耗能减震结构
- 格式:doc
- 大小:184.01 KB
- 文档页数:16
消能减震结构计算总结一、什么是消能减震结构消能减震就是在结构中安装消能器(阻尼器),人为增加结构阻尼,消耗地震下结构的振动能量,达到减小结构的振动反应,实现结构抗震的目的。
采用了消能减震技术的结构称为消能减震结构。
消能减震适用范围较广除砌体结构外体结构外,其他结构均可采用其他结构均可采用,结构的类型和高度均不受限制高度均不受限制。
二、消能减震设计需解决的主要问题1.消能器和消能部件的选型2.消能部件在结构中的分布和数量3.消能器附加给结构的阻尼比的计算4.消能减震结构在多遇地震下的内力计算和罕遇地震下的位移计算,5.消能部件与主体结构的连接设计、构造要求及附加作用6.消能器的性能检测标准等。
三、消能器和消能部件的选型根据实际结构的要求,消能器可采用速度相关型和位移相关型。
如果结构刚度较小,小地震作用下变形较大,可以采用位移相关型消能器。
如果结构构件的强度不足,可选择速度相关型消能器。
变形较大、强度也不足时,可以两者都选。
四、消能部件的布置方法消能部件可根据需要沿结构的两个主轴方向分别设置,可使两方向均有附加阻尼和刚度消能部件宜设置在层间变形较大的位置。
设置于层间相对位移或相对速度较大的部位,可更好发挥消耗地震能量的作用。
应避免结构形成明显的薄弱楼层和扭转,有条件的前提下尽可能分散布置。
五、计算方法六、位移型能减震设计计算步骤(1)首先确定消能器的类型、布设位置和数量;(2)根据减震要求,设定消能建筑结构的阻尼比,根据大阻尼反应谱,确定地震影响系数,计算消能减震结构的层间剪力和层间位移;(3)根据层间剪力,得到作用在不同楼层处的惯性力Fi,根据消能减震结构的计算模型,确定楼层处的位移ui,计算消能减震结构的应变能;(4)根据层间位移和消能部件的恢复力模型,采用式,计算消能部件给结构附加的阻尼比5)比较第(4)步得到的阻尼比和第(2)步假设的阻尼比,若不相同,则将第(4)步得到的阻尼比代入第(2)步,重新进行(2)~(4)的计算,直到第(2)步中的阻尼比和第(4)步中计算得到的阻尼比相同为止;(6)根据附加的阻尼比、消能器类型、数量、布设位置、消能器支撑构件,设计消能器参数和支撑构件。
结构消能减震技术1、结构消能减震的基本概念地震发生时地面震动引起结构物的震动反应,地面地震能量向结构物输入。
结构物接收了大量的地震能量,必然要进行能量转换或消耗才能最后终止震动反应。
消能减震技术是将结构的某些构件设计成消能构件,或在结构的某些部位装设消能装置。
在风或小震作用时,这些消能构件或消能装置具有足够的初始刚度,处于弹性状态,结构具有足够的侧向刚度以满足正常使用要求;当出现大风或大震作用时,随着结构侧向变形的增大,消能构件或消能装置率先进入非弹性状态,产生较大阻尼,大量消耗输入结构的地震或风振能量,使主体结构避免出现明显的非弹性状态,且迅速衰减结构的地震或风振反应(位移、速度、加速度等),保护主体结构及构件在强地震或大风中免遭破坏或倒塌,达到减震抗震的目的。
消能部件(消能构件或消能装置及其连接件)按照不同“构件型式”分为消能支撑、消能剪力墙、消能支承或悬吊构件、消能节点、消能连接等。
消能部件中的消能器(又称阻尼器)分为速度相关型如黏滞流体阻尼器、黏弹性阻尼器、黏滞阻尼墙、黏弹性阻尼墙;位移相关型如金属屈服型阻尼器、摩擦阻尼器等,和其它类型如调频质量阻尼器(TMD)、调频液体阻尼器(TLD)等。
采用消能减震技术的结构体系与传统抗震结构体系相比,具有大震安全性、经济性和技术合理性。
技术指标:建筑结构消能减震设计方案,应根据建筑抗震设防类别、抗震设防烈度、场地条件、建筑结构方案和建筑使用要求,与采用抗震设计的设计方案进行技术、经济可行性的对比分析后确定。
采用消能减震技术结构体系的计算分析应依据《建筑抗震设计规范》GB50011 进行,设计安装做法应遵循国家建筑标准设计图集《建筑结构消能减震(振)设计》09SG610-2,其产品应符合《建筑消能阻尼器》JG/T209 的规定。
适用范围:消能减震技术主要应用于高层建筑,高耸塔架,大跨度桥梁,柔性管道、管线(生命线工程),既有建筑的抗震(或抗风)性能的改善等。
消能减震结构体系的优点
随着人们对建筑安全意思的提高,越来越多的建筑采用消能减震结构体系。
图为:蓝科减震产品-屈曲约束支撑
消能减振结构体系与传统抗震结构体系相比,具有很多优越性:
①安全性:阻尼器作为非承重的消能构件或消能装置,在强震中能率先消耗地震能量,迅速衰减结构的地震反应并保护主体结构和构件免遭破坏,确保结构的安全。
根据有关振动台试验的数据,消能减振结构的地震反应比传统结构降低40%~60%。
图为:蓝科减震产品-摩擦阻尼器
②经济性:消能减振结构是通过“柔性消能”的途径减少结构的地震反应,因而可以减少抗侧力结构构件的设置,减少结构断面和配筋,并提高结构抗震安全度;在高烈度区采用减振技术的结构可节约造价5%~10%。
用于旧建筑物的抗震加固,则可节约造价10%~60%。
③技术合理性:结构越高、越柔,消能减振效果越显著因此结构消能减振技术在工程实践中得到了越来越广泛的发展和应用。
以上就是蓝科为您分享的消能减震结构体系的几点优点。
论隔震与耗能减震结构摘要:中国经历了过多次刻骨铭心的地震经历,这其中1976年唐山地震和2008年四川汶川地震给国人留下的教训最为惨痛和深刻,基于这种惨痛的经历,相对于传统的加强结构的强度、刚度和延性来抵御地震消极被动的抗震策略,隔震与耗能减震这种积极而主动的抗震策略应运而生,这种方法一定会在未来的建筑设计实践中不断地完善,也会得到更好的发展与应用。
一、地震现象地震是地球内部构造运动的产物,是一种自然现象。
全世界每年大约发生500万次地震,其中99%的地震都非常小,用很灵敏的仪器才能测量到,而剩下的1%就成为有感地震,这其中能够造成严重破坏的地震,全球每年大约发生18次。
地震按其成因可分为构造地震,火山地震,陷落地震,诱发地震四类。
其中由于地壳运动,推挤地壳岩层薄弱部位发生断裂而引发的地震叫构造地震,构造地震分布最广,危害最大;由于火山喷发,岩浆猛烈冲击地面引起的地震成为火山地震;地表或地下岩层突发大规模陷落和崩塌引起的小范围的地面震动叫陷落地震;由于水库蓄水或深井注水等引起的地面震动叫诱发地震。
地震构造运动中,在断层形成的地方大量释放能量,产生剧烈震动,此处就叫做震源,按震源的深浅,地震又可以分为浅源地震,中源地震和深源地震。
浅源地震的震源深度在70km以内,它释放着一年中全世界所有地震能量的约85%;中源地震震源深度70~300km范围内,一年中全世界所有地震释放能量的约12%来自中源地震;震源深度超过300km的地震叫做深源地震,一年中释放所有地震释放能量的3%。
二、地震对工程结构的破坏工程结构在地震时所遇到的破坏是造成人民生命财产损失的主要原因,起破坏情况与结构类型和抗震措施等有关。
主要破坏情况有:称重结构承载力不足或变形过大而造成的破坏;结构丧失整体稳定性而造成的破坏;地基失效引起的破坏。
此外,地震造成的次生灾害,如水灾、火灾、毒气泄漏、滑坡、泥石流、海啸和核泄漏等,其破坏后果也相当严重。
阻尼器在消能减震结构中应用浅析1 耗能减震结构体系的特点(1)结合动力学和能量进行研究,通过耗能装置增加了结构阻尼,耗散结构部分能量,有效控制结构响应;(2)在风荷载或者小震作用下,耗能减震装置并未进入塑性阶段,耗能减震装置只是相当于主体结构的普通支撑,能够对侧向变形进行有效的控制,结构主体依旧未发生塑性变形,处于弹性阶段。
(3)如果遭遇了中震或者大震,在主体结构发生塑性变形之前耗能减震装置就已经进入了塑性滞回耗能状态,大大减轻了主体结构的负担,分担了很大一部分输入主体结构的能量,在很大程度上保障了主体结构的安全,以达到耗能减震保护主体结构的目的。
2 耗能减震器的分类[1]不同的材料和不同的耗能机理以及相应的构造决定了不同的消能减震装置,经过数十载的发展,各式各样的耗能减震器如同雨后春笋一般出现。
按照材料和耗能机理进行分类:金属阻尼器、摩擦阻尼器、粘弹性阻尼器、粘滞阻尼器、电磁感应阻尼器;按受力形式进行分类:弯曲型耗能减震器、剪切型耗能减震器、扭转型耗能减震器、挤压型耗能减震器、弯剪型耗能减震器。
3 主要阻尼器的耗能原理及性能3.1 摩擦阻尼器摩擦阻尼器主要是依靠装置自身产生相对滑移变形,依靠相关结构之间的摩擦或者阻尼力实现对地震能量的消耗。
遭遇小震或者风荷载作用下,摩擦阻尼器并未开始工作模式,主要是依靠结构自身耗能能力来完成对能量的消耗。
而在遭遇中震或者大震的情况下,主体结构在发生较大变形之前阻尼器开始发挥作用,有效的控制地震响应,实现振动控制[2]。
摩擦阻尼器的机械组合方式、摩擦介质类型较多,但是减震耗能原理都是通过摩擦来实现能量的消耗,接触界面包括钢与钢、黄铜与钢等形式。
如下图所示,X 形支撑摩擦阻尼器构造示意图。
图1 X 形支撑摩擦阻尼器3.2 粘弹性阻尼器粘弹性阻尼器是由粘弹性材料以及约束钢板组成,其中所采用的粘弹性材料一般都是由弹性、粘性双重特性的高分子聚合物合成。
其消能减震主要是依靠粘弹性材料产生的剪切变形或拉压变形来实现的。
带你了解各种阻尼器知识一、什么是消能减震结构消能减震就是通过在建筑结构的某些部位如柱间、剪力墙、节点、联接缝、楼层空间、相邻建筑间、主附建筑间等设置阻尼器以增加结构阻尼,消耗地震下结构的振动能量,达到减小结构的振动反应,实现结构抗震和抗风的目的。
采用了消能减震技术的结构称为消能减震结构。
二、消能减震技术的适用范围消能减震技术在特定的条件下,才能发挥它最大的效用,达到经济安全的目的,消能减震技术主要用于以场合:▪高烈度(>7度)地区▪强风地区▪超高层建筑▪大型公共建筑-大跨空间结构▪大型综合体-框架支撑(少墙)结构▪震动舒适度要求:风作用和大面积楼盖三、阻尼器有哪些类型下图为史上最全阻尼器类型表:1、TMD调频质量阻尼器(tuned mass damper,TMD):由质块,弹簧与阻尼系统组成。
一般将其振动频率调整至主结构频率附近,改变结构共振特性,以达到减振作用。
调频质量阻尼器(TMD)属于结构被动调谐减振控制的装置中的一种。
被动调谐减振控制系统是由结构和附加在主结构上的子结构组成。
附加的子结构具有质量、刚度和阻尼,因而可以调节子结构的自振频率,使其尽量接近主结构的基本频率或激振频率,这样当主结构受激振而振动时,子结构就会产生一个与主结构振动方向相反的惯性力作用在主结构上,使主结构的反应衰减并受到控制。
子结构的质量可以是固体质量也可以是液体质量。
台北101大厦的那个大球就是TMD的一种2、TLD调频液体阻尼器(Tuned Liquid Damper,简称TLD)是一种被动耗能减振装置,近年来进行了大量的研究和应用。
调谐液体阻尼器利用固定水箱中的液体在晃动过程中产生的动侧力来提供减振作用。
其具有构造简单,安装容易,自动激活性能好,不需要启动装置等优点,可兼作供水水箱使用。
3、TLCD调谐液柱式阻尼系统(Tuned liquid column dampe,简称TLCD)利用辅助振动系统来消除主体结构的振动。
9.3 耗能减震结构设计9.3.l 结构耗能减震原理与耗能减震结构特点结构耗能减震技术是在结构物某些部位(如支撑、剪力墙、节点、连接缝或连接件、楼层空间、相邻建筑间、主附结构间等)设置耗能(阻尼)装置(或元件),通过耗能(阻尼)装置产生摩擦,弯曲(或剪切、扭转)弹塑(或粘弹)性滞回变形耗能来耗散或吸收地震输人结构中的能量,以减小主体结构地震反应,从而避免结构产生破坏或倒塌,达到减震控震的目的。
装有耗能(阻尼)装置的结构称为耗能减震结构。
耗能减震的原理可以从能量的角度来描述,如图9.11结构在地震中任意时刻的能量方程为:传统抗震结构E in=E v+E c+E k+E h耗能减震结构E in=E v+E c+E k+E h+E d式中E in——地震过程中输入结构体系的能量;Ev ——结构体系的动能;Ec——结构体系的粘滞阻尼耗能;E k——结构体系的弹性应变能;E h——结构体系的滞回耗能;Ed——耗能(阻尼)装置或耗能元件耗散或吸收的能量。
图 9.11 结构能量转换途径对比a )地震输人b )传统抗震结构c )消能减震结构在上述能量方程中,由于Ev 和Ek 仅仅是能量转换,不能耗能,Ec 只占总能量的很小部分(约5%左右),可以忽略不计。
在传统的抗震结构中,主要依靠Eh 消耗输入结构的地震能量,但因结构构件在利用其自身弹塑性变形消耗地震能量的同时,构件本身将遭到损伤甚至破坏,某一结构构件耗能越多,则其破坏越严重。
在耗能减震结构体系中,耗能(阻尼)装置或元件在主体结构进入非弹性状态前率先进入耗能工作状态,充分发挥耗能作用,耗散大量输入结构体系的地震能量,则结构本身需消耗的能量很少,这意味着结构反应将大大减小,从而有效地保护了主体结构,使其不再受到损伤或破坏。
一般来说,结构的损伤程度与结构的最大变形Δmax 和滞回耗能Eh (或累积塑性变形)成正比,可以表达为:),(max h E f D ∆=在耗能减震结构中,由于最大变形和构件的滞回耗能较之传统抗震结构的最大变形和滞回耗能大大减少,因此结构的损伤大大减少。
耗能减震结构具有减震机理明确,减震效果显著,安全可靠,经济合理,技术先进,适用范围广等特点。
目前,已被成功用于工程结构的减震控制中。
9.3.2 耗能减震装置的类型与性能9.3.2.1 耗能减震装置的类型与性能耗能减震装置的种类很多,根据耗能机制的不同可分为摩擦耗能器。
钢弹塑性耗能器、铅挤压阻尼器、粘弹性阻尼器和粘滞阻尼器等;根据耗能器耗能的依赖性可分为速度相关型(如粘弹性阻尼器和粘滞阻尼器)和位移相关型(如摩擦耗能器、钢弹塑性耗能器和铅挤压阻尼器)等。
(1)摩擦耗能器图9 12 Pall型摩擦耗能器及典型滞回曲线摩擦耗能器是根据摩擦做功而耗散能量的原理设计的。
目前已有多种不同构造的摩擦耗能器,如Pall型摩擦耗能器、摩擦筒制震器、限位摩擦耗能器、摩擦滑动螺栓节点及摩擦剪切铰耗能器等。
图9.12(a)(b)为Pall等设计的摩擦耗能装置,它是一可滑动而改变形状的机构。
机构带有摩擦制动板,机构的滑移受板间摩擦力控制,而摩擦力取决于板间的挤压力,可以通过松紧节点板的高强螺栓来调节。
该装置按正常使用荷载及小震作用下不发生滑动设计,而在强烈地震作用下,其主要构件尚未发生屈服,装置即产生滑移以摩擦功耗散地震能量,并改变了结构的自振频率,从而使结构在强震中改变动力特性,达到减震目的。
(如何设计,如何计算)摩擦耗能器种类很多,但都具有很好的滞回特性,滞回环呈矩形,耗能能力强,工作性能稳定等特点。
图9.12(c)为典型的滞回曲线。
摩擦耗能器一般安装在支撑上形成摩擦耗能支撑。
(2)钢弹塑性耗能器软钢具有较好的屈服后性能,利用其进入弹塑性范围后的良好滞回特性,目前已研究开发了多种耗能装置,如加劲阻尼(ADAS)装置、锥形钢耗能器、圆环(或方框)钢耗能器、双环钢耗能器、加劲圆环耗能器。
低屈服点钢耗能器等。
这类耗能器具有滞回性能稳定,耗能能力大,长期可靠并不受环境与温度影响的特点。
加劲阻尼装置是由数块互相平行的X形或三角形钢板通过定位件组装而成的耗能减震装置,如图9.13(a)所示。
它一般安装在人字形支撑顶部和框架梁之间,在地震作用下,框架层间相对变形引起装置顶部相对于底部的水平运动,使钢板产生弯曲屈服,利用弹塑性滞回变形耗散地震能量。
图9.13u)为8块三角形钢板组成的加劲阻尼装置的滞回曲线。
双环钢环耗能器由两个简单的耗能圆环构成,这种耗能器既保留了圆环钢耗能器变形大、构造简单、制作方便的特点,又提高了初始的承载能力和刚度,使其耗能能力大为改善。
试验研究表明,这种耗能器的滞回环为典型的纺锤形,形状饱满,具有稳定的滞变回路。
加劲圆环耗能器由耗能圆环和加劲弧板构成,即在圆环耗能器中附加弧形钢板以提高圆环钢耗能器的刚度和阻尼,改善圆环钢耗能器承载能力和初始刚度较低的缺点。
试验研究表明,加劲圆环耗能器工作性能稳定,适应性好,变形能力强,耗能能力可随变形的增大而提高,而且具有多道减震防线和多重耗能特性。
低屈服点钢是一种屈服点很低、延性滞回性能很好的材料,图9.14所示为钢材型号为BT-I。
YP100、宽厚比D/t为40的屈服点钢耗能器试验后的形状和滞回曲线。
可以看出,该类耗能器具有较强的耗能能力,滞回曲线形状饱满,性能稳定。
(3)铅耗能器铅是一种结晶金属,具有密度大、熔点低、塑性好、强度低等特点。
发生塑性变形时晶格被拉长或错动,一部分能量将转换成热量,另一部分能量为促使再结晶而消耗,使铅的组织和性能回复至变形前的状态。
铅的动态回复与再结晶过程在常温下进行,耗时短且无疲劳现象,因此具有稳定的耗能能力。
图9.15为利用铅挤压产生塑性变形耗散能量的原理制成的阻尼器。
图9.15(a)为收缩管型,图9.15(b)为鼓凸轮型,当中心轴相对钢管运动时,铅被挤呀压通过中心轴与壁间形成的挤压口而产生塑性变形耗散能量。
铅挤压耗能器具有有“库仑摩擦”的特点,图915 铅挤压阻尼器及典型滞回曲线其滞回曲线基本呈矩形,如图9.15(C),在地震作用下,挤压力和耗能能力基本上与速度无关。
此外,还有利用铅产生剪切或弯剪塑性滞回变形耗能原理制成的铅剪切耗能器I形铝耗能器等。
(4)粘弹性阻尼器粘弹性阻尼器是由粘弹性材料和约束钢板所组成。
典型的粘弹性阻尼器如图9.16(a)所示,它是由两个T形约束钢板夹一块矩形钢板所组成,T形约束钢板与中间钢板之间夹有一层粘弹性材料,在反复轴向力作用下,约束T形钢板与中间钢板产生相对运动,使粘弹性材料产生往复剪切滞回变形,以吸收和耗散能量。
图9.16 (b)为粘弹性阻尼器的典型滞回曲线,可以看出,其滞回环呈椭圆形,具有很好的耗能性能,它能同时提供刚度和阻尼。
由于粘弹性材料的性能受温度、频率和应变幅值的影响,所以粘弹性阻尼器的性能受温度、频率和应变幅值的影响,有关研究结果表明,其耗能能力随着温度的增加而降低;随着频率的增加而增加,但在高频下,随着循环次数的增加,耗能能力逐渐退化至某一平衡值。
当应变幅值小于50%时,应变的影响不大,但在大应变的激励下,随着循环次数的增加,耗能能力逐渐退化至某一平衡值。
(5)粘滞阻尼器粘滞阻尼器主要有筒式粘滞阻尼器、粘滞阻尼墙系统等。
筒式粘滞阻尼器一般由缸体、活塞和粘滞流体组成。
活塞上开有小孔,并可以在充有硅油或其他粘性流体的缸内作往复运动。
当活塞与筒体间产生相对运动时,流体从活塞的小孔内通过,对两者的相对运动产生阻尼,从而耗散能量。
图9.17(a)为典型的油阻尼器,图9.17(b)为油阻尼器的恢复力特性,形状近似为椭圆。
油阻尼器产生的阻尼力一般与速度和温度有关。
9.3.2.2 耗能器的恢复为模型(1)速度相关型耗能器的恢复力模型图9.18为速度相关型耗能器的恢复力-变形曲线。
速度相关型耗能器的恢复力与变形和速度的关系一般可以表示为:d d d F k C =∆+∆式中d k 和d C ——耗能器的刚度和阻尼器系数;∆和 ∆—耗能器的相对位移和相对速度。
对于粘滞阻尼器,一般Kd=0,C=C 0,阻尼力仅与速度有关,可表示为:0d F C =∆式中C 0粘滞阻尼器的阻尼系数,可由阻尼器的产品型号给定或由试验确定。
对于粘弹性阻尼器,刚度和阻尼系数一般由式下式确定:()()()d d AG AG C K ηωωωωδδ==式中η(ω)、G (ω)—粘弹性材料的损失因子和剪切模量,一般与频率和速度有关,由粘弹性材料特性曲线 确定;A 、δ——粘弹性材料层的受剪面积和厚度;ω—结构振动的频率。
(2)滞变型耗能器的恢复力模型软钢类耗能器具有类似的滞回性能,可采用相似的计算模型,仅其特征参数不同。
该类耗能器的最理想的数学模型可采用Ramberg -Osgood 模型,但由于其不便于计算分析,故可采用图9.19(a )所示的折线型弹性-应变硬化模型来描述,恢复力和变形的关系可表示为:()101d y y F k k α=∆+∆-∆式中K1—— 初始刚度;a 。
——第二刚度系数;Δy —屈服变形。
摩擦耗能器和铅耗能器的滞回曲线近似为“矩形”,具有较好的库仑特性,且基本不受荷载大小、频率、循环次数等的影响,故可采用图9.19(b )所示的刚塑性恢复力模型。
对于摩擦耗能器,恢复力可由式(9.20)计算:()()0sgn d F F t =∆F 0-静摩擦力对于铅挤压阻尼器,恢复力可按式(9.21)计算: 1102ln d y A F f A βσ⎛⎫=+ ⎪⎝⎭式中 β——大于1的系数;A1——铅变形前的面积;A2——发生塑性后的截面面积;f0——摩擦力。
9.3.3 耗能减震结构的设计要求(1)耗能部件的设置耗能减震结构应根据罕遇地震作用下的预期结构位移控制要求,设置适当的耗能部件,耗能部件可由耗能器及斜支撑、填充墙、梁或节点等组成。
耗能减震结构中的耗能部件应沿结构的两个主轴方向分别设置,耗能部件宜设置在层间变形较大的位置,其数量和分布应通过综合分析合理确定。
(2)耗能部件的性能要求耗能部件应满足下列要求:①耗能器应具有足够的吸收和耗散地震能量的能力和恰当的阻尼;耗能部件附加给结构的有效阻尼比宜大于10%,超过20%时宜按20%计算。
②耗能部件应具有足够的初始刚度,并满足下列要求: 速度线性相关型耗能器与斜撑、填充墙或梁组成耗能部件时,该部件在耗能器耗能方向的刚度应符合式(9.22)要求:16b V k C T π⎛⎫≥ ⎪⎝⎭式中Kb —支承构件在耗能器方向的刚度;Cv —耗能器的线性阻尼系数;T1—耗能减震结构的基本自振周期。
位移相关型耗能器与斜撑、填充墙或梁组成耗能部件时,该部件恢复力滞回模型的参数宜符合下列要求; /2/30.8Py Sy p Py s sy U U k U k U ∆∆≤∆⎛⎫⎛⎫≥ ⎪⎪∆⎝⎭⎝⎭式中Kp .——耗能部件在水平方向的初始刚度;ΔU py ——耗能部件的屈服位移;Ks ——设置耗能部件的结构层间刚度;ΔU sy ——设置耗能部件的结构层间屈服位移。