答案
4/5。
练习题二及答案
练习题二
计算1/3+1/15+1/35+1/63的值。
计算过程
首先将每个分数进行裂项,得到1/3=1/1-1/3, 1/15=1/3-1/5, 1/35=1/5-1/7, 1/63=1/7-1/9。然后将这些分数相加,得到原式 =1/1-1/3+1/3-1/5+1/5-1/7+1/7-1/9=1-1/9=8/9。
裂项的局限性
分数裂项法虽然可以化简一些复杂的分 数,但是其适用范围有限,不能解决所
有数学问题。
在实际应用中,需要根据具体问题选择 合适的数学方法,综合考虑各种方法的
优缺点。
另外,裂项法在处理一些特殊情况时可 能会遇到困难,例如分子中含有未知数
的情况,需要谨慎处理。
05
分数裂项的练习题与答案
练习题一及答案
答案
5/6。
THANKS
感谢观看
其次,要确保分子经过裂项后能 够相互抵消,留下非零常数。
最后,要确保整个等式在裂项后 仍然成立,可以通过代入法进行
验证。
裂项的适用范围
分数裂项法适用于有理函数的计算,特别是有理函数求极限、求积分等 问题。
对于一些难以直接化简的复杂有理函数,分数裂项法可以将其转化为容 易处理的形式,简化计算过程。
需要注意的是,裂项法并不适用于所有函数,特别是无理函数、三角函 数等。
答案
8/9。
练习题三及答案
练习题三
计算(2^2)/(2^2+4^2)+(3^2)/(3^2+4^2)+(4^2)/(4^2+4^2)的值。
计算过程
首先将每个分数进行裂项,得到(2^2)/(2^2+4^2)=2/(2+4), (3^2)/(3^2+4^2)=3/(3+4), (4^2)/(4^2+4^2)=4/(4+4)。然后将这些分数相加,得到 原式=2/(2+4)+3/(3+4)+4/(4+4)=5/6。