以圆筒E的长度为L E=v E T=T 8eU m+v 02,D 错误. 10.如图甲所示,实验器材主要有电源、理想电压表V 、两个理想电流表A 1和A 2、被测电解电容器C 、滑动变阻器R 、两个开关S 1和S 2以及导线若干.实验主要步骤如下:①按图甲连接好电路.②断开开关S 2,闭合开关S 1,让电池组给电容器充电,当电容器充满电后,读出并记录电压表的示数U ,然后断开开关S 1.③断开开关S 1后,闭合开关S 2,每间隔5 s 读取并记录一次电流表A 2的电流值I 2,直到电流消失.④以放电电流I 2为纵坐标,放电时间t 为横坐标,在坐标纸上作出I 2-t 图像.(1)在电容器的充电过程中,电容器两极板上的电荷量逐渐____________(选填“增大”或“减小”),电流表A 1的示数逐渐____________(选填“增大”或“减小”).(2)由I 2-t 图像可知,充电结束时电容器储存的电荷量Q =________ C .(结果保留2位有效数字)(3)若步骤②中电压表的示数U =2.95 V ,则滑动变阻器接入电路部分的阻值R =________ Ω.(结果保留2位有效数字)(4)类比直线运动中由v -t 图像求位移的方法,当电容为C 的电容器两板间电压为U 时,电容器所储存的电能E p =________(请用带有U 、C 的表达式表示).答案 (1)增大 减小 (2)3.3×10-3 (3)9.8×103 (4)12CU 2 解析 (1)在电容器的充电过程中,电容器两极板上的电荷量逐渐增大;随着时间的推移充电电流越来越小,即电流表A 1的示数逐渐减小.(2)根据q =It 可得图像与横轴所围的面积表示电荷量,每一个小格表示电荷量为q =25×10-6×5 C =1.25×10-4 C ,可知电容器储存的电荷量为Q =26×1.25×10-4 C ≈3.3×10-3 C.(3)电压表的示数U =2.95 V ,根据图像可知放电最大电流为300 μA ,可知滑动变阻器接入电路部分的阻值为R =U I≈9.8×103 Ω.。
专题强化十六电学实验综合目标要求1.了解差值法、半偏法、等效法、电桥法等测电阻的方法.2.学会替换和改装电表进行实验.3.会利用电学实验知识探究创新实验方案.题型一测电阻的其他几种方法考向1差值法测电阻1.电流表差值法(如图所示)(1)基本原理:定值电阻R 0的电流I 0=I 2-I 1,电流表两端的电压U 1=(I 2-I 1)R 0.(2)可测物理量:①若R 0为已知量,可求得电流表的内阻r 1=(I 2-I 1)R 0I 1;②若r 1为已知量,可求得R 0=I 1r 1I 2-I 1.2.电压表差值法(如图所示)(1)基本原理:定值电阻R 0的电压U 0=U 2-U 1,流过电压表的电流I 1=U 2-U 1R 0.(2)可测物理量:①若R 0为已知量,可求得电压表的内阻r 1=U 1U 2-U 1R 0;②若r 1为已知量,可求得R 0=U 2-U 1U 1r 1.例1(2023·广东深圳市光明区模拟)实验小组测量定值电阻R x 的阻值,实验室提供了如下实验器材:A .电源E (电动势为9V ,内阻不计)B .电流表A 1(量程为300mA ,内阻r 1为10Ω)C .电流表A 2(量程为200mA ,内阻r 2为15Ω)D .定值电阻R 0(阻值为15Ω)E .滑动变阻器R 1(最大阻值为10Ω)F .滑动变阻器R 2(最大阻值为1kΩ)G .开关及导线若干为尽可能准确测量R x 的阻值,实验小组设计了如图所示的电路.(1)滑动变阻器应选择________(填“E ”或“F ”).正确连接实验电路后,闭合开关前,应将滑动变阻器滑片调至________(选填“最左端”或“最右端”);(2)闭合开关S ,调节滑动变阻器滑片的位置,使电流表A 1满偏,若此时电流表A 2的示数为150mA ,则电阻R x 两端的电压为________V ,R x 的阻值为________Ω;(3)多次测量取平均值,可减小________(选填“偶然误差”或“系统误差”).答案(1)E最左端(2)4.530(3)偶然误差解析(1)滑动变阻器采用分压式接法,所以选用阻值较小的E.为保证电路的安全性,开始时应使滑动变阻器分压阻值最小,所以应调至最左端.(2)电阻R x 两端的电压等于电流表A 2与R 0两端的电压,则U =I 2(r 2+R 0)=0.15×(15+15)V =4.5V流过R x 的电流为I =I 1-I 2=0.3A -0.15A =0.15A 由欧姆定律可得R x =U I =4.50.15Ω=30Ω(3)多次测量取平均值,可减小偶然误差.例2(2023·广东惠州市模拟)实验小组用如图甲所示的电路来测量阻值约为30Ω的电阻R x的阻值,图中R 0为标准电阻,阻值为R 0=5.4Ω;V 1、V 2为理想电压表,S 为开关,R 为滑动变阻器,E 为电源,采用如下步骤完成实验.回答下列问题:(1)按照图甲所示的实验原理图在图丙中接好电路.丙(2)实验开始之前,将滑动变阻器的滑片置于________(填“最左端”“最右端”或“中间”).闭合开关S ,改变滑片的位置,记下V 1、V 2的示数分别为U 1、U 2,则待测电阻的表达式为R x =________(用U 1、U 2、R 0表示).(3)为了减小偶然误差,改变滑片的位置,多测几组U 1、U 2的值,做出的U 2-U 1图像如图乙所示,图像的斜率为k =________(用R 0、R x 表示),可得R x =________Ω.答案(1)见解析图(2)最右端U 2U 1-U 2R 0(3)R x R x +R 0(3)27解析(1)完整的电路连线图如图.(2)为了电路安全,防止电流过大,闭合开关前,将滑动变阻器的滑片置于最右端.由欧姆定律可得U 1-U 2R 0=U 2R x 整理可得待测电阻的表达式为R x =U 2U 1-U 2R 0(3)由U 1-U 2R 0=U 2R x 整理可得U 2=R xR x +R 0U 1则U 2-U 1图像的斜率k =R x R x +R 0由题图乙可知k =R x R x +R 0=2.53.0又R 0=5.4Ω解得R x =27Ω.考向2半偏法测电表内阻1.电流表半偏法(电路图如图所示)(1)实验步骤①先断开S 2,再闭合S 1,将R 1由最大阻值逐渐调小,使电流表读数等于其量程I m ;②保持R 1不变,闭合S 2,将电阻箱R 2由最大阻值逐渐调小,当电流表读数等于12I m 时记录下R 2的值,则R A =R 2.(2)实验原理当闭合S 2时,因为R 1≫R A ,故总电流变化极小,认为不变仍为I m ,电流表读数为I m2,则R 2中电流为Im 2,所以R A =R 2.(3)误差分析①测量值偏小:R A 测=R 2<R A 真.②原因分析:当闭合S 2时,总电阻减小,总电流增大,大于原电流表的满偏电流,而此时电流表半偏,所以流经R 2的电流比电流表所在支路的电流大,R 2的电阻比电流表的电阻小,而我们把R 2的读数当成电流表的内阻,故测得的电流表的内阻偏小.③减小误差的方法:选电动势较大的电源E ,选阻值非常大的滑动变阻器R 1,满足R 1≫R A .2.电压表半偏法(电路图如图所示)(1)实验步骤①将R 2的阻值调为零,闭合S ,调节R 1的滑动触头,使电压表读数等于其量程U m ;②保持R 1的滑动触头不动,调节R 2,当电压表读数等于12U m 时记录下R 2的值,则R V =R 2.(2)实验原理:R V ≫R 1,R 2接入电路时可认为电压表和R 2两端的总电压不变,仍为U m ,当电压表示数调为U m 2时,R 2两端电压也为Um 2,则二者电阻相等,即R V =R 2.(3)误差分析①测量值偏大:R V 测=R 2>R V 真.②原因分析:当R 2的阻值由零逐渐增大时,R 2与电压表两端的总电压也将逐渐增大,因此电压表读数等于12U m 时,R 2两端的电压将大于12U m ,使R 2>R V ,从而造成R V 的测量值偏大.显然电压表半偏法适用于测量内阻较大的电压表的电阻.③减小误差的方法:选电动势较大的电源E,选阻值较小的滑动变阻器R1,满足R1≪R V.例3甲同学要把一个最大量程为200μA的直流电流计G,改装成量程是0~4V的直流电压表.(1)甲同学按如图所示电路,用半偏法测定电流计G的内电阻r g,其中电阻R0约为1kΩ.为使r g的测量值尽量准确,在以下器材中,电源E应选用________,电阻器R1应选用_____,电阻器R2应选用_________(选填器材前的字母).A.电源(电动势1.5V)B.电源(电动势6V)C.电阻箱(0~999.9Ω)D.滑动变阻器(0~500Ω)E.电位器(一种可变电阻,与滑动变阻器相当)(0~5.1kΩ)F.电位器(0~51kΩ)(2)该同学在开关断开情况下,检查电路连接无误后,将R2的阻值调至最大.后续的实验操作步骤依次是:________,________,________,________,最后记录R1的阻值并整理好器材.(请按合理的实验顺序,选填下列步骤前的字母)A.闭合S1B.闭合S2C.调节R2的阻值,使电流计指针偏转到满刻度D.调节R2的阻值,使电流计指针偏转到满刻度的一半E.调节R1的阻值,使电流计指针偏转到满刻度的一半F.调节R1的阻值,使电流计指针偏转到满刻度(3)如果所得的R1的阻值为300.0Ω,则图中被测电流计G的内阻r g的测量值为________Ω,该测量值________实际值(选填“略大于”“略小于”或“等于”).(4)给电流计G________联(选填“串”或“并”)一个阻值为________kΩ的电阻,就可以将该电流计G改装为量程4V的电压表.答案(1)B C F(2)B C A E(3)300略小于(4)串19.7解析(1)半偏法测量表头内阻时,首先选择滑动变阻器(必须大于电路所需的最小电阻),根据电路的电压为电动势,电路的最大电流为表头的满偏电流,则最小电阻为60.2×10-3Ω=3.0×104Ω=30kΩ或 1.50.2×10-3Ω=7.5×103Ω=7.5kΩ,考虑到保护电阻1kΩ,则可知调节滑动变阻器使表头满偏时滑动变阻器的阻值分别接近29kΩ或6.5kΩ,电路图中R2是滑动变阻器,不能选D和E,只能选F.表头满偏时滑动变阻器的阻值越大,实验的误差越小,所以电源选择电动势为6V的B,而且滑动变阻器F的阻值也满足调节所需,而R1是用来测量表头内阻的电阻箱,只能选C.(2)实验步骤:第一步闭合S2;第二步调节R2阻值,使电流计满偏;第三步闭合S1;第四步调节R1阻值,使电流计半偏;第五步读出R1阻值即为待测表头的内阻,故后续的实验操作步骤依次为BCAE.(3)R1的示数为待测表头的内阻是300.0Ω,闭合S1后,电路的总电阻减小,当表头半偏时干路上的电流就大于表头的满偏电流,流过电阻箱的电流就大于表头的满偏电流,所以电阻箱的阻值略小于表头的内阻.(4)给表头串联一个电阻可以改装为电压表,改装后的电压表的内阻为R V=U mI g=40.2×10-3Ω=2.0×104Ω=20kΩ,则串联电阻的大小为20kΩ-300Ω=19.7kΩ.例4某同学利用图甲所示电路测量量程为2.5V的电压表的内阻(内阻为数千欧姆),可供选择的器材有:电阻箱R(最大阻值99999.9Ω),滑动变阻器R1(最大阻值50Ω),滑动变阻器R2(最大阻值5kΩ),直流电源E(电动势3V),开关1个,导线若干.实验步骤如下:①按电路原理图甲连接线路;②将电阻箱阻值调节为0,将滑动变阻器的滑片移到与图中最左端所对应的位置,闭合开关S;③调节滑动变阻器,使电压表满偏;④保持滑动变阻器滑片的位置不变,调节电阻箱阻值,使电压表的示数为2.00V,记下电阻箱的阻值.回答下列问题:(1)实验中应选择滑动变阻器________(填“R1”或“R2”).(2)根据图甲所示电路将图乙中实物图连线.(3)实验步骤④中记录的电阻箱阻值为630.0Ω,若认为调节电阻箱时滑动变阻器上的分压不变,计算可得电压表的内阻为________Ω.(4)如果此电压表是由一个表头和电阻串联构成的,可推断该表头的满刻度电流为________(填正确答案标号).A .100μA B .250μA C .500μA D .1mA 答案(1)R 1(2)见解析图(3)2520(4)D解析(1)本实验为测电压表的内阻,实验中电压表示数变化不大,则接入电阻箱后电路的总电阻变化不大,故需要滑动变阻器的最大阻值较小,故选R 1可减小实验误差.(2)滑动变阻器为分压式接法,实物图连线如图所示.(3)电压表和电阻箱串联,两端电压分别为2.00V 和0.50V ,则R V =4R =2520Ω.(4)表头的满偏电流I g =U R V =2.52520A ≈1mA ,故选项D 正确.考向3等效替代法测电阻如图所示,先让待测电阻串联后接到电动势恒定的电源上,调节R 2,使电表指针指在适当位置读出电表示数;然后将电阻箱串联后接到同一电源上,保持R 2阻值不变,调节电阻箱的阻值,使电表的读数仍为原来记录的读数,则电阻箱的读数即等于待测电阻的阻值.例5如图所示的实验电路可以用来测量电阻,可供选用的实验器材如下:A .待测电阻R x (阻值约为55Ω)B .定值电阻R 0(阻值为16Ω)C .电压表V 1(0~3V ,内阻很大,可看成理想电压表)D .电压表V 2(0~15V ,内阻很大,可看成理想电压表)E .滑动变阻器R 1(5Ω,2A)F .滑动变阻器R 2(50Ω,2A)G .蓄电池(电动势4.0V ,内阻忽略不计)H .单刀双掷开关、导线等(1)要完成本实验且较准确进行测量,电压表应该选用________,滑动变阻器应该选用________.(填器材前面的序号)(2)实验步骤如下:①按照电路图连接实验器材,单刀双掷开关空置,把滑动变阻器触头滑到最左端.②将单刀双掷开关掷于“1”,调节滑动变阻器触头,使得电压表读数为2.8V③将单刀双掷开关掷于“2”,________(填“向左滑动”“向右滑动”或“不再滑动”)滑动变阻器触头,观察并记录电压表读数为1.6V.(3)根据实验数据,被测电阻的测量值R x =________Ω.(4)由于蓄电池内阻r 的存在,R x 测量值将________真实值(填“大于”“小于”或“等于”).答案(1)C F(2)不再滑动(3)56(4)等于解析(1)由于电动势为4.0V,15V 量程的电压表量程太大,因此选用量程为3V 的电压表;最大阻值为5Ω的滑动变阻器会使得被测电阻两端的电压超过3V 的电压表量程,因此不能选用,只能选用最大阻值为50Ω的滑动变阻器.(2)根据实验原理,滑动变阻器的阻值R 是不能改变的,否则就不能解出R x 的值.(3)根据闭合电路的欧姆定律,单刀双掷开关掷于“1”的位置时U x R x =E -U x R,即R R x =37单刀双掷开关掷于“2”的位置时U 0R 0=E -U 0R即R 0R =23,联立解得R x =56Ω(4)蓄电池的内电阻r 与滑动变阻器电阻可当作一个整体,则r 的存在不影响R x 的值.考向4电桥法测电阻(1)操作:如图甲所示,实验中调节电阻箱R 3,使灵敏电流计G 的示数为0.(2)原理:当I G =0时,有U AB =0,则U R 1=U R 3,U R 2=U Rx ;电路可以等效为如图乙所示.根据欧姆定律有U R 1R 1=U R 2R 2,U R 1R 3=U R 2R x ,由以上两式解得R 1R x =R 2R 3或R 1R 2=R 3R x,这就是电桥平衡的条件,由该平衡条件可求出被测电阻R x 的阻值.例6某同学利用如图(a)所示的电路测量一微安表(量程为100μA ,内阻大约为2500Ω)的内阻.可使用的器材有:两个滑动变阻器R 1、R 2(其中一个阻值为20Ω,另一个阻值为2000Ω);电阻箱R z (最大阻值为99999.9Ω);电源E (电动势约为1.5V);开关S 1和S 2.C 、D 分别为两个滑动变阻器的滑片.(1)按原理图(a)将图(b)中的实物连线.(2)完成下列填空:①R 1的阻值为________Ω(填“20”或“2000”).②为了保护微安表,开始时将R 1的滑片C 滑到接近图(a)中滑动变阻器的________端(填“左”或“右”)对应的位置;将R 2的滑片D 置于中间位置附近.③将电阻箱R z 的阻值置于2500.0Ω,接通S 1.将R 1的滑片置于适当位置,再反复调节R 2的滑片D 的位置,最终使得接通S 2前后,微安表的示数保持不变,这说明S 2接通前B 与D 所在位置的电势________(填“相等”或“不相等”).④将电阻箱R z 和微安表位置对调,其他条件保持不变,发现将R z 的阻值置于2601.0Ω时,在接通S 2前后,微安表的示数也保持不变.待测微安表的内阻为______Ω(结果保留到个位).(3)写出一条提高测量微安表内阻精度的建议:_______________________________________.答案(1)见解析图(2)①20②左③相等④2550(3)调节R 1上的分压,尽可能使微安表接近满量程解析(1)实物连线如图所示:(2)①滑动变阻器R 1采用分压式接法,为了方便调节要选择阻值较小的滑动变阻器,故R 1的阻值为20Ω;②为了保护微安表,开始时将R 1的滑片C 滑到滑动变阻器的左端对应的位置;③将电阻箱R z 的阻值置于2500.0Ω,接通S 1;将R 1的滑片置于适当位置,再反复调节R 2的滑片D 的位置;最终使得接通S 2前后,微安表的示数保持不变,这说明S 2接通后在BD 中无电流流过,可知B 与D 所在位置的电势相等;④设滑片D 两侧电阻分别为R 21和R 22,由B 与D 所在位置的电势相等可知,R z1R 21=RμA R 22;同理,当R z 和微安表对调时,仍有R μA R 21=Rz2R 22;联立两式解得,R μA =R z1R z2=2500.0×2601.0Ω=2550Ω(3)为了提高测量精度,应调节R 1上的分压,尽可能使微安表接近满量程.题型二定值电阻在电学实验中的应用定值电阻在电路中的主要作用(1)保护作用:保护电表,保护电源.(2)测量作用:已知电压的定值电阻相当于电流表,已知电流的定值电阻相当于电压表,主要有如图所示两种情况:图甲中流过电压表V 2的电流:I 2=U 1-U 2R;图乙中电流表A 2两端的电压U 2=(I 1-I 2)R ;(3)扩大作用:测量电路中用来扩大电表量程;当待测电阻过小时,可串联定值电阻用来扩大待测量.例7某兴趣小组要精确测量一只电流表G(量程为2mA 、内阻约为100Ω)的内阻.实验室中可供选择的器材有:电流表A 1:量程为6mA ,内阻约为200Ω;电流表A 2:量程为0.6A ,内阻约为0.1Ω;定值电阻R 1:阻值为10Ω;定值电阻R 2:阻值为60Ω;滑动变阻器R 3:最大电阻20Ω,额定电流1.5A ;直流电源:电动势1.5V ,内阻0.5Ω;开关,导线若干.(1)为了精确测量电流表G 的内阻,应选择的电流表为________,定值电阻为________;(均填写器材的符号)(2)在虚线框中画出实验电路图;(3)按照电路进行实验,测得电流表A 的示数为I 1,电流表G 的示数为I 2,则电流表G 的内阻的表达式为r g =________.答案(1)A 1R 2(2)见解析图(3)(I 1-I 2)R 2I 2解析(1)电流表G 的量程为2mA ,电流表应选择量程与其最接近的A 1.由于实验中未提供电压表,则需要在G 两端并联定值电阻从而间接获取电压信息,当G 满偏时,为了使A 1不超过量程,通过定值电阻的电流需满足I ≤4mA则定值电阻的阻值需满足R =r g I g I≥50Ω所以定值电阻应选择R 2.(2)由于电流表A 1的内阻约200Ω,且G 和R 2的并联等效电阻约为37.5Ω,二者之和相对滑动变阻器的最大阻值而言较大,所以为了便于控制,滑动变阻器应采用分压式接法,如图所示.(3)根据欧姆定律可得r g=(I1-I2)R2.I2课时精练1.为了测量一微安表头A的内阻,某同学设计了如图所示的电路.图中A0是标准微安表,R0和R N分别是滑动变阻器和电阻箱,S和S1分别是单刀双掷开关和单刀单掷开关,E是电池.完成下列实验步骤中的填空:(1)将S拨向接点1,接通S1,调节________,使待测表头指针偏转到适当位置,记下此时________的读数I;(2)然后将S拨向接点2,调节________,使__________,记下此时R N的读数;(3)多次重复上述过程,计算R N读数的________,此即为待测微安表头内阻的测量值.答案(1)R0A0(2)R N A0的读数仍为I(3)平均值2.要测量电压表V1的内阻R V1,已知其最大量程为3V,内阻约3kΩ.实验室提供的器材有:电流表A,量程0~0.6A,内阻约为0.1Ω电压表V2,量程0~5V,内阻约为5kΩ定值电阻R1,阻值为20Ω定值电阻R2,阻值为2kΩ滑动变阻器R3,最大阻值100Ω,额定电流1.5A电源E,电动势6V,内阻约为0.5Ω开关S一个,导线若干.(1)某同学设想按图甲所示电路进行测量,读出电压表V 1和电流表A 的示数后,用欧姆定律计算出R V1.该方案实际上__________(填“可行”或“不可行”),最主要的原因是_________.(2)另一同学按如图乙所示的实物电路来测量电压表V 1的内阻R V1.①图中R 0应选__________.(选填“R 1”或“R 2”)②在虚线方框内画出该实验电路图.③接通电路后,调整滑动变阻器的滑动触头在适当的位置,此时电压表V 1的读数为U 1,电压表V 2的读数为U 2,定值电阻的阻值为R 0,则电压表V 1的内阻R V1的表达式为R V1=________.答案(1)不可行电流表量程太大(2)①R 2②见解析图③U 1U 2-U 1R 0解析(1)该方案不可行,因为电流表量程太大,结合电路图与电源电动势及电压表内阻可知流经电流表的电流值太小,从而导致误差太大;(2)①因V 2的最大量程为5V ,V 1的最大量程为3V ,则定值电阻的阻值应该与V 1的内阻相当,故选R 2;②结合实物图,画出电路图如图所示;③由电路可知R V1=U 1U 2-U 1R 0=U 1U 2-U 1R 0.3.(2023·广东珠海市模拟)某同学利用图甲所示电路测量一表头的电阻.供选用的器材如下:A.待测表头G1(内阻r1约为300Ω,量程为5.0mA);B.灵敏电流表G2(内阻r2=300Ω,量程为1.0mA);C.定值电阻R(R=1200Ω);D.滑动变阻器R1(最大阻值为10Ω);E.滑动变阻器R2(最大阻值为1000Ω);F.电源E(电动势E=1.5V,内阻不计);G.开关S,导线若干.(1)请根据图甲所示电路将图乙的实物图补充完整.(2)滑动变阻器应选________(填“R1”或“R2”).开关S闭合前,滑动变阻器的滑片P应滑动至________(填“a”或“b”)端.(3)该同学接入定值电阻R的主要目的是__________________.(4)实验中某次待测表头G1的示数如图丙所示,示数为________mA.(5)该同学多次移动滑片P,记录相应的G1、G2示数I1、I2;以I1为纵坐标I2为横坐标,作出相应图线.测得图线的斜率k=4.8,则待测表头内阻r1=________Ω.答案(1)见解析图(2)R1b(3)保护G2,使两表均能达到接近满偏(4)3.40(3.38、3.39均可)(5)312.5解析(1)实物连线,如图所示:(2)滑动变阻器采用分压接法,为方便实验操作,应选择最大阻值较小的滑动变阻器R1,为保护电路,闭合开关前滑片要置于分压电路分压为零的位置,即滑动变阻器要移到b端;(3)由于两电流表的内阻相当,但满偏电流相差很大,所以为了使指针偏角相差不大,要接入定值电阻R,其作用是保护G2,使两表均能接近满偏;(4)从题图丙中读出电流为3.40mA;(5)根据欧姆定律和并联电路电压相等的关系有:I 1r 1=I 2(r 2+R ),那么I 1=(r 2r 1+R r 1)I 2,结合题意图像的斜率k =r 2+R r 1,所以r 1=r 2+R k =300+12004.8Ω=312.5Ω.4.(2023·广东茂名市五校联盟联考)某同学在测两节干电池串联时的电动势和内阻时所用的器材如下:A .两节干电池:总电动势约为3V ,总内阻约为0.5Ω;B .电压表V :量程为3V ,内阻为几千欧;C .电流表A :量程为100mA ,内阻为4.5Ω;D .定值电阻R 0:阻值为0.5Ω;E .滑动变阻器R :0~20Ω;F .开关,导线若干.(1)该同学设计出如图甲所示的电路图,根据电路图用笔画线在图乙中将实物图连接完整.(2)实验中,该小组闭合开关,调节滑动变阻器,多次测量得出多组电压表的示数U 和电流表A 的示数I ,通过描点画出电源的U -I 图像如图丙所示,这两节干电池的总电动势E =________V(结果保留三位有效数字),总内阻r =________Ω(结果保留两位有效数字).(3)电流表的内阻对两节干电池总电动势的测量结果________(填“有”或“没有”)影响.答案(1)见解析图(2)2.95(2.94也可)0.50(0.49也可)(3)没有解析(1)实物图如图所示(2)改装后电流表的量程为1A ,内阻R A =0.45Ω,由闭合电路的欧姆定律得E =U +(I +Ir A R 0)(R A +r )则有U =E -(I +Ir A R 0)(R A +r )=E -I (1+r A R 0)(R A +r )故U -I 图像与纵轴的交点为两节干电池的总电动势E =2.95VU -I 图像斜率的绝对值等于10(R A +r ),故(R A +r )=0.95Ω解得r =0.50Ω.(3)当电流表的示数为0时,外电压等于两节干电池的总电动势,故电动势没有系统误差,所以电流表的内阻对两节干电池总电动势的测量结果没有影响.5.某小组用惠斯通电桥测量电阻R x 的阻值:方案一:如图(a)所示,先闭合开关S ,然后调整电阻箱R 2的阻值,使开关S 0闭合时,电流表G 的示数为零.已知定值电阻R 1、R 3的阻值,即可求得电阻R x 的阻值.(1)实验中对电流表G 的选择,下列说法正确的是________.A .电流表的零刻度在表盘左侧B .电流表的零刻度在表盘中央C .电流表的灵敏度高,无需准确读出电流的大小D .电流表的灵敏度高,且能准确读出电流的大小(2)若实验中未接入电流表G ,而其他电路均已连接完好,调节电阻箱R 2,当R 2R x >R 1R 3,则B 、D 两点的电势的关系满足φB ________(选填“>”“<”或“=”)φD .方案二:在方案一的基础上,用一段粗细均匀的电阻丝替代R 1、R 3,将电阻箱R 2换成定值电阻R ,如图(b)所示.(3)闭合开关S ,调整触头D 的位置,使按下触头D 时,电流表G 的示数为零.已知定值电阻R 的阻值,用刻度尺测量出l 1、l 2,则电阻R x =________.(用已知量和测得量表示)(4)为消除因电阻丝的粗细不均匀而带来的误差,将图(b)中的定值电阻R 换成电阻箱,并且按照(3)中操作时,电阻箱的读数记为R 4;然后将电阻箱与R x 交换位置,保持触头D 的位置不变,调节电阻箱,重新使电流表G 的示数为零,此时电阻箱的读数记为R 5,则电阻R x =________.(用电阻箱的读数表示)答案(1)BC (2)<(3)l 2l 1R (4)R 4R 5解析(1)电流表G 零刻度线在中央时,可以判断电流的流向,判断B 和D 两点电势的高低,所以要求电流表G 的零刻度在表盘中央,所以B 正确,A 错误;根据电流表中表针摆动的方向便可判断B 和D 两点电势的高低,进而进行调节,无需准确读出电流的大小,所以C 正确,D 错误.(2)当没有接电流表G 时,R 2与R x 串联,R 1与R 3串联,然后R 2、R x 和R 1、R 3再并联,则I 1R 2+I 1R x =U AB +U BC =U AC ,I 2R 1+I 2R 3=U AD +U DC =U AC ,整理可得R 2R x =U AB U BC =U AC U BC -1,R 1R 3=U ADU DC=U AC U DC -1.所以,当R 2R x >R 1R 3时,U BC <U DC ,即φB <φD .(3)闭合开关S 后,调整触头D 的位置,使按下触头D 时,电流表G 示数为零,说明φB =φD ,则U AB =U AD ,U BC =U DC ,同时R 与R x 电流相同,均匀电阻丝电流相同,设电阻丝单位长度的电阻为R 0,则U AB R =U BC R x ,U AD R 0l 1=U DC R 0l 2,整理得R R x =l 1l 2,得R x =l 2l 1R .(4)l 1和l 2的电阻记为R 0l 1和R 0l 2,则R 4R x =R 0l 1R 0l 2,R x R 5=R 0l 1R 0l 2,联立得R x =R 4R 5.。
第2讲 静电场中能的性质目标要求 1.知道静电场中的电荷具有电势能,理解电势能、电势的含义,掌握电场力做功与电势能变化的关系.2.掌握匀强电场中电势差及其与电场强度的关系.3.会处理电场线、等势面与运动轨迹结合问题.考点一 描述电场能的性质的物理量1.电场力做功的特点电场力做功与路径无关,只与电荷量和电荷移动过程始、末位置间的电势差有关. 2.电势能(1)定义:电荷在电场中具有的势能,称为电势能.(2)说明:电势能具有相对性,通常把无限远处或大地表面的电势能规定为零. 3.电势(1)定义:电荷在电场中某一点的电势能与它的电荷量之比. (2)定义式:φ=E pq.(3)标矢性:电势是标量,有正、负之分,其正(负)表示该点电势比零电势高(低). (4)相对性:电势具有相对性,同一点的电势因选取零电势点的不同而不同. 4.电场力做功与电势能变化的关系(1)电场力做的功等于电荷电势能的减少量,即W AB =E p A -E p B .电场力对电荷做多少正功,电荷电势能就减少多少;电荷克服电场力做多少功,电荷电势能就增加多少.(2)电势能的大小:由W AB =E p A -E p B 可知,若令E p B =0,则E p A =W AB ,即一个电荷在电场中某点具有的电势能,数值上等于将其从该点移到零电势能位置过程中电场力所做的功.1.电场强度为零的点,电势一定为零.( × ) 2.电势有正负之分,但电势是标量.( √ )3.沿电场线的方向电场强度越来越小,电势逐渐降低.( × )1.求电场力做功的四种方法2.判断电势能变化的两种方法(1)根据电场力做功:电场力做正功,电势能减少;电场力做负功,电势能增加. (2)根据E p =qφ:正电荷在电势越高处电势能越大;负电荷在电势越高处电势能越小. 3.电势高低的四种判断方法(1)电场线法:沿电场线方向电势逐渐降低. (2)电势差与电势的关系:根据U AB =W ABq,将W AB 、q 的正负号代入,由U AB 的正负判断φA 、φB 的高低.(3)E p 与φ的关系:由φ=E pq 知正电荷在电势能大处电势较高,负电荷在电势能大处电势较低.(4)场源电荷的正负:取离场源电荷无限远处电势为零,正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低.空间中有多个点电荷时,某点的电势可以求代数和.考向1 电场力做功与电势能的关系例1 (多选)(2020·全国卷Ⅲ·21)如图,∠M 是锐角三角形PMN 最大的内角,电荷量为q (q >0)的点电荷固定在P 点.下列说法正确的是( )A .沿MN 边,从M 点到N 点,电场强度的大小逐渐增大B .沿MN 边,从M 点到N 点,电势先增大后减小C .正电荷在M 点的电势能比其在N 点的电势能大D .将正电荷从M 点移动到N 点,电场力所做的总功为负 答案 BC解析 该点电荷形成的电场过M 、N 两点的等势面如图所示.距P 越近,电场强度越大,沿MN 边,从M 点到N 点,与P 点的距离先变小后变大,电场强度先增大后减小,故A 错误;沿电场线方向电势降低,沿MN 边,从M 点到N 点,电势先增大后减小,故B 正确;由图可知,M 点电势高于N 点电势,根据E p =qφ知,正电荷在M 点的电势能大于在N 点的电势能,故C 正确;将正电荷从M 点移动到N 点,即从高电势移动到低电势,电场力所做的总功为正,故D 错误.考向2 电势能与电势的关系例2 (多选)(2023·广东深圳市调研)在圆锥体空间的顶点O 固定一正点电荷,底面圆周上有a 、b 、c 三点,O ′是底面圆心,在该点电荷所产生的电场中,下列判断正确的是( )A .a 、b 、c 三点的电场强度相同B .a 、b 、c 三点在同一等势面上C .带正电的检验电荷沿直线从a 至O ′过程中电场力增大D .带负电的检验电荷沿直线从a 至O ′过程中电势能增大 答案 BC解析 a 、b 、c 三点到O 点的距离相等,根据点电荷的电场强度公式E =k Qr 2可知,三点的电场强度大小相等,但方向不同,故A 错误;a 、b 、c 三点到O 点的距离相等,在同一等势面上,故B 正确;检验电荷沿直线从a 至O ′过程中,到O 点的距离逐渐减小,根据点电荷的电场强度公式可知电场强度大小逐渐增大,所以带正电的检验电荷沿直线从a 至O ′过程中电场力增大,故C 正确;沿直线从a 至O ′过程中,电势升高,根据负电荷在电势高的位置电势能小可知,带负电的检验电荷沿直线从a 至O ′过程中电势能减小,故D 错误. 考向3 标量求和法比较电势的高低例3 (2023·广东深圳市模拟)如图所示,在正方形ABCD 的三个顶点A 、B 、C 上分别固定着三个带电荷量相等的点电荷,其中A 处点电荷带负电,B 、C 处点电荷均带正电.E 、G 、F三点四等分AB边,M、P、N三点四等分BC边.下列说法正确的是()A.M、N两点处的电场强度相同B.P点电势高于G点电势C.负电荷在M点具有的电势能比在N点具有的电势能小D.负电荷在F点具有的电势能比在E点具有的电势能大答案 B解析根据对称性可知,B、C处点电荷的合电场在M、N两点处的电场强度大小相等,方向相反,同时因为A处点电荷到M、N两点距离不相等,在M、N两点处的电场强度也不同,故叠加后M、N两点处的电场强度不相同,A错误.对于正电荷来说,离正电荷越近,电势越高,而对于负电荷,离负电荷越远,电势越高.则对于B处点电荷,在P、G两点电势相等;对于C处点电荷,P点电势高于G点电势;对于A处点电荷,P点电势高于G点电势,故叠加之后,P点电势高于G点电势,B正确.根据对称性,B、C处点电荷在M、N两点处的电势相等;A处点电荷在N点电势大于M点电势,所以M点电势比N点电势小,负电荷在M点具有的电势能比在N点具有的电势能大,C错误.对于B、C两处正电荷来说,F 点电势大于E点电势;对于A处负电荷来说,F点电势大于E点电势,则叠加后,F点电势大于E点电势,故负电荷在F点具有的电势能比在E点具有的电势能小,D错误.考点二电势差与电场强度的关系1.电势差(1)定义:在电场中,两点之间电势的差值叫作电势差.(2)定义式:U AB=W AB q.2.电势差与电势的关系U AB=φA-φB,U AB=-U BA.3.匀强电场中电势差与电场强度的关系(1)U AB =Ed ,d 为A 、B 两点沿电场方向的距离. (2)沿电场方向电势降低得最快.1.电势差由电场本身的性质决定,与零电势点的选取无关.( √ ) 2.电势差U AB 与W AB 成正比,与q 成反比.( × )3.A 、B 两点的电势差与试探电荷无关,所以U AB =U BA .( × )1.由E =Ud可推出的两个重要推论推论1 匀强电场中的任一线段AB 的中点C 的电势φC =φA +φB2,如图甲所示.推论2 匀强电场中若两线段AB ∥CD ,且AB =CD ,则U AB =U CD (或φA -φB =φC -φD ),如图乙所示.2.E =Ud在非匀强电场中的三点妙用(1)判断电场强度大小:等差等势面越密,电场强度越大.(2)判断电势差的大小及电势的高低:距离相等的两点间的电势差,E 越大,U 越大,进而判断电势的高低.(3)利用φ-x 图像的斜率判断电场强度随位置变化的规律:k =ΔφΔx =Ud =E x ,斜率的绝对值表示电场强度的大小,正负表示电场强度的方向. 考向1 匀强电场中电场强度和电势差的关系例4 (2023·广东深圳市南山区模拟)如图所示,边长l =5 cm 的正方形abcd 区域处于匀强电场(图中未画出)中,其中ab 边恰与电场线平行,O 为abcd 的中心.将一电子自b 点移到O 的过程中,克服电场力做功3 eV .下列说法正确的是( )A.匀强电场的方向由a指向bB.a、b两点的电势差U ab=6 VC.匀强电场的电场强度大小为1.2×102 V/mD.电子在c点的电势能比a点的电势能大6 eV答案 C解析电子自b点移到O点的过程中,电场力做功-eU bO=-3 eV,由匀强电场特点U=Ed 有U bO=U Od,可得U bO=U Od=3 V,由于ab边恰与电场线平行,所以a、d在同一条等势线上,根据几何关系以及匀强电场中电势差与电场强度的关系可得U ab=U db=-2U bO=-6 V,说明b点电势高于a点电势,电场方向应该是由b指向a,故A、B错误;匀强电场的电场强度大小为E=U bal =65×10-2V/m=1.2×102 V/m,故C正确;c、b在同一条等势线上,有U ca=U ba=6 V,根据E p=qφ可知,ΔE p=qU ca=-6 eV,即电子在c点的电势能比a点的电势能小6 eV,故D错误.考向2等分法确定电场线及电势高低例5(多选)(2023·新疆乌鲁木齐市模拟)如图所示,以A、B、C、D为顶点的长方形处于一平行板电容器(未画出)形成的匀强电场中,长方形所在平面与两平行板垂直,AB的长度为8 cm,BC的长度为6 cm,D点距带正电荷的电容器极板的距离为20 cm.取无穷远处的电势为零,A、B、C三点的电势分别为9 V、25 V、16 V.则()A.D点电势为0B.D点电势为18 VC.两平行板间的电势差为50 VD.两平行板间的电势差为100 V答案AD解析在匀强电场中,平行且相等的两线段电势差相等,可得φB-φA=φC-φD,代入数据可得φD =0 ,故A 正确,B 错误;如图所示,将CD 分为8等分,则每一等分对应1 cm ,所以F 点的电势为9 V ,连接AF ,过D 点做AF 的垂线DG ,由几何关系可得DG 的长度为DG =AD ·DF AF ,解得DG =3.6 cm ,所以电场强度的大小为E =U DGDG,解得E =250 V/m ,又因为D 点的电势为0,且D 点距正极板的距离为20 cm ,由对称性可知,两极板间的距离为40 cm ,所以两极板间的电势差为U =Ed =100 V ,故D 正确,C 错误.等分法确定电场线及电势高低的解题思路考向3 非匀强电场中的电场强度和电势差例6 (2023·广东佛山市质检)雷电击中地面或高压输电线掉落到地面时,都会在以落地点为中心的一定区域内的地面上形成一个强电流场,如果有人站在这个区域内,双脚间会存在一定的电势差,叫作“跨步电压”.如图所示,一条电势远高于地面的高压直流输电线掉落在地面上的O 点,若O 点附近地质结构分布均匀,则在地面以O 为圆心的同心圆为一系列的等势线.图中O 、A 、B 、C 在同一直线上,BD 是过B 点圆的切线,AB =BC =BD ,电线落地时恰好有人单脚着地站在B 点,则以下说法正确的是( )A .图中A 、B 、C 三点中,C 点电势最高B.地面上电子由O向C定向移动C.为了安全,人应该沿BD方向迈大步快速脱离D.A、B、C、D四点间电势差大小关系为U AB>U BC>U BD答案 D解析电线掉落的O点电势最高,沿着电场线电势逐渐降低,故有φO>φA>φB>φD>φC,则C 点电势最低,故A错误;电子受电场力从低电势向高电势定向移动形成电流,则地面上电子由C向O定向移动,故B错误;为了安全,人应该单脚跳,就不会在人体形成电势差,不能迈步走动,故C错误;在电场中,AB=BC=BD,且随着半径的增大,电场强度逐渐变小,则AB段的电场强度大于BC段的电场强度,由U=Ed,有U AB>U BC,而φD>φC,则有U BC>U BD,故D正确.考点三电场线、等势面及运动轨迹问题1.等势面(1)定义:电场中电势相同的各点构成的面.(2)四个特点:①在同一等势面上移动电荷时电场力不做功.②电场线一定与等势面垂直,并且从电势高的等势面指向电势低的等势面.③等差等势面越密的地方电场强度越大,反之越小.④任意两个等势面都不相交.2.几种常见等势面的比较电场等势面(虚线)图样特点匀强电场垂直于电场线的一簇平面点电荷的电场以点电荷为球心的一簇球面等量异种点电荷的电场两电荷连线的中垂面为等势面等量同种正点电荷的电场在电荷连线上,中点电势最低;在中垂线上,中点电势最高1.等差等势线越密的地方,电场线越密,电场强度越大.(√)2.电场线与等势面互相垂直,电场线从电势高的等势面指向电势低的等势面.(√) 3.无论正粒子还是负粒子,在电场中某点所受电场力的方向都沿电场线在该点的切线方向,并且指向粒子运动轨迹的弯曲方向.(√)考向1对等势面的理解例7(多选)(2022·重庆卷·8)如图为两点电荷Q、Q′的电场等势面分布示意图,Q、Q′位于x轴上,相邻等势面的电势差为3 V.若x轴上的M点和N点位于0 V等势面上,P为某等势面上一点,则()A.N点的电场强度大小比M点的大B.Q为正电荷C.M点的电场方向沿x轴负方向D.P点与M点的电势差为12 V答案AD解析等差等势面的疏密程度体现电场强度的大小,由题图可知N点的等差等势面比M点更密,则N点的电场强度大小比M点的大,故A正确;沿着电场线电势逐渐降低,由题图可知电场线由N指向Q,则Q为负电荷,故B错误;沿着电场线电势逐渐降低,结合各等势面的电势高低关系可知M点的电场方向沿x轴正方向,故C错误;M点与N点电势均为0 V,P点与N点的等势面有四个间隔,而相邻等势面的电势差为3 V,则P点与M点的电势差为12 V,故D正确.考向2电场线、等势线和运动轨迹例8(多选)(2023·广东深圳市建文外国语学校模拟)两个位于纸面内的点电荷产生电场的等势面如图中实线所示,相邻等势面间的电势差相等.虚线MPN是一个电子在该电场中的运动轨迹,轨迹与某等势面相切于P点.下列说法正确的是()A.两点电荷可能是异种点电荷B.A点的电场强度比B点的大C.A点的电势高于B点的电势D.电子运动到P点时动能最小答案CD解析根据电荷间等势面的分布情况可知两点电荷是同种点电荷,又根据电子在该电场中的运动轨迹可判断电子一直受到斥力作用,故可知两点电荷为负电荷,故A错误;根据等势面的疏密程度可以判断A点的电场强度比B点的小,故B错误;因为两点电荷都是负电荷,电场线指向负电荷,故可知A点的电势高于B点的电势,故C正确;根据电子的运动轨迹和电场线的方向可知由M到P电场力做负功,由P到N电场力做正功;由M到P动能减小,由P到N动能增加,故电子运动到P点时动能最小,故D正确.例9如图所示,实线为方向未知的三条电场线,虚线1、2、3分别为三条等势线,三条等势线与其中一条电场线的交点依次为M、N、Q点,已知MN=NQ,电荷量相等的a、b两带电粒子从等势线2上的O点以相同的初速度飞出,仅在电场力作用下,两粒子的运动轨迹如图中虚线a′、b′所示,则()A.a粒子一定带正电,b粒子一定带负电B.MN两点电势差大小|U MN|等于NQ两点电势差大小|U NQ|C.a粒子的加速度逐渐增大,b粒子的加速度逐渐减小D.a粒子从出发到等势线3过程的动能变化量比b粒子从出发到等势线1过程的动能变化量小答案 D解析由题图可知,a粒子的轨迹方向向右弯曲,a粒子所受电场力方向向右,b粒子的轨迹向左弯曲,b粒子所受电场力方向向左,由于电场线方向未知,无法判断粒子的电性,故A 错误;由题可知,a所受电场力逐渐减小,加速度逐渐减小,b所受电场力逐渐增大,加速度增大,故C错误;已知MN=NQ,由于MN段电场强度大于NQ段电场强度,所以MN两点电势差大小|U MN|大于NQ两点电势差大小|U NQ|,故B错误;根据电场力做功公式W=Uq,|U MN|>|U NQ|,a粒子从等势线2到3电场力做的功小于b粒子从等势线2到1电场力做的功,所以a粒子到达等势线3的动能变化量比b粒子到达等势线1的动能变化量小,故D正确.带电粒子在电场中运动轨迹问题的分析方法1.判断速度方向:带电粒子运动轨迹上某点的切线方向为该点处的速度方向.选用轨迹和电场线(等势线)的交点更方便.2.判断电场力的方向:从轨迹的弯曲方向判断受力方向,从而分析电场线的方向或电荷的正负.若已知电场线和轨迹,所受电场力的方向与电场线(或电场线的切线)共线.若已知等势线和轨迹,所受电场力的方向与等势线垂直.3.判断电场力做功的正负及电势能的增减:若电场力方向与速度方向成锐角,则电场力做正功,电势能减少;若电场力方向与速度方向成钝角,则电场力做负功,电势能增加.课时精练1.关于静电场,下列说法中正确的是()A.将负电荷由电势低的地方移到电势高的地方,电势能一定增加B.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,电场力做的正功越多,电荷在该点的电势能越大C.在同一个等势面上的各点,电场强度的大小必然是相等的D.电势降低的方向就是电场强度的方向答案 B解析将负电荷由电势低的地方移到电势高的地方,电势能一定减少,选项A错误;无论是正电荷还是负电荷,从电场中某点移到无穷远处时,电场力做的正功越多,电荷在该点的电势能越大,选项B正确;在同一个等势面上的各点,电场强度的大小不一定相等,例如等量异种点电荷连线的中垂线上各点,选项C错误;沿电场强度的方向电势一定降低,但是电势降低的方向不一定是电场强度的方向,选项D错误.2.(2023·广东中山市高三检测)如图所示,雷雨天带有负电的乌云飘过一栋建筑物上空时,在避雷针周围形成电场,电场的等差等势面a、b、c、d分布情况如图所示,在等势面中有A、B、C三点.下列说法中正确的是()A.避雷针附近的电场是匀强电场B.A点的电场强度比B点小C.a、b、c、d等势面中a的电势最低D.有一带负电的雨点从乌云中下落,电场力做正功答案 D解析匀强电场的等势线应是一簇平行线,由题图可知避雷针附近的电场不是匀强电场,故A错误;等差等势面越密集电场强度越大,所以A点的电场强度比B点大,故B错误;乌云带负电,则电场线终止于乌云,根据沿电场线方向电势降低可知a、b、c、d等势面中a的电势最高,故C错误;有一带负电的雨点从乌云中下落,雨点所受电场力方向与速度方向夹角小于90°,电场力做正功,故D正确.3.如图所示,一带正电的粒子以一定的初速度进入某点电荷Q产生的电场中,沿图中弯曲的虚线轨迹先后经过电场中的a、b两点.其中a点的电场强度大小为E a,方向与ab连线成30°角,b点的电场强度大小为E b,方向与ab连线成60°角.粒子只受电场力的作用,下列说法中正确的是()A.点电荷Q带正电B.a点的电势高于b点电势C.从a到b,系统的电势能增加D.粒子在a点的加速度大于在b点的加速度答案 B解析带正电的粒子受力指向轨迹凹侧,则点电荷Q带负电,则A错误;点电荷Q恰好处于a、b两点的电场线的交点处,根据负点电荷等势面的分布特点,离负点电荷越远的点电势越高,由几何关系可知,a点离负点电荷较远,所以a点的电势高于b点电势,则B正确;从a到b,电场力对带正电粒子做正功,所以系统的电势能减小,则C错误;根据电场强度,a点的电场强度小于b点,则粒子在a点受到的电场力小于在b点受到的电场公式E=k Qr2力,所以粒子在a点的加速度小于在b点的加速度,则D错误.4.(2023·北京市模拟)一个带电粒子(不计重力)射入一点电荷的电场中,粒子运动的轨迹如图实线abc所示,图中虚线是同心圆弧,表示电场中的等势面,下列判断正确的是()A.粒子在a点的电势能一定大于在b点的电势能B.粒子在b点的速率一定大于在a点的速率C.粒子在a点和c点的动能相等D.粒子在b点所受的电场力小于在a点所受的电场力答案 C解析从等势面形状可知,该电场为点电荷的电场,b点距离点电荷更近,因此粒子在b点所受的电场力大于在a点所受的电场力,D错误;粒子运动轨迹为曲线,受力的方向指向凹侧,因此该粒子受到向外的斥力,从a到b的运动过程中,电场力做负功,电势能增加,动能减小,A、B错误;由于a、c处于同一等势面上,从a到c过程中,电场力做功为零,因此粒子在a点和c点的动能相等,C正确.5.(多选)(2021·全国甲卷·19)某电场的等势面如图所示,图中a、b、c、d、e为电场中的5个点,则()A.一正电荷从b点运动到e点,电场力做正功B.一电子从a点运动到d点,电场力做功为4 eVC.b点电场强度垂直于该点所在等势面,方向向右D.a、b、c、d四个点中,b点的电场强度大小最大答案BD解析由题图可知φb=φe,则正电荷从b点运动到e点,电场力不做功,A错误;由题图可知φa=3 V,φd=7 V,根据电场力做功与电势能的变化关系有W ad=E p a-E p d=(φa-φd)·(-e)=4 eV,B正确;沿电场线方向电势逐渐降低,则b点处的电场强度方向向左,C错误;等差等势面越密的地方电场强度越大,由题图可看出a、b、c、d四个点中,b处的等势面最密集,则b点处的电场强度大小最大,D正确.6.(2023·广东广州市铁一中学月考)如图为静电除尘机原理示意图,废气先经过一个机械过滤装置再进入静电除尘区,带负电的尘埃在电场力的作用下向集尘极迁移并沉积,以达到除尘目的.图中虚线为电场线(方向未标).不考虑尘埃在迁移过程中的相互作用和电荷量变化,不计尘埃的重力,则()A.电场线方向由放电极指向集尘极B.尘埃在迁移过程中电势能增大C.尘埃在迁移过程中做匀变速运动D.图中A点的电场强度大于B点的电场强度答案 D解析带负电的尘埃在电场力的作用下向集尘极迁移并沉积,则电场的方向由集尘极指向放电极,故A错误;带负电的尘埃在电场力的作用下向集尘极迁移并沉积,电场力做正功,则尘埃在迁移过程中电势能减小,故B错误;由题图可知,电场是非匀强电场,则尘埃受到的电场力在变化,则尘埃在迁移过程中做非匀变速运动,故C错误;根据电场线的疏密程度表示电场强度的大小可知,A点的电场强度大于B点的电场强度,故D正确.7.(2023·广东惠州市调研)如图,虚线为某静电场的等势面,且相邻两等势面间的电势差相等.一带正电的粒子由M点移动到N点的过程中,电场力做正功,则下列说法正确的是()A.M点的电势高于N点的电势B.M点的电场强度大于N点的电场强度C.带电粒子在M点的电势能小于在N点的电势能D.带电粒子的运动轨迹一定是椭圆答案 A解析根据W MN=qU MN>0,又q>0,得U MN=φM-φN>0,得φM>φN,A正确;根据等势面的疏密程度表示电场强度的大小,由题图知M点的电场强度小于N点的电场强度,B错误;根据W MN=E p M-E p N>0,得E p M>E p N,C错误;带电粒子的运动轨迹不一定是椭圆,D错误.8.(多选)(2023·广东广州市阶段测试)如图所示,两个等量异种电荷所在处和M、N两点是菱形的四个顶点,a、b、c、d是菱形四个边长的中点,O是两电荷连线的中点.下列说法正确的是()A.M点的电场强度比O点大B.a、b两处的电场强度和电势都相同C.a、c两处的电场强度一定相同D.将一负电荷从a移到O再移到c点,电场力在两段做的负功相同答案CD解析在两等量异种电荷连线的中垂线上,O点的电场强度最大,所以M点的电场强度比O 点小,故A错误;根据等量异种电荷周围电场的对称性可知,a、b两处的电场强度大小相等、方向不同,故B 错误;根据等量异种电荷周围电场的对称性可知,a 、c 两处的电场强度一定相同,故C 正确;如图所示,作出经过a 、b 两点的等势面与等量异种电荷连线交于A 点,作出经过c 、d 两点的等势面与等量异种电荷连线交于C 点,根据等量异种电荷周围电场的对称性可知,A 、O 两点间的电势差U AO 等于O 、C 两点间的电势差U OC ,即a 、O 两点间的电势差U aO 等于O 、c 两点间的电势差U Oc ,所以将一负电荷从a 移到O 再移到c 点,电场力在两段做的负功相同,故D 正确.9.(2023·黑龙江省高三月考)一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图所示,三点的电势分别为10 V 、17 V 、26 V .下列说法错误的是( )A .电场强度的大小为2.5 V/cmB .坐标原点处的电势为1 VC .电子在a 点的电势能比在b 点的低7 eVD .电子从b 点运动到c 点,电场力做功为9 eV答案 C解析 如图所示,在ac 连线上,确定一b ′点,电势为17 V ,将bb ′连线,即为等势线,那么垂直bb ′连线,则为电场线,再依据沿着电场线方向,电势降低,则电场线方向如图,因为此电场为匀强电场,则有E =U cb d ,依据几何关系,则有d =b ′c ·bc bb ′= 4.5×64.52+62 cm = 3.6 cm ,因此电场强度大小为E =26-173.6V/cm =2.5 V/cm ,故A 正确;根据φc -φa =φb -φO ,。
第2讲 光的干涉、衍射和偏振目标要求 1.知道什么是光的干涉、衍射和偏振.2.掌握双缝干涉中出现亮、暗条纹的条件. 3.知道发生明显衍射的条件.考点一 光的干涉现象光的干涉(1)定义:在两列光波叠加的区域,某些区域相互加强,出现亮条纹,某些区域相互减弱,出现暗条纹,且加强区域和减弱区域相互间隔的现象. (2)条件:两束光的频率相同、相位差恒定.(3)双缝干涉图样特点:单色光照射时,形成明暗相间的等间距的干涉条纹.1.光的颜色由光的频率决定.( √ ) 2.频率不同的两列光波不能发生干涉.( √ )3.在“双缝干涉”实验中,双缝的作用是使白光变成单色光.( × )4.在“双缝干涉”实验中,双缝的作用是用“分光”的方法使两列光的频率相同.( √ )1.双缝干涉(1)条纹间距:Δx =Ldλ,对同一双缝干涉装置,光的波长越长,干涉条纹的间距越大.(2)明暗条纹的判断方法:如图所示,相干光源S 1、S 2发出的光到屏上P ′点的路程差为Δr =r 2-r 1. 当Δr =nλ(n =0,1,2,…)时,光屏上P ′处出现明条纹. 当Δr =(2n +1)λ2(n =0,1,2,…)时,光屏上P ′处出现暗条纹.2.薄膜干涉(1)形成原因:如图所示,竖直的肥皂薄膜,由于重力的作用,形成上薄下厚的楔形.光照射到薄膜上时,从膜的前表面AA ′和后表面BB ′分别反射回来,形成两列频率相同的光波,并且叠加.(2)明暗条纹的判断方法:两个表面反射回来的两列光波的路程差Δr 等于薄膜厚度的2倍,光在薄膜中的波长为λ. 在P 1、P 2处,Δr =nλ(n =1,2,3,…),薄膜上出现明条纹. 在Q 处,Δr =(2n +1)λ2(n =0,1,2,3,…),薄膜上出现暗条纹.(3)应用:增透膜、检查平面的平整度.考向1 双缝干涉例1 在图示的双缝干涉实验中,光源S 到缝S 1、S 2距离相等,P 0为S 1、S 2连线的中垂线与光屏的交点.用波长为400 nm 的光实验时,光屏中央P 0处呈现中央亮条纹(记为第0条亮条纹),P 处呈现第3条亮条纹.当改用波长为600 nm 的光实验时,P 处将呈现( )A .第2条亮条纹B .第3条亮条纹C .第2条暗条纹D .第3条暗条纹答案 A解析 由公式Δx =L d λ可知PP 03=L d λ1,当改用波长为600 nm 的光实验时,则有PP 0n =Ld λ2,即n 3=λ1λ2=400600,解得n =2,即P 处将呈现第2条亮条纹,A 正确.考向2 薄膜干涉例2(多选)图甲是用光的干涉法来检查物体平面平整程度的装置,其中A为标准平板,B 为待检查的物体,C为入射光,图乙为观察到的干涉条纹,下列说法正确的是()A.入射光C应采用单色光B.图乙条纹是由A的下表面反射光和B的上表面反射光发生干涉形成的C.当A、B之间某处距离为入射光的半波长奇数倍时,对应条纹是暗条纹D.由图乙条纹可知,被检查表面上有洞状凹陷答案AB例3(2021·江苏卷·6)铁丝圈上附有肥皂膜,竖直放置时,肥皂膜上的彩色条纹上疏下密,由此推测肥皂膜前后两个面的侧视形状应当是()答案 C解析薄膜干涉为前后两个面反射回来的光发生干涉形成干涉条纹,当入射光为复色光时,出现彩色条纹.由于重力作用,肥皂膜前后表面的厚度从上到下逐渐增大,从而使干涉条纹上疏下密,由于表面张力的作用,使得肥皂膜向内凹陷,故C正确,A、B、D错误.考点二光的衍射和偏振现象1.光的衍射发生明显衍射现象的条件:只有当障碍物或狭缝的尺寸足够小的时候,衍射现象才会明显.2.光的偏振(1)自然光:包含着在垂直于传播方向上沿一切方向振动的光,而且沿着各个方向振动的光波的强度都相同.(2)偏振光:在垂直于光的传播方向的平面上,只沿着某个特定的方向振动的光.(3)偏振光的形成①让自然光通过偏振片形成偏振光.②让自然光在两种介质的界面发生反射和折射,反射光和折射光可以成为部分偏振光或完全偏振光.(4)偏振光的应用:加偏振滤光片的照相机镜头、液晶显示器、立体电影、消除车灯眩光等.(5)光的偏振现象说明光是一种横波.1.阳光下茂密的树林中,地面上的圆形亮斑是光的衍射形成的.(×)2.泊松亮斑是光的衍射形成的.(√)3.光遇到障碍物时都能产生衍射现象.(√)4.自然光是偏振光.(×)1.单缝衍射与双缝干涉的比较单缝衍射双缝干涉不同点条纹宽度条纹宽度不等,中央最宽条纹宽度相等条纹间距各相邻亮条纹间距不等各相邻亮(暗)条纹等间距亮度情况中央条纹最亮,两边变暗条纹清晰,亮度基本相同相同点干涉、衍射都是波特有的现象,都属于波的叠加;干涉、衍射都有明暗相间的条纹2.光的干涉和衍射的本质从本质上看,干涉条纹和衍射条纹的形成有相似的原理,光的干涉和衍射都属于光波的叠加,干涉是从单缝通过两列频率相同的光在屏上叠加形成的,衍射是由来自单缝上不同位置的光在屏上叠加形成的.考向1单缝衍射与双缝干涉的比较例4如图所示的4种明暗相间的条纹分别是红光、蓝光各自通过同一个双缝干涉仪器形成的干涉图样以及黄光、紫光各自通过同一个单缝形成的衍射图样(黑色部分表示亮条纹).在下面的4幅图中从左往右排列,亮条纹的颜色依次是()A.红黄蓝紫B.红紫蓝黄C.蓝紫红黄D.蓝黄红紫答案 B解析双缝干涉条纹是等间距的,而单缝衍射条纹除中央亮条纹最宽、最亮之外,两侧条纹亮度、宽度都逐渐减小,因此1、3为双缝干涉条纹,2、4为单缝衍射条纹.相邻亮条纹间距Δx=Lλ,红光波长比蓝光波长长,则红光干涉条纹间距大于蓝光干涉条纹间距,即1、3d分别对应红光和蓝光.而在单缝衍射中,当单缝宽度一定时,波长越长,衍射越明显,即中央条纹越宽越亮,黄光波长比紫光波长长,即2、4分别对应紫光和黄光.综上所述,1、2、3、4四幅图中亮条纹的颜色依次是:红、紫、蓝、黄,B正确.考向2光的偏振例5奶粉的碳水化合物(糖)的含量是一个重要指标,可以用“旋光法”来测量糖溶液的浓度,从而鉴定含糖量.偏振光通过糖的水溶液后,偏振方向会相对于传播方向向左或向右旋转一个角度α,这一角度α称为“旋光度”,α的值只与糖溶液的浓度有关,将α的测量值与标准值相比较,就能确定被测样品的含糖量了.如图所示,S是自然光源,A、B是偏振片,转动B,使到达O处的光最强,然后将被测样品P置于A、B之间.(1)偏振片A的作用是____________________________________________________________.(2)偏振现象证明了光是一种________.(3)以下说法中正确的是________.A.到达O处光的强度会减弱B.到达O处光的强度不会减弱C.将偏振片B转动一个角度,使得O处光强度最强,偏振片B转过的角度等于αD.将偏振片A转动一个角度,使得O处光强度最强,偏振片A转过的角度等于α答案(1)把自然光变成偏振光(2)横波(3)ACD解析(1)自然光通过偏振片后变为偏振光,故A的作用是把自然光变成偏振光.(2)偏振现象证明光是一种横波.(3)偏振片只能让一定偏振方向的光通过,没有样品时,要使到达O处的光最强,偏振片A、B的透光方向应相同;当放入样品时,由于样品的“旋光度”是α,即偏振方向不再与B的透光方向平行,到达O处光的强度会减弱,A正确,B错误;偏振片B转过的角度等于α,并使偏振片B的透振方向与偏振光的偏振方向平行时,光到达O处的强度将再次最大,C正确;同理,D正确.考点三几何光学与物理光学的综合应用例6如图所示,不同波长的两单色光a、b沿同一方向从空气射向半圆形玻璃砖,入射点O在直径的边缘,折射光线分别为OA、OB,则()A.a单色光的频率比b单色光的频率小B.当a、b两束光由玻璃射向空气中,a光临界角比b光临界角大C.在玻璃砖中a单色光从O到A的传播时间不等于b单色光从O到B的传播时间D.用a、b两束光在相同条件下做双缝干涉实验,a光产生的干涉条纹间距比b光小答案 D解析因为a光的偏折程度大于b光,所以根据折射定律得知:玻璃对a光的折射率大于对b光的折射率,所以a单色光的频率比b单色光的频率大,故A错误;根据全反射临界角公式sin C=1,可知,a光的折射率大,则a光的临界角小于b光的临界角,故B错误;对于n,光在任一光束研究:设入射角为i,折射角为r,玻璃砖的半径为R,则折射率为n=sin isin r,光在玻璃中传播距离为s=2R sin r,光在玻璃中传播时间为t=s v,玻璃中传播速度为v=cn,i、R、c均相等,所以在玻璃砖中a单色光从O到A的传播时间等联立以上可得t=2R sin ic于b单色光从O到B的传播时间,故C错误;根据折射率大,频率高,波长短,可知a光的折射率大于b光的折射率,则a光在真空中的波长小于b光在真空中的波长,根据双缝干涉条纹间距公式,可知a光产生的干涉条纹间距比b光小,故D正确.例7如图所示,截面为等腰直角三角形ABC的玻璃砖,∠B=90°,一束频率为f=6×1014Hz的光线从AB面中点处垂直射入棱镜,在AC面发生全反射,从BC面射出后,进入双缝干涉装置.已知AC长度L=0.3 m,双缝间距d=0.2 mm,光屏与双缝间距离l=1.0 m,光在真空中的传播速度为c=3.0×108 m/s.求:(1)玻璃砖对该光线的折射率的最小值n ; (2)光线在玻璃砖中传播的最短时间t ; (3)光屏上相邻亮条纹的间距Δx . 答案 (1)2 (2)1×10-9 s (3)2.5 mm解析 (1) 由几何关系知,光线在AC 面发生全反射的入射角为45°,可知临界角C ≤45°时,折射率有最小值,由sin C =1n 得n ≥2,即最小折射率为 2.(2) 由几何关系可知,光线在玻璃砖中传播距离 s =22L ,光线在玻璃砖中的传播速度v =c n传播时间t =s v代入数据解得最短时间t =1×10-9 s (3) 由λ=c f ,Δx =ldλ联立代入数据解得Δx =2.5 mm.课时精练1.下列有关光学现象说法中正确的是( )A .甲中荷叶上的露珠显得特别“明亮”是由于水珠将光线会聚而形成的B .乙中将双缝干涉实验中的双缝间距调小,则干涉条纹间距变小C .丙中用加有偏振滤光片的相机拍照,可以拍摄清楚汽车内部的情景D .丁中肥皂膜在阳光下呈现彩色条纹是光的衍射现象 答案 C解析题图甲中荷叶上的露珠显得特别“明亮”是由于水珠对光线的全反射形成的,故A错误;在双缝干涉实验中,条纹间距Δx=Lλ,若将双缝间距d调小,则条纹间距Δx变大,故dB错误;在照相机镜头前加装偏振滤光片拍摄汽车内部情景,滤去了汽车外玻璃的反射光,使景象清晰,故C正确;肥皂膜表面可看到彩色条纹,是因为肥皂膜的前后两面反射回来的两列光发生干涉时形成的,故D错误.2.(2019·北京卷·14)利用图示的装置(示意图),观察光的干涉、衍射现象,在光屏上得到如图中甲和乙两种图样.下列关于P处放置的光学元件说法正确的是()A.甲对应单缝,乙对应双缝B.甲对应双缝,乙对应单缝C.都是单缝,甲对应的缝宽较大D.都是双缝,甲对应的双缝间距较大答案 A解析由题图中给出的甲、乙两种图样可知,甲是单缝衍射的图样,乙是双缝干涉的图样,A项正确,B、C、D项错误.3.(多选)(2023·河北张家口市模拟)通过如图甲所示的装置可研究光的干涉和衍射现象.从光源发出的光经过一缝板,在缝板后有一装有感光元件的光屏,通过信号转换,可在电脑上看到屏上的光强分布情况.图乙分别显示出A光和B光通过同一缝板得到的光强分布情况.下列有关A、B两种色光的说法正确的有()A.光通过的可能是缝板上的单缝B.A光的波长比B光的波长长C.A光在玻璃中的传播速度大于B光在玻璃中的传播速度D.A光比B光更容易发生明显的衍射现象答案BCD解析从光的强度分布可以看出,光屏上的光是等间距、等亮度的,所以是光通过双缝产生的干涉现象,A错误;由题图乙可看出,A光的条纹间距大于B光的,由Δx=Ldλ可知,A光的波长大于B光的波长,B正确;A光的频率小于B光的频率,则玻璃对A光的折射率小于对B光的折射率,所以A光在玻璃中的传播速度大于B光在玻璃中的传播速度,C正确;由于A光的波长较长,所以更容易发生明显的衍射现象,D正确.4.(2023·广东佛山市检测)如图所示为一束太阳光射到截面为六角形的冰晶上时的光路图,a、b为其折射出的光线中的两种单色光,下列说法正确的是()A.在冰晶中,b光的传播速度较大B.通过同一装置发生双缝干涉,a光的相邻条纹间距较大C.从同种玻璃中射入空气发生全反射时,a光的临界角较小D.用同一装置做单缝衍射实验,b光的中央亮条纹更宽答案 B解析由题图知,太阳光射入六角形冰晶时,a光的偏折角小于b光的偏折角,由折射定律得,六角形冰晶对a光的折射率小于对b光的折射率,由v=cn知,在冰晶中,b光的传播速度小,A错误;a光的折射率小于b光的折射率,a光的频率小于b光的频率,所以a光的波长大于b光的波长,根据Δx=Ld λ,a光相邻条纹间距大,B正确;由临界角公式sin C=1n,a光的折射率小,则a光的临界角大,C错误;b光的折射率大,波长短,用同一装置做单缝衍射实验,b光的中央亮条纹比a光的中央亮条窄,D错误.5.(2023·广东广州市模拟)如图甲,让激光束通过一个狭缝,观察到光屏上出现单色条纹图样.现保持激光器与狭缝的距离不变,将光屏向狭缝处适当移动,下面关于本实验说法正确的是()A .将会观察到乙图样B .光屏上条纹更宽C .移动后,条纹变得模糊D .该现象说明光具有波动性 答案 D解析 让激光束通过一个狭缝,观察到光屏上出现单色条纹图样是光的衍射图样,衍射条纹的中央亮条纹最亮,宽度最大,将会观察到丙图样;当保持激光器与狭缝屏的距离不变,将光屏向狭缝处适当移动,光屏上条纹变窄,条纹变得清晰;光的衍射现象说明光具有波动性,故选项D 正确,A 、B 、C 错误.6.(2021·湖北卷·5)如图所示,由波长为λ1和λ2的单色光组成的一束复色光,经半反半透镜后分成透射光和反射光.透射光经扩束器后垂直照射到双缝上并在屏上形成干涉条纹.O 是两单色光中央亮条纹的中心位置,P 1和P 2分别是波长为λ1和λ2的光形成的距离O 点最近的亮条纹中心位置.反射光入射到三棱镜一侧面上,从另一侧面M 和N 位置出射,则( )A .λ1<λ2,M 是波长为λ1的光出射位置B .λ1<λ2,N 是波长为λ1的光出射位置C .λ1>λ2,M 是波长为λ1的光出射位置D .λ1>λ2,N 是波长为λ1的光出射位置 答案 D解析 由双缝干涉条纹间距公式Δx =λLd可知,当两种色光通过同一双缝干涉装置时,波长越长相邻两亮条纹间距越宽,由屏上亮条纹的位置可知λ1>λ2,反射光经过三棱镜后分成两束色光,由题图可知从N位置出射的光的折射角大,又由折射定律可知,入射角相同时,折射率越小的色光折射角越大,由于λ1>λ2,则n1<n2,所以N是波长为λ1的光出射位置,故D正确,A、B、C错误.7.(多选)(2022·山东卷·10)某同学采用图甲所示的实验装置研究光的干涉与衍射现象,狭缝S1、S2的宽度可调,狭缝到屏的距离为L.同一单色光垂直照射狭缝,实验中分别在屏上得到了图乙、图丙所示图样.下列描述正确的是()A.图乙是光的双缝干涉图样,当光通过狭缝时,也发生了衍射B.遮住一条狭缝,另一狭缝宽度增大,其他条件不变,图丙中亮条纹宽度增大C.照射两条狭缝时,增加L,其他条件不变,图乙中相邻暗条纹的中心间距增大D.照射两条狭缝时,若光从狭缝S1、S2到屏上P点的路程差为半波长的奇数倍,P点处一定是暗条纹答案ACD解析题图乙中间部分为等间距条纹,所以题图乙是光的双缝干涉图样,当光通过狭缝时,同时也发生衍射,故A正确;狭缝越小,衍射范围越大,衍射条纹越宽,遮住一条狭缝,另一狭缝宽度增大,则衍射现象减弱,题图丙中亮条纹宽度减小,故B错误;根据条纹间距公式有Δx=Lλ,则照射两条狭缝时,增加L,其他条件不变,题图乙中相邻暗条纹的中心间距d增大,故C正确;照射两条狭缝时,若光从狭缝S1、S2到屏上P点的路程差为半波长的奇数倍,P点处一定是暗条纹,故D正确.8.(2023·辽宁省模拟)随着科技的发展,夜视技术越来越成熟.一切物体都可以产生红外线,即使在漆黑的夜里“红外监控”“红外摄影”也能将目标观察得清清楚楚.为了使图像清晰,通常在红外摄像头的镜头表面镀一层膜,下列说法正确的是()A.镀膜的目的是尽可能让入射的红外线反射B.镀膜的目的是尽可能让入射的所有光均能透射C.镀膜的厚度应该是红外线在薄膜中波长的四分之一D.镀膜的厚度应该是红外线在薄膜中波长的二分之一答案 C解析镀膜的目的是尽可能让红外线能够透射,而让红外线之外的光反射,从而使红外线图像更加清晰,故A、B错误;当红外线在薄膜前、后表面的反射光恰好干涉减弱时,反射光最弱,透射光最强,根据干涉相消的规律可知,此时红外线在薄膜前、后表面反射光的光程差应为半波长的奇数倍,而为了尽可能增加光的透射程度,镀膜的厚度应该取最薄的值,即红外线在薄膜中波长的四分之一,故C正确,D错误.9.(2023·福建龙岩市质检)如图所示,把一矩形均匀薄玻璃板ABCD压在另一个矩形平行玻璃板上,一端用薄片垫起,将红单色光从上方射入,这时可以看到明暗相间的条纹,下列关于这些条纹的说法中正确的是()A.条纹方向与AB边平行B.条纹间距不是均匀的,越靠近BC边条纹间距越大C.减小薄片的厚度,条纹间距变小D.将红单色光换为蓝单色光照射,则条纹间距变小答案 D解析薄膜干涉的光程差Δs=2d(d为薄膜厚度),厚度相同处产生的条纹明暗情况相同,因此条纹应与BC边平行,故A错误;因为两玻璃间形成的空气膜厚度均匀变化,因此条纹是等间距的,故B错误;减小薄片厚度,条纹间距将增大,故C错误;将红光换成蓝光照射,入射光波长减小,条纹间距将减小,故D正确.10.(2021·山东卷·7)用平行单色光垂直照射一层透明薄膜,观察到如图所示明暗相间的干涉条纹.下列关于该区域薄膜厚度d随坐标x的变化图像,可能正确的是()答案 D11.(2023·广东珠海市二中月考)某河水下装有红、绿两色彩灯,A 、B 为水下同一深度处两个相距较远的彩灯(均可看作点光源),夜晚站在桥上看平静的水面,灯A 在水面形成的亮斑的半径较大,下列说法正确的是( )A .灯A 是绿色光源B .灯B 发出的光更容易发生衍射现象C .在水中灯A 发出的光的传播速度小于灯B 发出的光的传播速度D .灯A 、B 发出的光用同一装置做双缝干涉实验,屏幕上相邻亮条纹间距Δx A >Δx B 答案 D解析 灯A 在水面形成的亮斑的半径较大,可知灯A 发出的光的临界角较大,根据sin C =1n,可知折射率较小,频率较小,则灯A 是红色光源,A 错误;灯A 发出的红光波长较长,更容易发生衍射现象,B 错误;根据v =c n可知,在水中灯A 发出的红光的传播速度大于灯B 发出的绿光的传播速度,C 错误;灯A 、B 发出的光用同一装置做双缝干涉实验,根据Δx =L dλ,可知,波长越长,屏幕上相邻亮条纹间距越大,即Δx A >Δx B ,D 正确.12.某一质检部门为检测一批矿泉水的质量,利用干涉原理测定矿泉水的折射率.方法是将待测矿泉水填充到特制容器中,放置在双缝与荧光屏之间(之前为真空),如图所示,特制容器未画出,通过对比填充后的干涉条纹间距x 2和填充前的干涉条纹间距x 1就可以计算出该矿泉水的折射率.单缝S 0、双缝中点O 、屏上的P 0点均位于双缝S 1和S 2的中垂线上,屏上P 点处是P 0上方的第3条亮条纹(不包括P 0点处的亮条纹)的中心.已知入射光在真空中的波长为λ,真空中的光速为c ,双缝S 1与S 2之间的距离为d ,双缝到屏的距离为L ,则下列说法正确的是( )A .来自双缝S 1和S 2的光传播到P 点处的时间差为3λcB .x 2>x 1C .该矿泉水的折射率为x 1x 2D .仅将单缝S 0向左(保持S 0在双缝的中垂线上)移动的过程中,P 点处能观察到暗条纹 答案 C解析 第三条亮条纹对应路程差s =3λ,但光在介质中的传播速度小于c ,故A 错误;由Δx =L d λ,n =c v =λλ0可知(λ0为光在矿泉水中的波长),光在矿泉水中的波长小于真空中的波长,所以x 2<x 1,故B 错误;由n =c v =λλ0,x 1=L d λ,x 2=L d λ0,得n =x 1x 2,故C 正确;由Δx =L dλ可知,向左移动S 0对观察结果没有影响,故D 错误.。
专题强化十五电学实验基础目标要求 1.会分析电学实验的误差,会通过改进电路减少系统误差.2.掌握常用仪器的读数方法.3.会根据电路原理图连接实验器材.题型一常用仪器的读数一、螺旋测微器1.构造:如图所示,B为固定刻度,E为可动刻度.2.原理:固定刻度B的螺距为0.5 mm,即旋钮D每旋转一周,测微螺杆F前进或后退0.5 mm,而可动刻度E上有50个等分刻度,每转动一小格,F前进或后退0.01 mm,即螺旋测微器的精确度为0.01 mm.读数时估读到毫米的千分位上,因此,螺旋测微器又叫千分尺.3.读数:测量值(mm)=固定刻度数(mm)(注意半毫米刻度线是否露出)+可动刻度数(估读一位)×0.01(mm).如图所示,固定刻度示数为2.0 mm,半毫米刻度线未露出,可动刻度示数为15.0,最后的读数为:2.0 mm+15.0×0.01 mm=2.150 mm.二、游标卡尺1.构造:主尺,游标尺(主尺和游标尺上各有一个内、外测量爪),游标卡尺上还有一个深度尺.(如图所示)2.用途:测量厚度、长度、深度、内径、外径.3.原理:利用主尺的单位刻度与游标尺的单位刻度之间固定的微量差值制成.不管游标尺上有多少个小等分刻度,它的刻度部分的总长度比主尺上的同样多的小等分刻度少1 mm.常见的游标卡尺有10分度、20分度和50分度三种,其规格见下表:刻度格数(分度)刻度总长度 每小格与1 mm 的差值精确度(可精确到)10 9 mm 0.1 mm 0.1 mm 20 19 mm 0.05 mm 0.05 mm 5049 mm0.02 mm0.02 mm4.读数:从主尺上读出整毫米数x ,然后再从游标尺上找出第k 条刻度线与主尺上某一刻度线对齐,即记录结果表示为(x +k ×精确度) mm. 三、常用电表的读数对于电压表和电流表的读数问题,首先要弄清电表量程,即指针指到最大刻度时电表允许通过的最大电压或电流,然后根据表盘总的刻度数确定精确度,按照指针的实际位置进行读数即可.(1)0~3 V 的电压表和0~3 A 的电流表的读数方法相同,此量程下的精确度分别是0.1 V 和0.1 A ,看清楚指针的实际位置,读到小数点后面两位.(2)对于0~15 V 量程的电压表,精确度是0.5 V ,在读数时只要求读到小数点后面一位,这时要求“15格估读”,即读到0.1 V.(3)对于0~0.6 A 量程的电流表,精确度是0.02 A ,在读数时只要求读到小数点后面两位,这时要求“半格估读”,即读到最小刻度的一半0.01 A.1.为了读数更精确,游标卡尺也需要估读,如图读作11.40 mm.( × )2.游标卡尺主尺上的数字对应的单位为cm.( √ ) 3.如图,游标卡尺读数为5.20 mm.( × )4.如上图,游标卡尺读数为50.20 mm ,可简化写为50.2 mm.( × )考向1 游标卡尺、螺旋测微器的读数例1 (1)如图所示的三把游标卡尺,它们的游标尺从上至下分别为9 mm 长10等分、19 mm 长20等分、49 mm 长50等分,它们的读数依次为________ mm ,________ mm ,________ mm.(2)读出下面各螺旋测微器的读数,甲________ mm,乙________ mm,丙________ mm.答案(1)17.723.85 3.18(2)4.039 1.100 3.515解析(1)题图最上面游标卡尺:主尺读数为17 mm,游标尺读数为7×0.1 mm=0.7 mm,最后结果是17 mm+0.7 mm=17.7 mm.题图中间游标卡尺:主尺读数为23 mm,游标尺读数为17×0.05 mm=0.85 mm,最后结果是23 mm+0.85 mm=23.85 mm.题图最下面游标卡尺:主尺读数为3 mm,游标尺读数为9×0.02 mm=0.18 mm,最后结果是3 mm+0.18 mm=3.18 mm.(2)甲:(4+3.9×0.01) mm=4.039 mm;乙:(1+10.0×0.01) mm=1.100 mm;丙:(3+0.5+1.5×0.01) mm=3.515 mm.考向2电压表、电流表和电阻箱的读数例2(1)如图甲所示的电表使用0.6 A量程时,对应刻度盘上每一小格代表________A,图中表针示数为________ A;当使用3 A量程时,对应刻度盘中每一小格代表________ A,图中表针示数为________ A.(2)如图乙所示的电表使用较小量程时,每小格表示________ V,图中表针的示数为________ V;若使用的是较大量程,则这时表盘刻度每小格表示________ V,图中表针示数为______ V.(3)旋钮式电阻箱如图丙所示,电流从接线柱A流入,从B流出,则接入电路的电阻为________Ω.现欲将接入电路的电阻改为2 087 Ω,最简单的操作方法是_________________________.若用两个这样的电阻箱,则可得到的电阻值范围为________.答案(1)0.020.440.1 2.20(2)0.1 1.700.58.5(3)1 987将“×1 k”挡旋钮调到2,再将“×100”挡旋钮调到0 0~19 998 Ω解析(1)电流表使用0.6 A量程时,刻度盘上的每一小格为0.02 A,表针示数为0.44 A;当使用3 A量程时,每一小格为0.1 A,表针示数为2.20 A.(2)电压表使用3 V量程时,每小格表示0.1 V,表针示数为1.70 V;使用15 V量程时,每小格表示0.5 V,表针示数为8.5 V.(3)电阻为1 987 Ω.最简单的操作方法是先将“×1 k”挡旋钮调到2,再将“×100”挡旋钮调到0.每个电阻箱的最大阻值是9 999 Ω,用这样的两个电阻箱串联可得到的最大电阻是2×9 999 Ω=19 998 Ω,故用两个这样的电阻箱,可得到的电阻范围为0~19 998 Ω.测电压或电流时,电表精确度为1,0.1,0.01的估读到下一位;精确度为2,0.2,0.02,5,0.5,0.05,末位为2和5的,读数时只读到与最小刻度位数相同即可.题型二测量电路与控制电路的选择1.电流表的内、外接法内接法外接法电路图误差原因电流表分压U测=U x+U A电压表分流I测=I x+I V电阻测量值R测=U测I测=R x+R A>R x测量值大于真实值R测=U测I测=R x R VR x+R V<R x 测量值小于真实值适用于测量大阻值电阻小阻值电阻两种电路选择标准当R A≪R x或R x>R A R V时,选用电流表内接法当R V≫R x或R x<R A R V时,选用电流表外接法2.滑动变阻器两种连接方式的对比限流接法分压接法对比说明电路图串、并联关系不同负载R上电压调节范围(不计电源内阻)RER+R0≤U≤E 0≤U≤E 分压电路调节范围大闭合S前触头位置b端a端都是为了保护电路元件3.滑动变阻器两种接法的选择滑动变阻器的最大阻值和用电器的阻值差不多且不要求电压从零开始变化,通常情况下,由于限流式结构简单、耗能少,优先使用限流式.滑动变阻器必须接成分压电路的几种情况:①要求电压表能从零开始读数,要求电压(电流)测量范围尽可能大;②当待测电阻R x≫R(滑动变阻器的最大阻值)时(限流式接法滑动变阻器几乎不起作用);③若采用限流式接法,电路中的最小电流仍超过电路中电表、电阻允许的最大电流.例3(2020·全国卷Ⅰ·22)某同学用伏安法测量一阻值为几十欧姆的电阻R x,所用电压表的内阻为1 kΩ,电流表内阻为0.5 Ω.该同学采用两种测量方案,一种是将电压表跨接在图(a)所示电路的O、P两点之间,另一种是跨接在O、Q两点之间.测量得到如图(b)所示的两条U -I图线,其中U与I分别为电压表和电流表的示数.回答下列问题:(1)图(b)中标记为Ⅱ的图线是采用电压表跨接在________(填“O 、P ”或“O 、Q ”)两点的方案测量得到的.(2)根据所用实验器材和图(b)可判断,由图线________(填“Ⅰ”或“Ⅱ”)得到的结果更接近待测电阻的真实值,结果为________ Ω(保留1位小数).(3)考虑到实验中电表内阻的影响,需对(2)中得到的结果进行修正,修正后待测电阻的阻值为________ Ω(保留1位小数). 答案 (1)O 、P (2)Ⅰ 50.5 (3)50.0解析 (1)若通过R x 的电流相等,由题图(b)知图线Ⅰ对应的电压值较大,由R =UI 可知图线Ⅰ所测电阻较大,图线Ⅱ所测电阻较小,则图线Ⅱ是采用电压表跨接在O 、P 两点的方案测量得到的.(2)由题图(b)可得图线Ⅰ测得电阻阻值R Ⅰ=3.00-1.00(59.6-20.0)×10-3Ω≈50.5 Ω,图线Ⅱ测得电阻阻值 R Ⅱ= 3.00-0.95(64.0-20.0)×10-3 Ω≈46.6 Ω,待测电阻阻值约为50 Ω,R V R x =1 000 Ω50 Ω=20,R xR A =50 Ω0.5 Ω=100,因R V R x <R xR A ,电流表采用内接法更接近待测电阻的真实值,电压表跨接在O 、Q 两点,故图线Ⅰ得到的结果更接近待测电阻的真实值,测量结果为50.5 Ω.(3)电压表跨接在O 、Q 之间,测得的阻值为电阻与电流表内阻之和,则R =R Ⅰ-R A =(50.5-0.5) Ω=50.0 Ω.实验误差分析1.系统误差(1)伏安法测电阻系统误差来源:电压表的分流或电流表的分压.(2)减小系统误差根据题目中给出的电阻阻值大约值,选用合适的实验器材,采用误差小的实验方案(如电流表的内、外接法).(3)消除系统误差题目给定的条件充分(电表内阻已知),合理设计电路可消除系统误差.2.偶然误差(1)电压表、电流表、多用电表、毫米刻度尺、游标卡尺、螺旋测微器等读数误差.(2)描点、计算等对数据处理造成的误差.(3)通过多次测量取平均值或图像法可以减小偶然误差.例4物理兴趣小组利用“伏安法”测量一个阻值较小的定值电阻R x的阻值,可用器材有:电压表(量程为15 V,内阻约为5 000 Ω),电流表(量程为0.6 A,内阻为5 Ω),电源E(电动势为12 V,内阻不计),滑动变阻器R最大阻值为10 Ω,定值电阻R0阻值为15 Ω,开关S,导线若干.(R0、R x、R、电流表、电压表、电源、开关等仪器均无断路和短路,导线无断路)(1)将图甲所示的器材符号连线,画出实验电路的原理图.要求电流表和电压表的示数从零开始变化.(2)连接电路后,闭合开关,逐渐移动滑片,发现电流表始终没有示数,电压表示数逐渐增大最终接近电源电压.则出现该现象的原因可能是________.(3)该电路中R0的作用是________.(4)测出多组数据,作出I-U图像,如图乙所示.则R x阻值为________ Ω.答案(1)见解析图(2)R0与R x之间接线处断路(R x与电流表之间接线处断路等其他答案均可给分,说仪器断路或者短路均不给分)(3)①保护电路②增大电压表读数范围,降低读数误差(能描绘出保护电路意思和方便读数即可给分)(4)4解析 (1)因待测电阻R x 的电阻和电流表的内阻都较小,为保护电路,应将定值电阻R 0与它们串联,又要求电流表和电压表的示数从零开始变化,故滑动变阻器采用分压式接法,由于电流表的内阻已知,故电流表采用内接法,故实验电路的原理图如图所示.(2)出现该现象的原因可能是R 0与R x 之间接线处断路.(3)由(1)分析可知该电路中R 0的作用是:①保护电路;②增大电压表读数范围,降低读数误差. (4)根据I -U 图像可知斜率为k =I U =0.512 Ω-1=1R x +R 0+R A,代入数据解得R x = 4 Ω.题型三 实验器材的选取与实物图的连接1.实验器材选择的技巧(1)电压表、电流表:不超过量程,且要超过满偏刻度的13.有时也可以从测量数据来确定选择的电表.(2)滑动变阻器:分压选阻值小的且不超过其额定电流的滑动变阻器,限流选最大阻值为待测电阻2~3倍的滑动变阻器.电流半偏法测电阻,滑动变阻器选阻值大的.(3)定值电阻:若用于电表改装,阻值与改装后的量程匹配,若用于保护电路,应使电流表、电压表读数在满偏刻度的13以上且不超过电流表、电压表量程.2.实物图连接的注意事项(1)画线连接各元件,一般先从电源正极开始,按照电路原理图依次到开关,再到滑动变阻器,按顺序以单线连接方式将主电路中串联的元件依次串联起来,再将要并联的元件并联到电路中去.(2)连线时要将导线接在接线柱上,两条导线不能交叉.(3)要注意电表的量程和正、负接线柱,要使电流从电表的正接线柱流入,从负接线柱流出. (4)滑动变阻器的接法:限流法,导线分别连接到上、下接线柱上(两个接线柱);分压法,导线分别连接到上边一个接线柱和下边两个接线柱上(一上两下共三个接线柱).例5 某实验小组要测量一个用电器L 的额定功率(额定电压为10 V 、额定功率在12~15 W 之间),测量电路的部分导线已经接好(如图所示).实验室有下列器材可供选用:直流电源:E1(电动势为3 V,内阻很小)E2(电动势为15 V,内阻很小)直流电流表:A1(量程0~0.6 A,内阻约为0.5 Ω)A2(量程0~3 A,内阻约为0.1 Ω)直流电压表:V(量程为3 V、内阻为3 kΩ)滑动变阻器:R1(阻值范围0~20 Ω)R2(阻值范围0~200 Ω)定值电阻:R3=3 kΩ、R4=9 kΩ、R5=25 kΩ开关一个,导线若干为使测量尽可能准确、方便,请回答下列问题:(1)电源应该选择________(填“E1”或“E2”);(2)电流表应该选择________(填“A1”或“A2”);(3)滑动变阻器应该选择________(填“R1”或“R2”);(4)由于电压表的量程不够,要利用一个定值电阻进行改装.请选择合适的定值电阻,在图中用笔画线代替导线连接好测量电路的剩余部分.答案(1)E2(2)A2(3)R1(4)见解析图解析(1)由于额定电压为10 V,所以直流电源选择电动势为15 V的E2.(2)其额定电流为1.2~1.5 A,所以直流电流表选择A2.(3)根据已有的电路结合让实验结果更为精确的要求,采用限流电路,所以利用滑动变阻器R1作为限流电阻.(4)若要将电压表改装为量程更大的电压表,需要与其串联一个定值电阻,根据串联电路特点知,若串联R3,则量程为6 V,若串联R4,则量程为12 V,若串联R5,则量程为28 V,因此串联R4比较合适,如图所示.例6 现要用如图甲所示的电路图来测量某一电压表V 的内阻.给定的器材有:待测电压表V(量程2 V ,内阻约为4 kΩ);电流表A(量程1.2 mA ,内阻约500 Ω);直流电源E (电动势约2.4 V ,内阻不计);滑动变阻器R 0(最大阻值20 Ω);定值电阻R (3个:阻值分别为2 kΩ、20 kΩ、200 kΩ);开关S 及导线若干.要求测量时两电表指针偏转均超过其量程的一半.(1)定值电阻R 应该选用的阻值为________ kΩ;(2)根据图甲的测量电路原理图,用笔画线代替导线,在图乙所给的实物图上连线; (3)根据图甲的测量电路原理图,开关S 闭合前,滑动变阻器的滑动端应滑动到最________端(选填“左”或“右”);(4)电路接通后,把滑动变阻器的滑动端滑动到某一位置,若此时电压表读数为U ,电流表读数为I ,则电压表内阻R V =________. 答案 (1)2 (2)见解析图 (3)左 (4)RU RI -U解析 (1)假设电压表示数为1 V ,由题意可得 1 V 4 kΩ+1 VR>0.6 mA ,解得R <2.86 kΩ 故电阻R 应该选用的阻值为2 kΩ. (2)实物图如图所示(3)为避免电流表、电压表在开关S 闭合时示数超出量程,闭合开关S 前,滑动变阻器的滑动端应滑动到最左端.(4)根据部分电路欧姆定律可得,电压表内阻为 R V =U I -U R=RU RI -U .课时精练1.某同学用螺旋测微器测圆柱体的直径时,示数如图甲所示,此示数为________ mm ;用游标卡尺测量某物体的厚度时,示数如图乙所示,此示数为________ cm.另一位学生用游标尺上标有50等分刻度的游标卡尺测一工件的长度,测得的结果如图丙所示,则该工件的长度L =________ cm.答案 8.021(8.020~8.022均可) 2.060 5.236解析 螺旋测微器的固定刻度读数为8 mm ,可动刻度读数为2.1×0.01 mm =0.021 mm ,所以最终读数为8 mm +0.021 mm =8.021 mm ,由于需要估读,因此在范围8.020~8.022 mm 内均正确.游标卡尺的主尺读数为20 mm ,游标尺上第12个刻度与主尺上某一刻度对齐,故游标尺读数为12×0.05 mm =0.60 mm ,所以最终读数为20 mm +0.60 mm =20.60 mm =2.060 cm.工件的长度L =52 mm +0.02×18 mm =5.236 cm.2.如图,螺旋测微器的读数为________ mm ;电压表的读数为________ V ;电流表的读数为________ A.答案0.695 2.600.52解析螺旋测微器的读数为0.5 mm+0.01 mm×19.5=0.695 mm;电压表的读数为2.60 V;电流表的读数为0.52 A.3.某同学用伏安法测定待测电阻R x的阻值(约为10 kΩ),除了R x、开关S、导线外,还有下列器材供选用:A.电压表(量程0~1 V,内阻约10 kΩ)B.电压表(量程0~10 V,内阻约100 kΩ)C.电流表(量程0~1 mA,内阻约30 Ω)D.电流表(量程0~0.6 A,内阻约0.05 Ω)E.电源(电动势1.5 V,额定电流0.5 A,内阻不计)F.电源(电动势12 V,额定电流2 A,内阻不计)G.滑动变阻器R0(阻值范围0~10 Ω,额定电流2 A)(1)为使测量尽量准确,电压表选用________,电流表选用________,电源选用________.(均填器材的字母代号)(2)在虚线框内画出测量R x阻值的实验电路图.(3)该同学选择器材、连接电路和操作均正确,从实验原理上看,待测电阻测量值会________其真实值(填“大于”“小于”或“等于”),原因是__________________________.答案(1)B C F(2)见解析图(3)大于电压表的读数大于待测电阻两端的实际电压(其他表述正确也可)解析(1)若电源选用E,则通过R x的最大电流为0.15 mA,此时两电流表均达不到半偏,故电源应选用F.电压表内阻应尽可能与被测电阻阻值相差大一些且量程接近电源电压,故电压表选用B.由此可知电路中的电流约为1 mA,故电流表选用C.(2)因为待测电阻阻值较大,所以电流表应采用内接法.因为滑动变阻器的阻值很小,若采用限流式接法接入电路的滑动变阻器起不到多大的限流作用,所以滑动变阻器应采用分压式接法,实验电路图如图所示.(3)因为电流表采用内接法,电压表测出的电压为R x与电流表串联后两端电压,U测>U实,,所以R测>R实.而R=UI4.(2023·广东惠州市第一次调研)某同学通过实验测量一个阻值约为5 Ω的定值电阻.可供使用的器材如下:A.待测电阻R x≈5 ΩB.电流表A1,量程0.6 A,内阻约0.6 ΩC.电流表A2,量程3 A,内阻约0.12 ΩD.电压表V1,量程15 V,内阻约15 kΩE.电压表V2,量程3 V,内阻约3 kΩF.滑动变阻器R,总电阻10 ΩG.直流电源E,电动势3 V,内阻不计H.开关S,导线若干(1)用伏安法测量该定值电阻阻值时,应当选择电流表________(选填“A1”或“A2”),选择电压表________(选填“V1”或“V2”).(2)请根据所设计的测量电路图,将下列实物图连接完整(滑动变阻器采用限流接法).(3)某次测量的电表示数如图所示,其中电压表示数为________ V,电流表示数为________ A.(4)根据上述所测量的实验数据,计算得待测电阻R x=______ Ω(计算结果保留3位有效数字).答案(1)A1V2(2)见解析图(3)1.730.32(4)5.41解析(1)由于电源的电动势为3 V,因此电压表选择量程为3 V,即选V2,待测电阻约为5 Ω,则电路中最大电流为0.6 A,因此电流表选择量程为0.6 A,即选A1.(2)由于R V R x >R xR A,因此应采用电流表外接法,具体实物图如下(3)由题图可知,电压表示数为1.73 V ;电流表示数为0.32 A. (4)根据测量的实验数据,计算得待测电阻为R x =UI =5.41 Ω.5.某同学要测量一个未知电阻的阻值,实验室提供的器材有: A .电流表A 1:量程为0~3 mA ,内阻r 1约为15 Ω B .电流表A 2:量程为0~1.5 mA ,内阻r 2为25 Ω C .定值电阻R 1:R 1=9 975 Ω D .定值电阻R 2:R 2=1 975 Ω E .滑动变阻器R 3:最大阻值为10 ΩF .电源E ,电动势为3 V ,内阻很小但不可忽略G .开关S 及导线若干(1)该同学根据实验器材设计了如图所示的测量电路,闭合开关S 之前,滑动变阻器R 3的滑片应置于________(填“最左端”或“最右端”).(2)实验中需要量程为0~3 V 的电压表,则电路图中的电流表①应选择________,定值电阻R 应选择________(均填器材前面的字母).(3)调节滑动变阻器,将滑动变阻器的滑片置于合适的位置,若此时电流表A 1的示数为I 1,电流表A 2的示数为I 2,则待测电阻R x =________(用物理量的符号表示). 答案 (1)最左端 (2)B D (3)I 2(r 2+R 2)I 1-I 2解析 (1)为了实验安全,闭合开关S 之前,应使电路中电流从最小值开始调节,滑动变阻器采用分压接法,故应将滑片置于最左端.(2)实验器材中没有电压表,要用电流表改装,只有内阻已知的电流表才能改装成电压表,所以电流表选择B.根据电压表改装原理可得R =U -I A2r 2I A2=3-1.5×10-3×251.5×10-3 Ω=1 975 Ω,故定值电阻应选择D.(3)由串、并联电路的特点和闭合电路欧姆定律有I 2(r 2+R 2)=(I 1-I 2)R x 解得R x =I 2(r 2+R 2)I 1-I 2.6.(2023·四川攀枝花市模拟)电阻R x 的阻值在3~5 kΩ间,现要测量其电阻,实验室提供了下列器材:电压表V(量程3 V ,内阻约为30 kΩ) 电流表A 1(量程100 μA ,内阻约为100 Ω) 电流表A 2(量程1 mA ,内阻约为10 Ω) 滑动变阻器R (最大电阻500 Ω) 电源E (电动势4 V) 开关S 及导线若干某课外活动小组设计了如图甲所示的测量电路进行了实验,请回答下列问题:(1)电路中电流表应选用上述器材中的________(填写字母代号);(2)闭合开关S 前,滑动变阻器的滑动触头P 应在________(选填“a ”或“b ”)端; (3)请根据图甲所示的电路图,在图乙中将实物图连接补充完整;(4)实验中得到的I -U 图线如图丙中的实线d 所示,电阻R x 的测量值为________ kΩ; (5)由于本实验存在误差,你认为电阻R x 的真实I -U 图线应为图丙中图线________(选填“c ” 或“e ”);(6)某同学对图甲中虚线框内的电路进行修改,并从上述器材中选用适当的器材,设计出了测量电压表V 内阻的电路,请在方框内画出该同学修改部分的电路,并在图中标出所选用的器材.答案 (1)A 2 (2)a (3)见解析图 (4)4 (5)c (6)见解析图 解析 (1)电路中的最大电流为I =U R x =33 000A =1 mA ,故电流表选择A 2. (2)滑动变阻器为分压接法,为了保护电路,闭合开关前应使并联部分的电压为零,故滑动触头P 应在a 端.(3)按实验电路图将实物图补充完整,如图所示.(4)根据I -U 图像求得电阻R x =U 1I 1=20.5×10-3Ω=4.0 kΩ.(5)本次实验是用电流表的内接法测电阻的,所以电压表测的是电流表和R x 两端的总电压,那么电压和电阻的测量值均偏大,故真实的图线应是c . (6)由于电压表的内阻很大,而满偏电流 I m =U m R V =330×103A =10-4 A =100 μA 恰好在电流表A 1的量程之内,所以可以直接将两表串联接入虚线框内,如图所示.7.(2023·广东深圳市调研)某学习小组研究“不同的电阻测量方案对误差的影响”.现有器材为:电源、电流表(量程0.6 A)、电压表(量程3 V)、待测定值电阻、滑动变阻器、电流传感器、电压传感器、开关、导线若干.实验步骤如下:(1)用图甲和图乙电路分别测量待测电阻的阻值,请在图丙中按图甲用笔画线代替导线将电路补充完整;(2)将图丙中滑动变阻器的滑片P 滑到________(填“e ”或“f ”)端,闭合开关,调节滑动变阻器,记录测量数据;(3)根据测量数据在U -I 坐标系中描点作图,得到图丁中的图线a 和b ,则a 线对应的测量值是________ Ω,a 线是采用图________(选填“甲”或“乙”)电路测得的结果,理由是(要求论述有依据)____________________________________________________________________. (4)为提高测量精度,在图甲电路中,用电流传感器代替电流表,电压传感器代替电压表,对同一电阻再次进行测量.得到对应的U -I 图线c ,拟合直线及表达式见图戊,认为其测量值等于真实值.(5)相对误差反映测量的可信程度,相对误差公式为δ=|测量值-真实值真实值|×100%.由步骤(3)和(4)可得图线a 的相对误差为δ=________%(保留三位有效数字).答案 (1)见解析图 (2)f (3)6.43 甲 a 线对应的测量值大于b 线对应的测量值,测量结果偏大,采用电流表内接法 (5)27.8 解析 (1)完整电路如图所示.(2)闭合开关S 前,应将滑动变阻器的滑片P 滑到接入电路阻值最大处,即滑动变阻器的滑片P 滑到f 端;(3)由题图丁可知,a 线对应的待测电阻测量值是R x 测=ΔU ΔI =2.25-00.35-0Ω=6.43 Ω选择电流表的外接法,由于电压表的分流作用,电流表测量值大于流经R x 的电流值,测量结果偏小;选择电流表的内接法,由于电流表的分压作用,电压表测量值大于R x 两端的电压值,测量结果偏大;a 线对应的测量值大于b 线对应的测量值,所以a 线是采用题图甲电路测得的结果;(5)结合题图戊的U -I 关系式可知待测电阻的真实值R x 真=5.03 Ω 图线a 的相对误差为δ=|6.43-5.035.03|×100%=27.8%.。