高等代数试题
- 格式:doc
- 大小:1.39 MB
- 文档页数:47
高等代数试题及参考答案The document was prepared on January 2, 2021高等代数一考试试卷一、单选题每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入答题纸内相应的表格中.错选、多选、不选均不给分,6小题,每小题4分,共24分 1. 以下乘积中 是4阶行列式ij D a =展开式中取负号的项.A 、11223344a a a a .B 、14233142a a a a .C 、12233144a a a a .D 、23413214a a a a .2.行列式13402324a --中元素a 的代数余子式是 .A 、0324-. B 、0324--. C 、1403-. D 、1403. 3.设,A B 都是n 阶矩阵,若AB O =,则正确的是 . A 、()()r A r B n +≤. B 、0A =. C 、A O =或B O =. D 、0A ≠.4.下列向量组中,线性无关的是 .A 、{}0.B 、{},,αβ0.C 、{}12,,,r ααα,其中12m αα=.D 、{}12,,,r ααα,其中任一向量都不能表示成其余向量的线性组合. 5.设A 是n 阶矩阵且()r A r n =<,则A 中 .A 、必有r 个行向量线性无关.B 、任意r 个行向量线性无关.C 、任意r 个行向量构成一个极大线性无关组.D 、任意一个行向量都能被其它r 个行向量线性表出.6.n 阶矩阵A 具有n 个不同的特征值是A 与对角阵相似的 条件. A 、充要. B 、充分非必要. C 、必要非充分. D 、非充分非必要. 二、判断题正确的打√,错误的打×,5小题,每小题2分,共10分.1.若A 为n 阶矩阵,k 为非零常数,则kA k A =. 2.若两个向量组等价,则它们包含的向量个数相同. 3.对任一排列施行偶数次对换后,排列的奇偶性不变. 4.正交矩阵的逆矩阵仍是正交矩阵. 5.任何数域都包含有理数域. 三、填空题每空4分,共24分.1.行列式000100201000D n n==- . 2.已知5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)αβ---=--=-,则α= ,(,)αβ= .3.矩阵12311211022584311112A ---⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥--⎣⎦,则()r A = . 4.设线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解,其系数矩阵A 与增广矩阵A 的秩分别为s 和t ,则s 与t 的大小关系是 .5.设111123111,124111051A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,则1A B -= . 四、计算题4小题,共42分1.计算行列式1111111111111a a a a;2111116541362516121612564.每小题6分,共12分2.用基础解系表出线性方程组123451234512345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解.10分3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组.10分4.求矩阵211020413A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征根和特征向量.10分 一、单选题每题4分,共24分二、判断题每题2分,共10分三、填空题每空4分,共24分1.(1)2(1)!n n n --⋅; 2. 20;3.3; 4.s t =;5.351222312212112-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. 四、计算题共42分1.12分,每小题各6分 1解:11131111111111311111(3)111311111111311111a a a a a a a a a a a aa a a++==+++ ..............3分31111010(3)(3)(1)001001a a a a a a -=+=+--- ...................3分注:中间步骤形式多样,可酌情加分 2解:222233331111111116541654136251616541216125641654=,此行列式为范德蒙行列式 ......3分 进而2222333311111654=(61)(51)(41)(56)(46)(45)12016541654=------=-原式 .......3分2.10分解:用初等变换把增广矩阵化为阶梯形1213211213211213212111360317740115411122220115410317742351710501711630171163---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥--------⎣⎦⎣⎦⎣⎦1213211213210115410115410317740048510171163000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥-----⎢⎥⎢⎥---⎣⎦⎣⎦ ..................3分 得同解方程组取45,x x 为自由未知量,得方程的一般解为12345234534521321544185x x x x x x x x x x x x++=+-⎧⎪-=+-⎨⎪=--+⎩其中45,x x 为自由未知量 将450,0x x ==代入得特解01551(,,,0,0)444γ=--. ................3分用同样初等变换,得到与导出组同解的方程组12345234534523205404850x x x x x x x x x x x x ++-+=⎧⎪--+=⎨⎪+-=⎩仍取45,x x 为自由未知量,得一般解12345234534523254485x x x x x x x x x x x x++=-⎧⎪-=-⎨⎪=-+⎩,将451,0x x ==和450,4x x ==分别代入得到一个基础解系:12(1,3,2,1,0),(9,11,5,0,4)ηη=--=- ...............3分所以,原方程组的全部解为01122k k γηη++,12,k k 为数域P 中任意数. ............1分注:答案不唯一,但同一齐次方程组的基础解系必等价. 3.10分解:因123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-是线性无关向量组,现将 123,,ααα正交化,令11βα=,αβαββαββββββ-=--=-----=-313233121122(,)(,)814(3,5,1,1)(1,1,1,1)(0,2,1,3)(,)(,)414(1,1,2,0)............................6分再将向量组123,,βββ单位化,得βγβ==1111111(,,,)2222,βγβ==--2222,1,3)14,βγβ==-3332,0)6. 即123,,γγγ就是与123,,ααα等价的正交单位向量组. ....................4分 注:答案不唯一. 4.10分解:A 的特征多项式为所以A 的特征值为1,2-2重. ....................4分1λ=-对应的齐次线性方程组为它的基础解系是1101η⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 11k η10k ≠为A 的属于特征值1-的特征向量; .................3分2λ=对应的齐次线性方程组为它的基础解系是1144231,001ηη⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦;2233k k ηη+23,k k 不同时为零为A 的属于特征值2的特征向量. ...............3分注:答案不唯一.。
高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
复习提纲一、填空题1. 设B A ,是两个n 级对角矩阵,则乘积AB 是2. 实二次型()()31212322213212212,,x x x kx x k x x x x x f ++-++=为正定二次型,则k 的取值范围为3. 如果把复数域看作实数域上的线性空间,那么这个空间的维数是4.设q p ,是两个实数,在2R 中对于向量),(),,(2121b b a a ==βα,规定内积为2121),(b qb a pa +=βα,使2R 构成欧氏空间的充要条件是5.设βα,是欧氏空间V 中两个线性无关的向量,则|),(|βα ||||βα∙ . 6.在2R 中,对于向量()()2121,,,b b a a ==βα规定内积为()221153,b a b a +=βα ,则基()()1,0,0,121==e e 的度量矩阵为7.设A 是实对称矩阵,且E A =2,则A 是 矩阵.已知二次型31212322212224),,(x x x tx x x x x x x f ++++=是正定二次型,则t 的取值范围是 .8.设有3R 的子空间(){}R b a b a b a W ∈=+=,,20,,,则W 的维数= .9. 设()()1,1,2,121-==εε与()()1,0,0,121==ηη是2R 中的两组基,则从基21,ηη到基21,εε的过渡矩阵为 ,向量()2,3-=α在基21,εε下的坐标为 ,设线性变换A i i ηε=()2,1=i , 则A 在基21,εε下的矩阵为 .10. 在欧式空间4R 中,已知向量()()3,2,2,1,1,5,1,3==βα,则内积()βα,= ,两向量的夹角β,= .11. 设3R 的子空间(){}R x x x x x W ∈+=21221,,0,2,维()=W ,W 的一组基为 .12. 已知二次型3231212322214225),,(x x x x x tx x x x x x x f +-+++=是正定二次型,则t 的取值范围是 .13. 设()()1,1,2,121-==εε与()()1,0,0,121==ηη是2R 中的两组基,则从基21,εε到基21,ηη的过渡矩阵为 ,向量()2,3-=α在基21,εε下的坐标为 ,设线性变换A i i ηε=()2,1=i , 则A 在基21,εε下的矩阵为 . 14. 在欧式空间4R 中,已知向量()()2,1,1,1,1,1,0,1-=-=βα,则两向量的夹角βα,= .15. 在2P 中,已知两组基:()()1,1,2,121-==εε与()(),1,0,3,121=-=ηη则基21,ηη到基21,εε的过渡矩阵为 ,向量()0,1=α在基21,εε下的坐标. .16. 设3R 中有两个线性变换()()0,,,,323211a a a a a =A ,()3212,,a a a A()33221,,a a a a a ++=,则()()=A -A 32121,,a a a ,()()=A ∙A 32121,,a a a .17. 设B A ,是两个n n ⨯矩阵,若B A ~,则A B ,2A 2B .18. 设3R 中有两个线性变换()()0,,,,323211a a a a a =A ,()3212,,a a a A()33221,,a a a a a ++=,则()()=A +A 32121,,a a a ,()()=A -3211,,2a a a ,()()=A ∙A 32121,,a a a线性变换()21A ∙A 在基()0,0,11=e ,()0,1,02=e ,()1,0,03=e 下的矩阵 为 .19. 设矩阵A 满足O A A =-42,则A 的特征值是 .20. 设3,1,1-是33⨯矩阵A 的特征值,则3254E A A --= .21. 设q p ,是两个实数,在2R 中对于向量),(),,(2121b b a a ==βα,规定内积为2121),(b qb a pa +=βα,使2R 构成欧氏空间的充要条件是 ,找出2R 的一组标准正交基 .二、判断题:1. 在数域P 上,任意一个对称矩阵都合同于一个对角矩阵.2. 设A 为n 阶实对称矩阵,0>A ,则存在实的n 维向量O X ≠0,使000>'AX X .3. 正定二次型()321,,x x x f 的规范形是232221x x x ++.4. 设4321,,,αααα是线性空间V 的一组向量,则(L ),,,4321αααα),(),(4321ααααL L ⊕=.5. 设A 是线性空间V 的线性变换,V ∈βα,,若βαA =A ,则βα=.6. 设A 是线性空间V 的线性变换,ξ与η是A 的两个特征向量,则ηξ+也是A 的特征向量.7. 设A 是复数域C 上的n 维线性空间V 的线性变换,则总可以找到V 的一组基,使A 在这组基下的矩阵是对角矩阵.8. 对任意实对称矩阵A ,总能找到正交矩阵T ,使AT T 1-为对角矩阵.9. 设V 是n 维线性空间,A 是V 上的线性变换,则V A AV =+-)(1θ.10. 任意两组标准正交基间的过渡矩阵是正交矩阵.11. 设4321,,,αααα是空间V 的向量,θαααα=-+-43212345,则),(),(4321ααααL L =.12. 设两个n 级矩阵A 与B 有相同的特征多项式,则A 与B 合同. 13. 在复数域上三元二次型的规范形为()232221321,,x x x x x x f ++=.14. 全体复数可看成实数域上的二维向量空间.15. 21,V V 是线性空间V 的两个子空间,那么21V V 也是V 的子空间.16. 次数等于n 的实系数多项式的全体,对于多项式的加法和数量乘法构成实数域上的线性空间. 17. 在线性空间V 中,设αξ=A ,其中V ∈α是一固定的向量,则A 是线性空间V的线性变换.18. 设A 是线性空间V 的线性变换,ξ与η是A 的属于两个不同特征值的特征向量,则ηξ+也是A 的特征向量.19. 设A 是一个n 级正定矩阵,而(),,,,21n x x x =α(),,,,21n y y y =β在n R 中定义内积()βα,为()T A βαβα=,,则nR 是一欧式空间.20. η是欧式空间V 中一单位向量,定义()ηαηαα,-=A ,则A 是正交变换. 21. 任意一个n 级实对称矩阵A ,都存在一个n 级对角形矩阵T ,使T 与A 既合同又相似.22. 三元正定二次型的规范形为()232221321,,x x x x x x f ++=. 23. 全体复数可看成复数域上的一维向量空间.24. 21,V V 是线性空间V 的两个子空间,那么21V V 也是V 的子空间.25. 在线性空间V 中,设αξ=A ,其中V ∈α是一固定的非零向量,则A 是线性空间V 的线性变换.26. η是欧式空间V 中一单位向量,定义()ηαηαα,3-=A ,则A 是正交变换.. 27. 实对称矩阵A 是正定矩阵的充要条件是A 合同于单位矩阵. 28. 全体复数可看成实数域上的二维向量空间.29. 设n ααα,,,21 是欧式空间V 中的一组基,如果V ∈β且满足()0,=i αβ()n i ,,2,1 =,则O=β.30. 在[]x R 3中定义内积为()()()()()dx x g x f x g x f ⎰-=11,,则31,,12-x x 是 []x R 3的一组标准正交基.31. 设(){}F b a b a V ∈=,,,现取加法为通常的加法,而数量乘积重新定义为:()()kb a b a k ,,= ,则V 关于加法与新定义的数量乘积是F 上的线性空间. 32. 数域F 上的n 元线性方程组的解集合是nF 上的子空间.33. 设21,V V 是线性空间V 的两个子空间,那么21V V 也是V 的子空间. 34. 设4321,,,αααα是线性空间V 的一组向量,且满足=-+-43212345αααα,则()()432321,,,,ααααααL L =.35. 设(){}F b a b a V ∈=,,,对V 定义两种运算:()()()k d b c a d c b a ,,,,++=⊕⊙()()kb a b a ,,=,则V 关于加法和数量乘积是F 上的向量空间. 36. (){}F b a b a b a ∈+,,,是3F 的子空间.37. (){}F a a a ∈3,,1是3F 的子空间.38. nF 中,设n εεε,,,21 是n 维单位向量组,则=nF(n εεε,,,21 ).39. 设(),,F T F Mat S n n ==⨯令()S A A A ∈=,σ,则σ是从S 到T 的一个线性变换.三、解答题1. 已知实二次型313221321),,(x x x x x x x x x f ++=(1)试用矩阵乘积的形式表示f ;(2)试求非退化线性替换化f 为标准型.2. 设22,,1x x x x ++是线性空间3][x R 的一组基,求2231x x +-在这组基的 坐标.3. 设3P 中定义线性变换A 在基321,,εεε下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=101110211A ,计算(1)V A 与A 的秩;(2)()O 1-A 与A 的零度4. 在线性空间3P 中,给出两个向量组⎩⎨⎧=-=)1,1,1()0,1,1(21αα; ⎩⎨⎧--=-=)1,1,1()0,3,1(21ββ求),(),(2121ββααL L +与),(),(2121ββααL L 的基与维数5. 设A 是欧氏空间V 的线性变换,A 在V 的一组基321,,εεε下是矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=312132220A (1)求A 的特征值与一组线性无关的特征向量;(2)求可逆矩阵T ,使AT T1-为对角矩阵.6. 在欧氏空间4R 中,求与)0,4,1,1(--=α,)2,2,1,1(=β,)4,5,2,3(=γ都正交的单位向量.7. 已知实二次型323121321224),,(x x x x x x x x x f ++-=求(1)用矩阵乘积的形式表示()321,,x x x f ;(2)用非退化线性替换化()321,,x x x f 为标准形. 8. 设A 是线性空间V 的线性变换,A 在V 的一组基321,,εεε下是矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=284014013A (1)求A 的特征值与一组线性无关的特征向量;(2)问A 是否可对角化?若不可对角化,则说明理由;若可对角化,则求出可逆矩阵T ,使AT T1-为对角矩阵.9. 已知齐次线性方程组⎩⎨⎧=+-+=-+-+0032532154321x x x x x x x x x ,求(1)一个基础解系;(2)解空间的一组标准正交基. 10. 设(){}0,,3213211=++=x x x x x x V ,(){}R y y V ∈=,0,02 证明:(1)1V 是3R 子空间;(2)证明213V V R ⊕=.11. 已知实二次型32312123222132148455),,(x x x x x x x x x x x x f --+++=求(1)用矩阵乘积的形式表示()321,,x x x f ; (2)用非退化线性替换化()321,,x x x f 为标准形.12.设A 是线性空间V 的线性变换,A 在V 的一组基321,,εεε下是矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100A (1)求A 的特征值与一组线性无关的特征向量;(2)问A 是否可对角化?若不可对角化,则说明理由;若可对角化,则求出可逆矩阵T ,使AT T1-为对角矩阵.13. 设(){}0,,3213211=++=x x x x x x V ,(){}32132122,,x x x x x x V ===, 证明:(1)1V 是3R 子空间;(2)证明213V V R ⊕=. 14. 已知实二次型323121232232184434),,(x x x x x x x x x x x f +-+-=求(1)用矩阵乘积的形式表示()321,,x x x f ;(2)用非退化线性替换化()321,,x x x f 为标准形. (3)()321,,x x x f 的正、负惯性指数及符号差. 15. 设A 是欧氏空间V 的线性变换,A 在V 的一组基321,,εεε下是矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=312132220A (1)求A 的特征值与一组线性无关的特征向量;(2)求可逆矩阵T ,使AT T1-为对角矩阵;(3)写出V 的一组标准正交基,使A在这组基下的矩阵为对角矩阵. 16.设(1)证明21,v v 是3R 子空间;(2)证明213v v R ⊕=。
高等代数期中考试试题一.填空题(每小题4分,共40分)。
1. 设是上的线性变换,,则下的矩阵为2. 设的线性变换,其中R是实数域,,.3.已知中线性变换在基矩阵为则在基下的矩阵为4. 已知矩阵,则A的特征值为 -1 , 5对应的特征向量分别为,,;,,.5. 已知矩阵可对角化,则k= .6.已知三级矩阵A的三个特征值为1,2,3,则的行列式= .7.已知矩阵A的特征矩阵与矩阵等价,则的标准形及A的Jordan标准形分别为, .8.已知矩阵A的Jordan标准形为,则A的有理标准形为—————————9.设的特征多项式为,写出A的所有可能的Jordan标准形。
10.设矩阵A的特征多项式为,则A可逆,的特征多项式为。
二.(10分)设V是数域P上的4维线性空间,是V上的线性变换,在基下的矩阵,试求含的最小不变子空间.三.(10分)设是n维线性空间V上的线性变换,证明:维维n即,的秩+的零度=n四.(15分)求矩阵的Jordan标准形及A的最小多项式。
五.(15分)设3维线性空间V上线性变换在基下的矩阵,记L(V)为V上线性变换全体,. 1)证明:是L(V)的子空间;2)求的一组基和维数.六.(10分) 设A,B为n级实矩阵,证明:若A,B在复数域上相似,则A,B 在实数域上也相似。
参考答案一.填空题(每小题4分,共40分)。
1. 设是上的线性变换,,则下的矩阵为2. 设的线性变换,其中R是实数域,,.3.已知中线性变换在基矩阵为则在基下的矩阵为4. 已知矩阵,则A的特征值为 -1 , 5对应的特征向量分别为,,不同时为零且;,,.5. 已知矩阵可对角化,则k= 1 .6.已知三级矩阵A的三个特征值为1,2,3,则的行列式= 100 .7.已知矩阵A的特征矩阵与矩阵等价,则的标准形及A的Jordan标准形分别为, .8.已知矩阵A的Jordan标准形为,则A的有理标准形为—————————9.设的特征多项式为,写出A的所有可能的Jordan标准形。
《高等代数》试题库一、 选择题1.在[]F x 里能整除任意多项式的多项式是( )。
A .零多项式B .零次多项式C .本原多项式D .不可约多项式2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ( )。
A .1 B .2 C .3 D .43.以下命题不正确的是 ( )。
A . 若()|(),()|()f x g x f x g x 则;B .集合{|,}F a bi a b Q =+∈是数域;C .若((),'())1,()f x f x f x =则没有重因式;D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的( ) 条件。
A . 充分B . 充分必要C .必要D .既不充分也不必要5.下列对于多项式的结论不正确的是( )。
A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f =B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ±C .如果)()(x g x f ,那么][)(x F x h ∈∀,有)()()(x h x g x fD .如果)()(,)()(x h x g x g x f ,那么)()(x h x f6. 对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号, 则行列式变为D -;命题乙:对换行列式中两行的位置, 则行列式反号”有( ) 。
A .甲成立, 乙不成立;B . 甲不成立, 乙成立;C .甲, 乙均成立;D .甲, 乙均不成立7.下面论述中, 错误的是( ) 。
A . 奇数次实系数多项式必有实根;B . 代数基本定理适用于复数域;C .任一数域包含Q ;D . 在[]P x 中, ()()()()()()f x g x f x h x g x h x =⇒=8.设ij D a =,ij A 为ij a 的代数余子式, 则112111222212.....................n n n n nn A A A A A A A A A =( ) 。
高等代数模拟试题及答案高等代数模拟试题及答案(一)26.如果矩阵rankAr,则 ( )A. 至多有一个r阶子式不为零;B.所有r阶子式都不为零C. 所有r1阶子式全为零,而至少有一个r阶子式不为零;D.所有低于r阶子式都不为零27. 设A为方阵,满足AA1A1AI,则A的行列式|A|应该有 ( )。
A. |A|0B. |A|0C. |A|k,k1D. |A|k,k128. A是n阶矩阵,k是非零常数,则kA ( )。
A. kA;B. kA;C. knAD. |k|nA29. 设A、B为n阶方阵,则有( ).A.A,B可逆,则AB可逆B.A,B不可逆,则AB不可逆C.A可逆,B不可逆,则AB不可逆D.A可逆,B不可逆,则AB不可逆30. 设A为数域F上的n阶方阵,满足A2A0,则下列矩阵哪个可逆( )。
2A.AB.AIC.AI DA2I31. A,B为n阶方阵,AO,且R(AB)0,则( )。
A.BO;B.R(B)0;C.BAO;D.R(A)R(B)n32. A,B,C是同阶方阵,且ABCI,则必有( )。
A. ACBI;B. BACI;C.CABID. CBAI33. 设A为3阶方阵,且R(A)1,则( )。
A.R(A__)3;B.R(A__)2;C.R(A__)1;D.R(A__)034. 设A,B为n阶方阵,AO,且ABO,则( ).A.BOB.B0或A0C.BAOD.ABA2B2 20040000035. 设矩阵A1000,则秩A=( )。
00000200A.1B.2C.3D.436. 设A是mn矩阵,若( ),则AXO有非零解。
A.mn;B.R(A)n;C.mnD.R(A)m37. A,B是n阶方阵,则下列结论成立得是( )。
A.ABOAO且BO;B. A0AO;C.AB0AO或BO;D. AI|A|1高等代数模拟试题及答案(二)38. 设A为n阶方阵,且RAr<n,则a中( p="">A.必有r个行向量线性无关B.任意r个行向量线性无关C.任意r个行向量构成一个极大无关组D.任意一个行向量都能被其他r个行向量线性表示39. 设A为34矩阵,B为23矩阵,C为43矩阵,则下列乘法运算不能进行的是( )。
高代一期末考试试题及答案高等代数一期末考试试题一、选择题(每题2分,共10分)1. 以下哪个不是线性代数中的基本概念?A. 向量空间B. 线性变换C. 矩阵D. 微积分2. 矩阵的秩是指:A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中线性无关行的最大数量D. 矩阵中线性无关列的最大数量3. 线性方程组有唯一解的条件是:A. 系数矩阵的行列式不为零B. 系数矩阵的秩等于增广矩阵的秩C. 系数矩阵的秩等于未知数的个数D. 所有选项都是4. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 行阶梯形矩阵D. 非方阵5. 特征值和特征向量的计算与下列哪个矩阵运算相关?A. 矩阵的加法B. 矩阵的乘法C. 矩阵的转置D. 矩阵的行列式二、填空题(每空1分,共10分)6. 一个向量空间 \( V \) 的基 \( B \) 包含 \( n \) 个线性无关向量,则 \( V \) 的维数为 _______。
7. 若 \( A \) 是 \( m \times n \) 矩阵,\( B \) 是 \( n\times p \) 矩阵,则 \( AB \) 是 _______ 矩阵。
8. 线性变换 \( T: V \rightarrow W \) 的核是所有满足 \( T(v) = 0 \) 的向量 \( v \) 的集合,记为 _______。
9. 矩阵 \( A \) 与 \( B \) 相等,当且仅当它们具有相同的_______。
10. 一个 \( n \) 阶方阵的迹是其对角线上元素的 _______。
三、简答题(每题5分,共20分)11. 解释什么是线性相关和线性无关,并给出一个线性无关向量组的例子。
12. 描述矩阵的行列式计算的几何意义。
13. 说明如何使用高斯消元法求解线性方程组。
14. 什么是特征值分解?它在哪些领域有应用?四、证明题(每题10分,共20分)15. 证明如果矩阵 \( A \) 可逆,则 \( A \) 的行列式不为零。
一、单选题(32 分. 共8 题, 每题4 分)1) 设b 为3 维行向量,V ={(x1 , x2 , x3 ) | ( x1 , x2 , x3 ) =b},则。
CA) 对任意的b ,V 均是线性空间;B) 对任意的b ,V 均不是线性空间;C) 只有当b = 0 时,V 是线性空间;D) 只有当b σ 0 时,V 是线性空间。
2)已知向量组I:α1 ,α2 ,...,αs 可以由向量组II:⎭1 , ⎭2 ,..., ⎭t 线性表示,则下列叙述正确的是。
AA)若向量组I 线性无关,则s t ;B) 若向量组I 线性相关,则s >t ;C) 若向量组II 线性无关,则s t ;D) 若向量组II 线性相关,则s >t 。
3)设非齐次线性方程组AX =⎭中未定元个数为n,方程个数为m,系数矩阵A 的秩为r,则。
DA)当r <n 时,方程组AX =⎭有无穷多解;B) 当r =n 时,方程组AX =⎭有唯一解;C) 当r <m 时,方程组AX =⎭有解;D) 当r =m 时,方程组AX =⎭有解。
4)设A 是m ⨯n 阶矩阵,B 是n ⨯m 阶矩阵,且AB =I ,则。
AA) r( A) =m, r(B) =m ;B) r( A) =m, r(B) =n ;C) r( A) =n, r(B) =m;D) r( A) =n, r(B) =n 。
5)设K 上3 维线性空间V 上的线性变换ϕ在基⋂,⋂{1 1 1,⋂ 下的表示矩阵是|1 0 1| ,则ϕ 在基⋂1 , 2⋂2 ,⋂3 下的表示矩阵是 。
C1 2 3|||1 1 1|{1 2 1112222{ 1 11| | |2|| || 2 |A) |2 0 2 |;B) | 11 10 1 |;C) |10 1 ;D)|2 0 2 |。
|1 2 1 || 1 | 2|1 2 1 || 1 |26)设ϕ是V 到U 的线性映射,dim V =n, dim U =m 。
高等代数综合考试试题一、选择题(每题3分,共20题,总分60分)1. 高等代数的基本概念中,下列哪个选项是正确的?A. 定理B. 命题C. 运算D. 推论2. 下列哪个不是线性代数的研究内容?A. 矩阵与行列式B. 向量空间与线性方程组C. 群论与环论D. 特征值与特征向量3. 设A是一个n阶方阵,若有2个不同的正整数p和q使得$A^p = A^q = I$,则矩阵A的阶数n最小可能是:A. 3B. 4C. 5D. 64. 对于线性方程组$AX=B$,若$A^{-1}$存在,则方程组的解为:A. $X=A^{-1}B$B. $X=AB^{-1}$C. $X=A^{-1}AB$D. $X=BA^{-1}B$5. 设矩阵A的特征值为-1和2,特征向量分别为$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$和$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$,则矩阵A 的转置$A^T$的特征值和特征向量分别为:A. -1,2 和 $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$,$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$B. 1,-2 和 $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$,$\begin{bmatrix} -2 \\ -3 \end{bmatrix}$C. -1,2 和 $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$,$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$D. 1,-2 和 $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$,$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$6. 设A为n阶矩阵,若A的行列式$|A|=0$,则下列哪个选项是正确的?A. A是可逆矩阵B. A的逆矩阵不存在C. A的秩为n-1D. A的行向量线性相关...二、填空题(每空3分,共10题,总分30分)1. 设A为对称矩阵,若$A^2 = 4I$,则A的特征值为______。
数学系《高等代数》期末考试试卷年级专业学号姓名注:考试时间120分钟,试卷满分100分。
题号一二三四五总分签名得分一装订线得分阅卷教师一.判断题(正确的在题后的括号内打“√”;错误的在题后的括号内打“×”.每小题2分,共18分)1.向量空间一定含有无穷多个向量. ( ) 2.若向量空间V的维数dimV2,则V没有真子空间. ( )3.n维向量空间中由一个基到另一个基的过渡矩阵必为可逆矩阵. ( ) 4.线性变换把线性无关的向量组映成线性无关的向量组. ( ) 5.每一个线性变换都有本征值. ( ) 6.若向量是线性变换的属于本征值的本征向量,则由生成的子空间为的不变子空间. ( )7.保持向量间夹角不变的线性变换是正交变换. ( ) 8.两个复二次型等价的充分必要条件是它们有相同的秩. ( )9.若两个n阶实对称矩阵A,B均正定,则它们的和A B也正定. ( )得二分阅卷教师二.单项选择题(在每小题的四个备选答案中,选出一个正确的答案,并将其号码填在题目的括号内.每小题2分,共10分)1.下列命题不正确的是 ( ).A.若向量组{1,2,,r}线性无关,则它的任意一部分向量所成的向量组也线性无关;B.若向量组{1,2,,r}线性相关,则其中每一个向量都是其余向量的线性组合;C.若向量组{1,2,,r}线性无关,且每一i可由向量{1,2,,s}线性表示,则r s ;D.n(n0)维向量空间的任意两个基彼此等价.2.下列关于同构的命题中,错误的是( ).A.向量空间V 的可逆线性变换是V 到V 的同构映射;B.数域F 上的n 维向量空间的全体线性变换所成向量空间与数域F 上的所有n 阶矩阵所成向量空间同构;C.若是数域F 上向量空间V 到W 的同构映射,则1是W 到V 的同构映射;D.向量空间不能与它的某一个非平凡子空间同构.3.n 阶矩阵A 有n 个不同的特征根是A 与对角矩阵相似的 ( ).A.充分而非必要条件; B.必要而非充分条件;C.充分必要条件; D.既非充分也非必要条件.21x14.二次型q(x 1,x 2,x 3)(x 1,x 2)31x的矩阵是( ).22121A.; B.3111;310210C.310; D.1100000005.实二次型q(x 1,x 2,x 3)x Ax 正定的充分且必要条件是 ( ).A.A0; B.秩为3;C.A 合同于三阶单位矩阵; D.对某一x (x 1,x 2,x 3)0,有x Ax 0.三得分阅卷教师三.填空题(每小题2分,共10分,把答案填在题中横线上)1.复数域C 作为实数域R 上的向量空间,它的一个基是________.2.设F n{(x 1,x 2,,x n)xiF ,i 1,2,,n}是数域F 上n 元行空间,对任意(x 1,x 2,,x n)F n ,定义((x 1,x 2,,x n ))(0,0,x 1,x 2,,x n 2),则是一个线性变换,且的核Ker()的维数等于______.3.若A 是一个正交矩阵,则A 2的行列式A 2=________.4.在欧氏空间R 3中向量1(1,0,0)与2(0,1,0)的夹角=______.5.实数域R上5元二次型可分为_______类,属于同一类的二次型彼此等价,属于不同类的二次型互不等价.得四分阅卷教师四.计算题(每小题14分,共42分)1.求齐次线性方程组x 1x 2x 3x 403x 12x 2x 3x 40x 2x 2x 03425x14x 23x 33x4的解空间的一个基,再进一步实施正交化,求出规范正交基.1002.设A 021,求A 的特征根及对应的特征向量.问A 是否可以对角化?032若可以,则求一可逆矩阵T ,使T 1AT 为对角形.3.写出3元二次型q(x1,x2,x3)x1x24x2x3的矩阵.试用非奇异的线性变换,将此二次型变为只含变量的平方项.五得分阅卷教师五.证明题(每小题10分,共20分)1.设1,2为n阶矩阵A的属于不同特征根,1,2分别是A的属于1,2的特征向量,证明12不是A的特征向量.2.设是n维欧氏空间V的正交变换,且2为单位变换,某一规范正交基的矩阵,证明A为对称矩阵.A是关于V的数学系《高等代数》期末考试试卷(A 卷)年级专业学号姓名注:考试时间120分钟,试卷满分100分。
高等代数考研试题及答案一、选择题(每题3分,共30分)1. 下列矩阵中,哪个不是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [1, -1; 2, 2]2. 设线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) 由矩阵 \( A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \) 给出,那么 \( T(1, 2, 3) \) 的结果是:A. (3, 5, 3)B. (5, 3, 3)C. (1, 2, 3)D. (2, 3, 1)3. 多项式 \( p(x) = x^3 - 6x^2 + 11x - 6 \) 的根的个数是:A. 1B. 2C. 3D. 44. 设 \( V \) 是所有 \( n \) 次多项式的向量空间,\( T: V\rightarrow V \) 是一个线性变换,且 \( T(p(x)) = p'(x) \)。
如果 \( T \) 的特征值为 \( k \),那么 \( k \) 等于:A. 0B. 1C. -1D. \( n \)5. 下列哪个命题是正确的?A. 每个线性映射都可以用一个矩阵来表示。
B. 矩阵的乘积总是可交换的。
C. 两个相似矩阵必定是同阶矩阵。
D. 行列式的值总是正数或零。
6. 设 \( A \) 是一个 \( n \) 阶方阵,如果 \( A \) 的所有特征值的和等于 \( 0 \),那么 \( A \) 必定是:A. 正交矩阵B. 对角矩阵C. 零矩阵D. 反对称矩阵7. 如果一个 \( n \) 阶方阵 \( A \) 的所有元素都等于 \( 1 \),那么 \( A^n \) 的迹(trace)是:A. \( n \)B. \( n^n \)C. \( n! \)D. \( 0 \)8. 对于任意 \( n \) 阶方阵 \( A \),下列哪个选项是正确的?A. \( \det(A^2) = (\det A)^2 \)B. \( \det(A^T) = \det A \)C. \( \det(A + I) = \det A + 1 \)D. \( \det(A) = \det(A^T) \)9. 设 \( V \) 是一个向量空间,\( T: V \rightarrow V \) 是一个线性变换,如果 \( T \) 的一个特征向量 \( v \) 满足 \( T(v) = \lambda v \),那么 \( T \) 的逆变换 \( T^{-1} \)(如果存在)将 \( v \) 映射到:A. \( \lambda^{-1} v \)B. \( \frac{1}{\lambda} v \)C. \( v \)D. \( v + \lambda v \)10. 下列哪个矩阵是正交矩阵?A. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)B. \( \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \)D. \( \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \)二、填空题(每题4分,共20分)11. 矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) 的行列式 \( \det A \) 等于 _______。
大学高等代数试题及答案一、单项选择题(每题2分,共10分)1. 设矩阵A为3阶方阵,且|A|=1,则矩阵A的逆矩阵的行列式是()。
A. 0B. 1C. -1D. 32. 若线性方程组有唯一解,则该方程组的系数矩阵的秩与增广矩阵的秩()。
A. 不相等B. 相等C. 相差1D. 相差23. 以下哪个矩阵是正交矩阵?()A. \[\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\]B. \[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\]C. \[\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\]D. \[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\]4. 矩阵A的特征值是λ,那么矩阵A的转置的特征值是()。
A. λB. -λC. 0D. 不确定5. 设A是n阶方阵,且A^2=I(I是单位矩阵),则A的行列式是()。
A. 1B. -1C. 0D. 不确定二、填空题(每题3分,共15分)6. 若矩阵A的秩为2,则A的行最简形矩阵中非零行的个数为_________。
7. 设A是3×3矩阵,且A的迹等于3,则A的对角线元素之和为_________。
8. 若线性方程组的系数矩阵A和增广矩阵B的秩相等,则该方程组有_________解。
9. 设矩阵A的特征多项式为f(λ)=λ^2-5λ+6,则A的特征值为_________。
10. 若矩阵A与B相似,则A与B有相同的_________。
三、解答题(每题10分,共20分)11. 给定矩阵\[A=\begin{pmatrix} 2 & 1 \\ 1 & 2\end{pmatrix}\],求矩阵A的特征值和特征向量。
向量空间一 判断题(1) 平面上全体向量对于通常的向量加法和数量乘法: ,,k k R αα=∈ 作成实数域R 上的向量空间. ( ) .(2) 平面上全体向量对于通常的向量加法和数量乘法: 0,,k k R α=∈ 作成实数域R 上的向量空间. ( ).(3) 一个过原点的平面上所有向量的集合是3V 的子空间. ( ). (4) 所有n 阶非可逆矩阵的集合为全矩阵空间()n M R 的子空间. ( ). (5) 121{(,,,)|1,}nn i i i x x x x x R ==∈∑为n R 的子空间. ( ).(6)所有n 阶实反对称矩阵的集合为全矩阵空间()n M R 的子空间. ( ). (7)11{(,0,,0,)|,}n n x x x x R ∈为n R 的子空间. ( ).(8)若1234,,,αααα是数域F 上的4维向量空间V 的一组基, 那么122334,,,αααααα++是V 的一组基. ( ).(9)n 维向量空间V 的任意n 个线性无关的向量都可构成V 的一个基. ( ). (10)设12,,,n ααα是向量空间V 中n 个向量, 且V 中每一个向量都可由12,,,n ααα线性表示, 则12,,,n ααα是V 的一组基. ( ).(11) 设12,,,n ααα是向量空间V 的一个基, 如果12,,,n βββ与12,,,n ααα等价, 则12,,,n βββ也是V 的一个基. ( ).(12) 3x 关于基332,,1,1x x x x x +++的坐标为(1,1,0,0). ( ). (13)设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++.若12dim dim dim s V V V n +++=, 则12s V V V +++为直和. ( ).(14)设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 若121230,()0,V V V V V =+=121,()0,S s V V V V -+++= 则12s V V V +++为直和.( ).(15) 设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 若(){0},ij j iV V ≠=∑ 则12s V V V +++为直和. ( ).(16)设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 若(){0},,i j V V i j =≠则12s V V V +++为直和. ( ).(17) 设12,,,s V V V 为n 维空间V 的子空间, 且12s V V V V =+++. 零向量表法是唯一的, 则12s V V V +++为直和. ( ). (18) 设12,,,n ααα是向量空间V 的一个基, f 是V 到W 的一个同构映射, 则W 的一个基是12(),(),,()n f f f ααα. ( ).(19) 设V 是数域F 上的n 维向量空间, 若向量空间V 与W 同构, 那么W 也是数域F 上的n 维向量空间. ( ).(20) 把同构的子空间算作一类, n 维向量空间的子空间能分成n 类. ( ).答案 (1)错误 (2)错误 (3)正确 (4)错误 (5)错误 (6)正确 (7)正确 (8)正确 (9)正确 (10)错误 (11)正确 (12)错误 (13)正确 (14)正确 (15)正确 (16)错误 (17)正确(18)正确 (19)正确 (20)错误二 填空题(1) 全体实对称矩阵, 对矩阵的________________作成实数域R 上的向量空间.(2) 全体正实数的集合R +,对加法和纯量乘法,,k a b ab k a a ⊕==构成R 上的向量空间.则此空间的零向量为___.(3) 全体正集合R +,对加实数的法和纯量乘法,,k a b ab k a a ⊕==构成R 上的向量空间.则a R +∈的负向量为________.(4) 全体实二元数组对于如下定义的运算:2(,)(,)(,),(1)(,)(,),2a b c d a c b d ac k k k a b ka kb a ⊕=+++-=+构成实数域R 上的向量空间. 则此空间的零向量为___.(5) 全体实二元数组对于如下定义的运算:2(,)(,)(,),(1)(,)(,),2a b c d a c b d ac k k k a b ka kb a ⊕=+++-=+ 构成实数域R 上的向量空间. 则(,)a b 的负向量为________.(6) 数域F 上一切次数n ≤的多项式添加零多项式构成的向量空间[]n F x 维数等于_____. (7) 任一个有限维的向量空间的基________的, 但任两个基所含向量个数是________. (8) 复数域C 作为实数域R 上的向量空间, 维数等于______, 它的一个基为_______. (9) 复数域C 看成它本身上的向量空间, 维数等于______, 它的一个基为_______. (10) 实数域R 上的全体n 阶上三角形矩阵, 对矩阵的加法和纯量乘法作成向量空间,它的维数等于_____.(11) 向量(0,0,0,1)ξ=关于基123(1,1,0,1),(2,1,3,1),(1,1,0,0)ααα===4(0,1,1,1)α=--的坐标为__________.(12) 223x x ++关于3[]F x 的一个基332,,1,1x x x x x +++的坐标为__________. (13) 三维向量空间的基12(1,1,0),(1,0,1),αα== 则向量(2,0,0)β=在此基下的坐标为 _______.(14) V 和W 是数域F 上的两个向量空间, V 到W 的映射f 满足条件__________________________________________, 就叫做一个同构映射.(15) 数域F 上任一n 维向量空间V 都与向量空间______同构.(16) 设V 的子空间123,,,W W W 有1213230W W W W W W ===, 则123W W W ++________直和.答案(1)加法和数量乘法 (2)1 (3)1a (4)(0,0) (5)2(,)a a b -- (6)1n + (7)不唯一, 相等 (8)2;1,i (9)1;1 (10)(1)2n n + (11)(1,0,1,0)- (12)(0,0,1,2) (13)(1,1,1)-(14)f 是V 到W 的双射; 对任意,,()()()V f f f αβαβαβ∈+=+; 对任意,,()()a F V f a af ααα∈∈= (15)n F (16)不一定是三 简答题(1) 设().n V M R = 问下列集合是否为V 的子空间, 为什么? 1) 所有行列式等于零的实n 阶矩阵的集合1W ; 2) 所有可逆的实n 阶矩阵的集合2W ;(2) 设()L R 是实数域R 上所有实函数的集合, 对任意,(),,f g L R R λ∈∈ 定义()()()(),()()(),f g x f x g x f x f x x R λλ+=+=∈对于上述运算()L R 构成实数域R 上向量空间. 下列子集是否是()L R 的子空间? 为什么?1) 所有连续函数的集合1W ; 2) 所有奇函数的集合2W ;3) 3{|(),(0)(1)};W f f L R f f =∈=(3) 下列集合是否为n R 的子空间? 为什么? 其中R 为实数域. 1) 11212{(,,,)|0,}n n i W x x x x x x x R α==+++=∈;2) 21212{(,,,)|0,}n n i W x x x x x x x R α===∈;3) 312{(,,,)|n W x x x α==每个分量i x 是整数};(4)设,,A X b 分别为数域F 上,1,1m n n m ⨯⨯⨯矩阵, 问AX b =的所有解向量是F 上的向量空间吗? 说明理由.(5) 下列子空间的维数是几?1) 3((2,3,1),(1,4,2),(5,2,4))L R --⊆; 2)22(1,1,)[]L x x x x F x ---⊆(6) 实数域R 上m n ⨯矩阵所成的向量空间()m n M R ⨯的维数等于多少? 写出它的一个基. (7) 实数域R 上, 全体n 阶对称矩阵构成的向量空间的维数是多少? (8) 若12,,,n ααα是数域F 上n 维向量空间V 的一个基,122311,,,,n n n αααααααα-++++ 也是V 的一个基吗?(9) 1,2,(1)(2)x x x x -+-+是向量空间2[]F x 的一个基吗?(10) 取4R 的两个向量12(1,0,1,0),(1,1,2,0)αα==-.求4R 的一个含12,αα的基. (11) 在3R 中求基123(1,0,1),(1,1,1),(1,1,1)ααα==-=-到基123(3,0,1),(2,0,0),(0,2,2)βββ===-的过渡矩阵.(12) 在中4F 求向量(1,2,1,1)ξ=关于基123(1,1,1,1),(1,1,1,1),(1,1,1,1)ααα==--=--4(1,1,1,1)α=--的坐标.(13) 设1W 表示几何空间3V 中过原点之某平面1∏的全体向量所构成的子空间, 2W 为过原点之某平面2∏上的全体向量所构成的子空间, 则12W W 与12W W +是什么? 12W W +能不能是直和?(14) 设1123212(,,),(,),W L W L αααββ==求12W W 和12W W +. 其中123(1,2,1,2),(3,1,1,1),(1,0,1,1)ααα=--==-; 12(2,5,6,5),(1,2,7,3).ββ=-=--(15) 证明 数域F 上两个有限维向量空间同构的充分必要条件是它们维数相等.(16)设{|,,},{(,)|,},a b V a b c R W d e d e R b c ⎛⎫=∈=∈ ⎪⎝⎭都是实数域R 的向量空间.问V 与W 是否同构? 说明理由.(17) 设12,,,n ααα为向量空间的一个基, 令12,1,2,,i i i n βααα=+++=且()i i W L β=.证明 12n V W W W =⊕⊕⊕.答案(1)1)1W 不是V 的子空间. 若1,,||A B W A B ∈+若未必等于零, 1W 对加法不封闭.2)2W 不是V 的子空间. 因为3,||0A W A ∈≠, 则||0A -≠, 但|()|0A A +-=, 对加法不封闭.(2)1) 1W 是()L R 的子空间. 因为两个连续函数的和及数乘连续函数仍为连续函数. 2) 2W 是()L R 的子空间. 因为两个奇函数的和及数乘奇函数仍为奇函数.3) 3W 是()L R 的子空间. 因为3W 非空, 且对任意3,,,f g W R λ∈∈有()(0)(0)(0)(1)(1)()(1);(0)((0))((1))()(1),f g f g f g f g f f f f λλλλ+=+=+=+===故3,.f g f W λ+∈(3)1) 是. 因1W 是齐次方程组120n x x x +++=的全体解向量.2) 2W 不是n R 的子空间. 因2W 对加法不封闭.3) 3W 不是子空间. 因对数乘运算不封闭.(4)当0b ≠时, AX b =的所有解向量不能构成F 上的向量空间. 因n 维零向量不是 AX b =的解向量. 当0b =时,0AX =的所有解向量能构成F 上的向量空间.(5)1) 维数是2. 因(2,3,1),(1,4,2)-线性无关, 而(5,2,4)2(2,3,1)(1,4,2)-=-+. 2) 维数是2. 因易证21,1x x --线性无关, 但22(1)(1)()0x x x x -+-+-=.(6) 解 令ij E 表示i 行j 列位置元素是1其余是零的m n ⨯矩阵. 那么易证ij E 这m n ⨯个矩阵是线性无关的. 它们作成()m n M R ⨯的一个基, 故()m n M R ⨯的维数是m n ⨯.(7) ,,,1,2,3,,,,ii ij ji E E E i j n i j +=≠ 为全体n 阶对称矩阵构成的向量空间的一个基,其中共有12(1)n n ++++-个向量, 故此向量空间的维数(1)2n n +. (8) 解 由121112(,,,)(,,,)n n n n A ααααααααα-+++=.得1||1(1)n A +=+-. 当n 为偶数时, ||0A =, 故12231,,n αααααα+++线性相关, 它不构成基. 当n 为奇数时, ||0,A ≠ 故12231,,n αααααα+++线性无关, 它构成一个基.(9) 解 在基21,,x x 之下有2122(1,2,(1)(2))(1,,)111001x x x x x x --⎛⎫⎪-+-+= ⎪ ⎪⎝⎭.因上式右方的3阶矩阵为可逆, 所以1,2,(1)(2)x x x x -+-+线性无关, 它是2[]F x 的一个基.(10) 解 取向量34(0,0,1,0),(0,0,0,1)εε==,由于1100010010,12100001-=-≠ 因此1234,,,ααεε线性无关, 所以向量组是4R 的一个基.(11) 解 由123123123123(,,)(,,),(,,)(,,)A B αααεεεβββεεε== 推出 1123123(,,)(,,)A B βββααα-= 因此所求过渡矩阵为10113201001100021112210211111122A B -⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪⎝⎭⎝⎭ ⎪-- ⎪⎝⎭.(12) 解 取4F 的标准基1234,,,εεεε. 由1234,,,εεεε到1234,,,αααα的过渡矩阵为1111111111111111A ⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭于是(1,2,1,1)ξ=关于基1234,,,αααα的坐标为1541124114114A -⎛⎫ ⎪⎪⎛⎫⎪ ⎪ ⎪⎪= ⎪ ⎪⎪- ⎪ ⎪ ⎪⎝⎭⎪ -⎪⎝⎭. (13) 解 由于1W ,2W 皆过原点, 它们必相交, 因此或重合, 或不重合. 若1W 与2W 重合, 则121121,W W W W W W =+=. 若1W 与2W 不重合, 则12W W 为一条过原点的直线, 而 12W W V +=, 但12W W +不能是直和.(14) 解 设112233112212k k k t t W W γαααββ=++=+∈为交空间的任意向量.由11223311220,k k k t t αααββ++--= 得齐次线性方程组123121212123121231232025206702530k k k t t k k t t k k k t t k k k t t +--+=⎧⎪+--=⎪⎨-++++=⎪⎪-++--=⎩ 由行初等变换知方程组的系数矩阵的秩为4, 解空间的维数为1, 且求得方程组的一般解为122232424896,,,7777k t k t k t k t =-=-=-=-因此维12()1W W =, 维12()4W W +=.取27t =,令1267ξββ=-+便有12()W W L ξ=, 另外显然121231(,,,)W W L αααβ+=.(15) 证明 设数域F 上两个有限维向量空间V 与W 的维数均为n , 因,n n V F W F ≅≅所以V W ≅.反之, 若V W ≅, 设dim 0,V n => 且f 是V 到W 的同构映射. 取V 的一个基12,,,n ααα, 易证12(),(),,()n f f f ααα是W 的一个基, 故dim W n =.(16) V 与W 不同构. 因dim 3,dim 2V W ==, V 与W 的维数不相等. (17) 证明 任取V α∈, 若1122n n a a a αααα=+++, 那么12123211()()()n n n n n n n a a a a a a a a αβββαβ--=---+---+-+因此12n V W W W =+++, 并且V 中向量依诸i W 表示唯一, 故12n V W W W =⊕⊕⊕四 计算题(1) 设由123(1,2,2,2),(1,3,0,1),(2,1,2,5)ααα=-=--=--, 生成4R 的子空间.W 试从向量组1234(3,1,0,3),(2,1,0,3),(3,4,2,16),(1,7,4,15)ββββ==-=--=-中找出W 的生成元.(1) 解 以123,,ααα及1234,,,ββββ为列做成矩阵A , 在对A 的行施行初等变换.11232312311147202002421533161510011/20201001/21100111/2100000400A B -⎛⎫⎪---⎪=→ ⎪-- ⎪⎪---⎝⎭⎛⎫ ⎪-- ⎪= ⎪ ⎪⎪-⎝⎭由于行初等变换不改变列向量间的线性关系. 由矩阵B 知,113323412,,2βααβααβαα=+=-+=+从而134(,,).L W βββ⊆但由B 还知134,,βββ线性无关, 故134,,βββ为W 的一组生成元.(2) 在向量空间4R 中, 求由向量123(2,1,3,1),(4,5,3,1),(1,1,3,1)ααα=-=-=--4(1,5,3,1)α=-生成的子空间的一个基和维数.(2) 解 对下述矩阵施行行的初等变换241106391515151533330126181111042600001302.00000213----⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪→→ ⎪ ⎪----- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭此变换保持列向量间的线性关系, 由右方矩阵知13,αα是一个极大无关组, 因此1234(,,,)L αααα的维数实是2,而13,αα是它的一个基.(3) 在4R 中求出向量组12345,,,,ααααα的一个极大无关组,然后用它表出剩余的向量.这里123(2,1,3,1),(1,2,0,1),(1,1,3,0),ααα===--45(1,1,1,1),(0,12,12,5)αα==-.(3) 解 对下述矩阵施行行的初等变换2111010105121112101123031123031121101511150001300013101121010500026000001101511002---⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪→→ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭--⎛⎫⎛⎫ ⎪⎪--- ⎪ ⎪→ ⎪ ⎪-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭.由右方矩阵知234,,ααα是一个极大无关组, 并且有1235234,253ααααααα=-=++.(4) 求3()M F 中与矩阵A 可交换的矩阵构成的子空间的维数及一个基, 其中100010.312A ⎛⎫⎪= ⎪ ⎪⎝⎭(4) 解 设这个子空间为,W 由于A I B =+, 这里000000311B ⎛⎫ ⎪= ⎪ ⎪⎝⎭因此与A 可交换的3阶方阵, 就是与B 可交换的3阶方阵, 从而 3{()|}W X M F BX XB =∈=.任取,()ij C W C c ∈=. 由BC CB =, 可得1323112131330,33,c c c c c c ==++=122232333c c c c ++=,于是C W ∈当且仅当C 的元素为齐次线性方程组2111313322123233333c c c c c c c c =--+⎧⎨=--+⎩的解. 于是我们得到如下矩阵100010000300,030,100000000100⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭000000010,310010001⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭它们构成W 的一个基, 故W 的维数是5.(5) 求实数域上关于矩阵A 的全体实系数多项式构成的向量空间V 的一个基与维数.其中21001300,.200i A ωωω⎛⎫-+ ⎪== ⎪ ⎪⎝⎭ (5) 解 因31ω=, 所以22311,11A A I ωω⎛⎫⎛⎫ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭易证2,,I A A 线性无关. 于是任何多项式()(()[])f A f x R x ∈皆可由2,,I A A 线性表示, 故2,,I A A 为的一个基, dim 3V =.(6) 设1234(,,,)x x x x 为向量ξ关于基12(1,0,0,1),(0,2,1,0),αα==3(0,0,1,1),α=4(0,0,2,1)α=的坐标; 1234(,,,)y y y y 是ξ关于基1234,,,ββββ的坐标, 其中11y x =,221332442,,.y x x y x x y x x =-=-=-求基1234,,,ββββ.(6) 解 因1122123412343344(,,,)(,,,)x y x y x y x y ξααααββββ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭且1112223334441000110001100101y x x y x x P y x x y x x ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎪⎪== ⎪ ⎪⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭则1122123412343344(,,,)(,,,)x x x x P x x x x ααααββββ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭于是 12341234(,,,)(,,,)P ααααββββ=, 即 112341234(,,,)(,,,)P ββββαααα-=故所求的基为1234(1,2,4,3),(0,2,4,2),(0,0,1,1),(0,0,2,1)ββββ====.(7) 设12,,,n ααα是n 维向量空间V 的一个基,11212,,,n αααααα++++也是V 的一个基,又若向量ξ关于前一个基的坐标为(,1,,2,1)n n -, 求ξ关于后一个基的坐标.(7) 解 基12,,,n ααα到后一个基的过渡矩阵为111101110011001P ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭. 那么12111001101101120001211000111n n n y n n y P y --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎪ ⎪=== ⎪ ⎪⎪⎪ ⎪- ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故ξ关于后一个基的坐标为(1,1,,1).(8) 已知3R 的一个基为123(1,1,0),(0,0,2),(0,3,2)ααα===. 求向量(5,8,2)ξ=-关于这个基的坐标.(8) 解 设112233x x x ξααα=++, 的方程组11323538222x x x x x =⎧⎪+=⎨⎪+=-⎩解得1235,2,1x x x ==-=. 故ξ关于基123,,ααα的坐标(5,2,1)-.(9) 已知1234(2,1,1,1),(0,3,1,0),(5,3,2,1),(6,6,1,3)αααα=-===是4R 的一个基.求4R 的一个非零向量ξ, 使它关于这个基的坐标与关于标准基的坐标相同.(9) 解 由标准基1234,,,εεεε到基1234,,,αααα的过渡矩阵为2056133611211013P ⎛⎫ ⎪⎪= ⎪- ⎪ ⎪⎝⎭设ξ关于两个基的坐标为1234(,,,)x x x x , 则11223344,x x x x P x x x x ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即得齐次线性方程组134133412341345602360020x x x x x x x x x x x x x x ++=⎧⎪+++=⎪⎨-+++=⎪⎪++=⎩解得1234x x x x ===-, 令40,x k k R =≠∈, 则(,,,)k k k k ξ=---即为所求.(10)已知4R 的一个基123(2,1,1,1),(0,3,1,0),(5,3,2,1)ααα=-==4(6,6,1,3)α=.求1234(,,,)x x x x ξ=关于基1234,,,αααα的坐标.(10) 解 由标准基到所给基的过渡矩阵为2056133611211013P ⎛⎫ ⎪ ⎪= ⎪- ⎪ ⎪⎝⎭那么11221123412343344(,,,)(,,,)x x x x P x x x x ξεεεεαααα-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故ξ关于基1234,,,αααα的坐标为1234(,,,)y y y y , 这里11122213334444/91/3111/91/274/91/323/271/3002/37/271/91/326/27y x x y x x P y x x y x x ---⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭.五 证明题(1) 设12,W W 为向量空间()V F 的两个子空间. 1)证明: 12W W 是V 的子空间.2)12W W 是否构成V 的子空间, 说明理由. (1) 证明1) 显然120W W ∈, 即12W W ≠Φ, 任取1212,,W W k F αα∈∈, 易知1212112,W W k W W ααα+∈∈, 故12W W 是V 的子空间.2) 不一定. 当12W W ⊆或21W W ⊆时, 12W W 是V 的子空间. 但当1W 与2W 互不包含时,12W W 不是V 的子空间. 因为总存在1112,W W αα∈∉及2221,W W αα∈∉使1212,W W αα∈, 而1212W W αα+∉, 因为这时121122,W W αααα+∉+∉, 否则与选取矛盾.(2) 设12,W W 为向量空间V 的两个子空间. 证明: 12W W +是V 的即含1W 又含2W 的最小子空间.(2) 证明 易知12121122{|,}W W W W αααα+=+∈∈为V 的子空间, 且112212,.W W W W W W ⊆+⊆+设W 为V 的包含1W 与2W 的任一子空间, 对任意1122,W W ξξ∈∈,有12W ξξ+∈, 即12W W W +⊆, 故12W W +是V 的即含1W 又含2W 的最小子空间.(3) 设12,W W 为向量空间()V F 的两个子空间. ,αβ是V 的两个向量, 其中2W α∈, 但1W α∉, 又2W β∉. 证明:1)对任意2,k F k W βα∈+∉;2)至多有一个,k F ∈使得1k W βα+∈. (3) 证明1) 任意,k F ∈若2k W βα+∈, 则2()k k W ββαα=+-∈矛盾, 故1)成立.2) 当1W β∈时, 仅当0k =时, 有1k W βα+∈; 当1W β∉时, 若存在1212,,k k F k k ∈≠使得111221,k W k W αβααβα=+∈=+∈, 则12121()k k W ααα-=-∈, 因此1W α∈, 矛盾, 故2)成立.(4) 设12,W W 为向量空间V 的两个子空间. 证明 若1212W W W W +=, 则12W W ⊆或21W W ⊆.(4) 证明 因12W W 含1W 与2W 中所有向量, 12W W +含一切形如121122(,)W W αααα+∈∈的向量, 因为1212W W W W +=, 所以121W αα+∈或122W αα+∈. 若121W αα+∈, 令12ααβ+=, 则21αβα=-, 故21W W ⊆; 若122W αα+∈, 令12ααγ+=, 则12αγα=-, 故12W W ⊆.(5) 证明: n 维向量空间V 中, 任意n 个线性无关的向量都可作为V 的一个基. (5) 证明 设12,,,n ααα是V 中线性无关的向量, 取V 的单位向量12,,,n εεε, 则12(,,,)n V L εεε=, 且12,,,n ααα中每一个可由12,,,n εεε线性表示. 由替换定理知12,,,n ααα与12,,,n εεε等价, 所以V 中每一个向量可由12,,,n ααα线性表示, 又 12,,,n ααα线性无关, 故12,,,n ααα可作为V 的一个基.(6) 设V 为n 维向量空间, V 中有m 组线性无关的向量, 每组含t 个向量, 证明: V 中存在n t -个向量与其中任一组组成V 的一个基.(6) 证明 设V 中m 组线性无关的向量分别为12,,,(1,2,,),i i it i m t n ααα=≤. 令12(,,,)i i i it V L ααα=, 则dim i V t n =<. 因存在1,(1,2,,)i V i m ξ∉=, 使121,,,,i i it αααξ线性无关, 若1t n +<,令/121(,,,,)i i i it V L αααξ=, 则/i V 也为V 的非平凡子空间, 同理存在/2,1,2,,i V V i m ξ=-=, 而且1212,,,,,i i it αααξξ线性无关, 如此继续下去, 可找到12,,,n t ξξξ-使得12,,,,i i it ααα12,,,n t ξξξ-线性无关, 故对每个i ,它们都是V 的一个基.(7) 设n 维向量空间V 的向量组12,,,n ααα的秩为r , 使得11220n n k k k ααα+++=全体n 维向量12(,,,)n k k k 的集合为W . 证明W 是n F 的n r -维子空间.(7) 证明 显然12dim (,,,)n L r ααα=, 今设每个i α在12(,,,)n L ααα的某个基下的坐标为12[]i i i ir a a a α⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,1,2,,i n =那么由11220n n k k k ααα+++=可得1122[][][]0n n k k k ααα+++=.它决定了一个含n 个未知量12,,,,n k k k r 个方程的齐次线性方程组, 其系数矩阵12([],[],,[])n ααα的秩为r , 故解空间即W 的维数为n r -.(8) 设12,,,n a a a 是数域F 中n 个不同的数, 且12()()()()n f x x a x a x a =---. 证明多项式组()()(1,2,,)()i i f x f x i n x a ==-是向量空间1[]n F x -的一个基.(8) 证明 因1dim []n F x n -=, 所以只需证12,,n f f f 线性无关. 设有12,,,n k k k F ∈,使1220n n k f k f k f +++= (*)由()0,,()0j i i i f a i j f a =≠≠, 因此将i a 带入(*)得()0i i i k f a =, 从而0,(1,2,)i k i n ==故12,,n f f f 线性无关, 为1[]n F x -的一个基.(9) 设W 是n R 的一个非零子空间, 而对于W 的每一个向量12(,,,)n a a a 来说, 或者120n a a a ====, 或者每一个i a 都不等于零. 证明: dim 1.W =(9) 证明 由W 非零, 我们总可以取12(,,,)n b b b W β=∈, 且0β≠, 那么每个0i b ≠且β线性无关. 今对任意12(,,,)n a a a W α=∈, 若0α=当然α可由β线性表示; 若0α≠而11a W b αβ-∈, 由于其第一个分量为0, 由题设知11ab αβ=. 故β可作为W 的一个基,且dim 1.W =(10) 证明: 22,,1x x x x x +-+是2[]F x 的一个基, 并求2273x x ++关于这个基的坐标. (10) 证明: 2dim []3,F x =22,,1x x x x x +-+由基21,,x x 表示的演化矩阵为001111110A ⎛⎫⎪=- ⎪ ⎪⎝⎭但A 可逆, 故22,,1x x x x x +-+是2[]F x 的一个基.2273x x ++关于这个基的坐标(3,1,3)-,因为13371.23A -⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(11) 若123,,W W W 都是V 的子空间, 求证:11231213(())()()W W W W W W W W +=+.(11) 证明: 任意1123(())W W W W α∈+, 则1W α∈, 且123()W W W α∈+, 因此1311233,,W W W ααααα=+∈∈, 但1W α∈, 知313W W α∈, 故1213()()W W W W α∈+.反之, 任意1213()()W W W W β∈+, 12112213,,W W W W βββββ=+∈∈, 则1W β∈, 且123()W W W β∈+, 故1123(())W W W W β∈+.(12) 设12,,,s W W W 是n 维向量空间V 的子空间. 如果12s W W W +++为直和.证明:{0},,,1,2,,ij W W i j i j s =≠=.(12) 证明: 由12s W W W +++为直和, 有(){0},,,1,2,,ij i jW W i j i j s ≠=≠=∑, 而(){0},,,1,2,,i j ij i jW W W W i j i j s ≠⊆=≠=∑. 故{0},,,1,2,,ij W W i j i j s =≠=.(13) 设12,W W 分别是齐次线性方程组120n x x x +++=与12n x x x ===的解空间.证明: 12n F W W =+.(13) 证明 因120n x x x +++=的解空间的维数为1n -, 且一个基为12(1,1,0,,0),(1,0,1,0,,0),αα=-=-1,(1,0,,0,1)n α-=-, 又12n x x x ===即方程组12231000n n x x x x x x --=⎧⎪-=⎪⎨⎪⎪-=⎩的系数矩阵的秩为1n -, 其解空间的维数为1, 且一个基为(1,1,,1)β=, 但121,,,n αααβ-线性无关, 它是n F 的一个基, 且12dim dim dim n F W W =+, 故12n F W W =+.(14) 证明 每一个n 维向量空间都可以表成n 个一维子空间的直和. (14) 证明: 设12,,,n ααα是n 维向量空间V 的一个基, 那么12(),(),,()n L L L ααα都是一维子空间.显然 12()()()n V L L L ααα=+++于是由V 中向量在此基下表示唯一, 立得结论.(15) 证明n 维向量空间V 的任意一个真子空间都是若干个1n -维子空间的交. (15) 证明: 设W 是V 的任一子空间, 且设12,,,s ααα为W 的一个基, 将其扩充为V 的一个基12,,,s ααα1,,,s n αα+, 那么令 12111(,,,,,,,,,)i s s s i s i n W L ααααααα++-++=于是这些,1,2,i W i n s =-, 均为1n -维子空间, 且12n s W W W W -=.(16)设:f V W →是数域F 上向量空间V 到W 的一个同构映射, 1V 是V 的一个子空间.证明: 1()f V 是W 的一个子空间.(16) 证明: 因1(0)()f f V ∈, 所以1()f V 非空. 对任意//1,()f V αβ∈, 由于f 是1V 到1()f V 的满射, 因此存在1,V αβ∈, 使//(),()f f ααββ==, 对任意,a b F ∈, 有 1a b V αβ+∈, 于是//1()()()()f a b af bf a b f V αβαβαβ+=+=+∈, 故1()f V 是W的一个子空间.(17) 证明: 向量空间[]F x 可以与它的一个真子空间同构.(17) 证明: 记数域F 上所有常数项为零的多项式构成的向量空间V , 显然[]V f x ⊂, 且V 中有形式()xf x , 这里()f x ∈[]F x .定义 :[];F x V σ()()f x xf x →, 显然σ是[]F x 到V 的双射, 且对于任意(),()f x g x ∈[],,,F x a b F ∈(()())(()())()()(())(())af x bg x x af x bg x axf x bxg x a f x b g x σσσ+=+=+=+故σ是[]F x 到V 的同构映射. 从而V 是[]F x 的一个真子空间, []F x V ≅.(18) 设,αβ是复数, {()[]|()0},{()[]|()0}V f x R x f W g x R x g αβ=∈==∈=,证明: ,V W 是R 上的向量空间, 并且V W ≅.(18) 证明: 易证,V W 是R 上的向量空间,设V 中次数最低的多项式为()h x , 则对任意()f x V ∈, 都有()[]s x R x ∈, 使()()()f x h x s x =, 因此{()()|()[]}V h x s x s x R x =∈同理, 设W 中次数最低的多项式为()k x , 则{()()|()[]}W k x s x s x R x =∈.定义:()()()()h x s x k x s x σ易证σ是V 到W 的同构映射, 故V W ≅.(19) 证明 实数域R 作为它自身上的向量空间与全体正实数集R +对加法: a b ab ⊕=, 与纯量乘法: kk a a =构成R 上的向量空间同构.(19) 证明: 定义:(1)x xa a σ>显然σ是R 到R +的映射.1),x y R ∈, 若x y ≠, 则x y a a ≠, 所以σ为单射;任意b R +∈, 因log ,log ba b a b a R =∈, 则(log )ba b σ=, 即σ为满射.从而σ为双射.2) 任,,()()()x y x y x y x y R x y a a a a a x y σσσ+∈+===⊕=⊕.3) 任,()()()kx x k x k R kx a a k a k x σσ∈====,于是σ是R 到R +的同构映射. 故R R +≅.(20) 设V 是数域F 上无限序列12(,,)a a 的集合, 其中i a F ∈, 并且只有有限i a 不是零. V 的加法及F 中的数与V 中元的纯量乘法同n F , 则V 构成F 上的向量空间. 证明: V 与[]F x 同构.(20) 证明: 取[]F x 的一个基21,,,x x , 则[]F x 中任一多项式01()n n f x a a x a x =+++关于这个基有唯一确定的坐标01(,,,,0,)n a a a V ∈.定义:()f x σ01(,,,,0,)n a a a则σ是[]F x 到V 的一个同构映射, 故[]F x V ≅.。
第一章 多项式§1.1一元多项式的定义和运算1.设),(x f )(x g 和)(x h 是实数域上的多项式.证明:若是(6) 222)()()(x xh x xg x f +=,那么.0)()()(===x h x g x f2.求一组满足(6)式的不全为零的复系数多项式)(),(x g x f 和).(x h 3.证明:!))...(1()1(!)1)...(1()1(!2)1(1n n x x n n x x x x x x nn---=+---+--+-§1.2 多项式的整除性1.求)(x f 被)(x g 除所得的商式和余式:( i );13)(,14)(234--=--=x x x g x x x f (ii) ;23)(,13)(3235+-=-+-=x x x g x x x x f 2.证明:kx f x )(|必要且只要).(|x f x3.令()()()x g x g x f x f 2121,,),(都是数域F 上的多项式,其中()01≠x f 且()()()()()().|,|112121x g x f x f x f x g x g 证明:()().|22x f x g4.实数q p m ,,满足什么条件时多项式12++mx x 能够整除多项式.4q px x ++ 5.设F 是一个数域,.F a ∈证明:a x -整除.nn a x -6.考虑有理数域上多项式()()()()()(),121211nkn k nk x x x x x x f ++++++=-++这里k 和n 都是非负整数.证明:()()().11|1n k 1+++++-x x f x x k7.证明:1-dx 整除1-n x 必要且只要d 整除.n§1.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式:( i ) ()();32103,34323234-++=---+=x x x x g x x x x x f(ii) ()().1)21(,1)21()42()22(2234i x i x x g i x i x i x i x x f -+-+=----+-+-+=2. 设()()()()()().,11x g x d x g x f x d x f ==证明:若()()(),),(x d x g x f =且()x f 和()x g 不全为零,则()();1),(11=x g x f 反之,若()(),1),(11=x g x f 则()x d 是()x f 与()x g 的一个最大公因式.3. 令()x f 与()x g 是][x F 的多项式,而d c b a ,,,是F 中的数,并且0≠-bc ad证明:()()()()()()).,(),(x g x f x dg x cf x bg x af =++4. 证明:(i )h g f ),(是fh 和gh 的最大公因式; (ii )),,,,(),)(,(212121212211g g f g g f f f g f g f = 此处h g f ,,等都是][x F 的多项式。
第一章 多项式§1.1一元多项式的定义和运算1.设),(x f )(x g 和)(x h 是实数域上的多项式.证明:若是(6) 222)()()(x xh x xg x f +=,那么.0)()()(===x h x g x f2.求一组满足(6)式的不全为零的复系数多项式)(),(x g x f 和).(x h 3.证明:!))...(1()1(!)1)...(1()1(!2)1(1n n x x n n x x x x x x nn---=+---+--+-§1.2 多项式的整除性1.求)(x f 被)(x g 除所得的商式和余式:( i );13)(,14)(234--=--=x x x g x x x f (ii);23)(,13)(3235+-=-+-=x x x g x x x x f 2.证明:kx f x )(|必要且只要).(|x f x3.令()()()x g x g x f x f 2121,,),(都是数域F 上的多项式,其中()01≠x f 且()()()()()().|,|112121x g x f x f x f x g x g 证明:()().|22x f x g4.实数q p m ,,满足什么条件时多项式12++mx x 能够整除多项式.4q px x ++ 5.设F 是一个数域,.F a ∈证明:a x -整除.nn a x -6.考虑有理数域上多项式()()()()()(),121211nkn k nk x x x x x x f ++++++=-++这里k 和n 都是非负整数.证明:()()().11|1n k 1+++++-x x f x x k7.证明:1-d x 整除1-nx 必要且只要d 整除.n§1.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式:( i )()();32103,34323234-++=---+=x x x x g x x x x x f (ii) ()().1)21(,1)21()42()22(2234i x i x x g i x i x i x i x x f -+-+=----+-+-+=2. 设()()()()()().,11x g x d x g x f x d x f ==证明:若()()(),),(x d x g x f =且()x f 和()x g 不全为零,则()();1),(11=x g x f 反之,若()(),1),(11=x g x f 则()x d 是()x f 与()x g 的一个最大公因式.3. 令()x f 与()x g 是][x F 的多项式,而d c b a ,,,是F 中的数,并且0≠-bc ad证明:()()()()()()).,(),(x g x f x dg x cf x bg x af =++4. 证明:(i )h g f ),(是fh 和gh 的最大公因式; (ii )),,,,(),)(,(212121212211g g f g g f f f g f g f = 此处h g f ,,等都是][x F 的多项式。
5. 设()()22,242234234---+=---+=x x x x x g x x x x x f 都是有理数域Q 上的多项式。
求()()][,x Q x v x u ∈使得()()()()()()).,(x g x f x v x g x u x f =+6. 设1),(=g f ,令n 是任意正整数,证明:1),(=n g f 由此进一步证明,对于任意正整数n m ,,都有1),(=n m g f .7. 设1),(=g f 证明:1),(),(),(=+=+=+g f fg g f g g f f .8. 证明:对于任意正整数n 都有),(),(n n n g f g f =.9. 证明:若是)(x f 与)(x g 互素,并且)(x f 与)(x g 的次数都大于0,那么定理3.3.2里的)(x u 与)(x v 可以如此拔取,使得)(x u 的次数低于)(x g 的次数,)(x v 的次数低于)(x f 的次数,并且这样的)(x u 与)(x v 是独一的。
10. 决意k ,使24)6(2++++k x k x 与k x k x 2)2(2+++的最大公因式是一次的。
11. 证明:如果1))(),((=x g x f 那么对于任意正整数m ,()()()1,=mmx g x f12. 设)(x f ,)(x g 是数域P 上的多项式,)(x f 与)(x g 的最小公倍式指的是][x P 中满足以下条件的一个多项式)(x m :()a )(|)(x m x f 且)(|)(x m x g ;()b 如果][)(x P x h ∈且)(|)(),(|)(x h x g x h x f ,那么)(|)(x h x m .()i 证明:][x P 中任意两个多项式都有最小公倍式,并且除了可能的零次因式的差别外,是独一的。
()ii 设)(x f ,)(x g 都是最高次项系数是1的多项式,令[])(),(x g x f 暗示)(x f 和)(x g 的最高次项系数是1的那个最小公倍式,证明()()()()()()()[]x g x f x g x f x g x f ,,=13. 设)()(|)(1x f x f x g n 并且1))(),((=x f x g i ,1,,2,1-=n i 证明:)(|)(x f x g n .14. 设][)(,),(),(21x P x f x f x f n ∈ 证明:()i ()()()()()()()()()()()().11,,,,,,,,12121-≤≤=+n k x f x f x f x f x f x f x f x f n k k n ()ii )(,),(),(21x f x f x f n 互素的充要条件是存在多项式][)(,),(),(21x P x u x u x u n ∈ 使得()()()()()()12211=++x u x f x u x f x u x f n n15. 设][)(,),(1x P x f x f n ∈ ,令()()()()(){}.1],[11n i x F x g x g x f x g x f I i n n ≤≤∈+=比照定理1.4.2,证明:)(,),(1x f x f n 有最大公因式.[提示:如果)(,),(1x f x f n 不全为零,取)(x d 是I 中次数最低的一个多项式,则)(x d 就是)(,),(1x f x f n 的一个最大公因式.] §1.4 多项式的分化1. 在有理数域上分化以下多项式为弗成约多项式的乘积:()i ;132+x ().12223+--x x x ii2. 分别在复数域,实数域,有理数域上分化多项式14+x 为弗成约因式的乘积.3. 证明: )(|)(22x f x g 当且仅当)(|)(x f x g .4.()i 求 ()1222345-++--=x x x x x x f 在][x Q 内的典型分化式;()ii 求()61416161022345-+-+-=x x x x x x f 在][x R 内的典型分化式5.证明:数域P 上一个次数大于零的多项式)(x f 是][x P 中某一弗成约多项式的幂的充分且必要条件是对于任意][)(x P x g ∈,或者1))(),((=x g x f ,或者存在一个正整数m 使得)(|)(x g x f m .6.设)(x p 是][x P 中一个次数大于零的多项式.如果对于任意][)(),(x F x g x f ∈只要)()(|)(x g x f x p 就有)(|)(x f x p 或)(|)(x g x p 那么)(x p 弗成约.§1.5 重因式1. 证明下列关于多项式的导数的公式:()i ()()()()();x g x f x g x f '+'='+ ()ii ()()()()()()().x g x f x g x f x g x f '+'='2. 设)(x p 是)(x f 的导数)(x f '的1-k 重因式.证明:()i )(x p 未必是)(x f 的k 重因式;()ii)(x p 是)(x f 的k 重因式的充分且必要条件是)(|)(x f x p .3. 证明有理系数多项式()!!212n x x x x f n+++=没有重因式.4.b a ,应该满足什么条件,下列的有理系数多项式才能有重因式?()i ;33b ax x ++ ()ii.44b ax x ++5. 证明:数域P 上的一个n 次多项式)(x f 能被它的导数整除的充分且必要条件是()()nb x a x f -=,这里的b a ,是P 中的数§1.6 多项式函数 多项式的根1.设1532)(345+--=x x x x f ,求)2(),3(-f f .2.数环R 的一个数c 说是][)(x R x f ∈的一个k 重根,如果)(x f 可以被kc x )(-整除,但不能被1)(+-k c x 整除.判断5是不是多项式5057422243)(235+++-=x x x x x f的根.如果是的话,是几重根?3.设d x c x b x a x x x +-+-+-=-+-)2()2()2(5322323 求d c b a ,,, [提示:应用综合除法.]4.将下列多项式)(x f 表成a x -的多项式.)(i 1,)(5==a x x f ;)(ii 2,32)(24-=+-=a x x x f .5.求一个次数小于4的多项式)(x f ,使2)5(,0)4(,1)3(,3)2(==-==f f f f6.求一个2次多项式,使它在ππ,2,0=x 处与函数x sin 有相同的值.7.令)(),(x g x f 是两个多项式,并且)()(33x g x f +可以被12++x x 整除.证明.0)1()1(==g f8.令c 是一个复数,并且是][x Q 中一个非零多项式的根,令}0)(|][)({=∈=c f x Q x f J证明:)(i 在J 中存在独一的最高次项系数是1的多项式)(x p ,使得J 中每一多项式)(x f 都可以写成)()(x q x p 的形式,这里][)(x Q x q ∈. )(ii )(x p 在][x Q 中弗成约.如果32+=c ,求上述的)(x p [提示:取)(x p 是J 中次数最低的、最高次项系数是1的多项式.]9.设][x C 中多项式0)(≠x f 且)(|)(nx f x f )(|)(nx f x f ,n 是一个大于1的整数.证明:)(x f 的根只能是零或单位根.[提示:如果c 是)(x f 的根,那么 ,,,32nn n c c c 都是)(x f 的根.]§1.7 复数和实数域上多项式1.设n 次多项式n n n n a x a x a x a x f ++++=--1110)( 的根是n ααα,,,21 .求 )(i 以n ca ca ca ,,,21 为根的多项式,这里c 是一个数;)(ii 以n ααα1,,1,121 (假定n ααα,,,21 都不等于零)为根的多项式.2.设)(x f 是一个多项式,用)(x f 暗示把)(x f 的系数分别换成它们的共轭数后所得多项式.证明:)(i 若是g )(x |f )(x ,那么)(|)(x f x g ;)(ii 若是)(x d 是)(x f 和)(x f 的一个最大公因式,并且)(x d 的最高次项系数是1,那么)(x d 是一个实系数多项式).3.给出实系数四次多项式在实数域上所有分歧类型的典型分化式.4.在复数和实数域上,分化2-nx 为弗成约因式的乘积.5.证明:数域F 上任意一个弗成约多项式在复数域内没有重根. §1.8 有理数域上多项式1.证明以下多项式在有理数域上弗成约:)(i 108234-+-x x x ;)(ii ;66182245+++x x x )(iii 32234-+-x x x ; )(iv 136++x x .2.利用艾森斯坦判断法,证明:若是t p p p ,,,21 是t 个不相同的素数而n 是一个大于1的整数,那么nt p p p 21是一个无理数.3.设)(x f 是一个整系数多项式.证明:若是)0(f 和)1(f 都是奇数,那么)(x f 不能有整数根.4.求以下多项式的有理根:)(i 1415623-+-x x x ; )(ii 157424---x x x ;)(iii 3212252345--+--x x x x x .§1.9多元多项式1.写出一个数域F 上三元三次多项式的一般形式. 2.设),,(1n x x f 是一个r 次齐次多项式.t 是任意数.证明),,(),,(11n r n x x f t tx tx f =.3.设),,(1n x x f 是数域F 上一个n 元齐次多项式,证明:如果),,(),,(),,(111n n n x x h x x g x x f =,则h g ,也是n 元齐次多项式.4.把多项式xyz z y x 3333-++写成两个多项式的乘积. 5.设F 是一个数域.],,[,1n x x F g f ∈是F 上n 元多项式.如果存在],,[1n x x F h ∈使得gh f =,那么就说g 是f 的一个因式.或者说g 整除f . )(i 证明,每一多项式f 都可以被零次多项式c 和cf 整除,0,≠∈c F c .)(ii ],[1n x x F f ∈说是弗成约的,如果除了)(i 中那两种类型的因式外,f 没有其它的因式.证明,在],[y x F 里,多项式y x y x y x -+2,,,都弗成约. )(iii 举一反例证明,当2≥n 时,类拟于一元多项式的带余除法不成立.)(iv ],,[,1n x x F g f ∈说是互素的,如果除了零次多项式外,它们没有次数大于零的公共因式.证明],[,y x F y x ∈是互素的多项式.能否找到],[),(),,(y x F y x v y x u ∈使得1),(),(=+y x yv y x xu ? §1.10 对称多项式1.写出某一数环R 上三元三次对称多项式的一般形式.2.令],,,[21n x x x R 是数环R 上n 元多项式环,S 是由一切n 元对称多项式所组成的],,[1n x x R 的子集.证明:存在],,[1n x x R 到S 的一个双射.[提示:利用对称多项式的基本定理,建立],,[1n x x R 到S 的一个双射]3.把下列n 元对称多项式表成初等对称多项式的多项式:)(i ∑231x x ;)(ii ∑4x;)(iii ∑32221x x x .4.证明:如果一个三次多项式c bx ax x +++23的一个根的平方等于其余两个根的平方和,那么这个多项式的系数满足以下关系:2324)22(2)2(c ab a b a a +-=-5.设n ααα,,,21 是某一数域F上多项式n n n n a x a x a x ++++--111在复数域内的全部根.证明:n αα,,2 的每一个对称多项式都可以表成F上关于1α的多项式.[提示:只需证明n αα,,2 的初等对称多项式可以表成F上关于1α的多项式即可.]第二章 行列式§2.1行列式定义1.计算下列分列的反序数:)(i 523146879;)(ii ;1,2,,1, -n n)(iii .,1,,2,12,1,2k k k k +-2.假设n 个数码的分列n i i i ,,,21 的反序数是k,那么分列121,,,,i i i i n n -的反序数是多少?3.写出4个数码的一切分列. §2.2 n 阶行列式1.确定六阶行列式D=666261262221161211a a a a a a a a a中以下各乘积的符合:()().;466455321321651456423123a a a a a a ii a a a a a a i2.写出下列四阶行列式44411411a a a a中一切带有负号且含元素23a 的项。