2012年普通高等学校招生全国统一考试模拟试题(上海卷,理数)
- 格式:doc
- 大小:370.50 KB
- 文档页数:11
2012年高考真题——理科数学(上海卷)(含答案解析)高考真题高考模拟高中联考期中试卷期末考试月考试卷学业水平同步练习2012年高考真题——理科数学(上海卷)(含答案解析)1 计算:(为虚数单位)。
【答案解析】复数。
2 若集合,,则。
【答案解析】集合,,所以,即。
3 函数的值域是。
【答案解析】函数,因为,所以,,即函数的值域为。
4 若是直线的一个法向量,则的倾斜角的大小为(结果用反三角函数值表示)。
【答案解析】设倾斜角为,由题意可知,直线的一个方向向量为(1,2),则,∴=。
5 在的二项展开式中,常数项等于。
【答案解析】二项展开式的通项为,令,得,所以常数项为。
6 有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为,则。
【答案解析】。
由题意可知,该列正方体的体积构成以1为首项,为公比的等比数列,∴++…+==,∴。
7 已知函数(为常数)。
若在区间上是增函数,则的取值范围是。
【答案解析】令,则在区间上单调递增,而为增函数,所以要是函数在单调递增,则有,所以的取值范围是。
8 若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为。
【答案解析】因为半圆面的面积为,所以,即,即圆锥的母线为,底面圆的周长,所以圆锥的底面半径,所以圆锥的高,所以圆锥的体积为。
9 已知是奇函数,且,若,则。
【答案解析】因为为奇函数,所以,所以,,所以。
10 如图,在极坐标系中,过点的直线与极轴的夹角,若将的极坐标方程写成的形式,则。
【答案解析】设直线上的任一点为P,因为,所以,根据正弦定理得,即,即。
11 三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示)。
【答案解析】三位同学从三个项目选其中两个项目有中,若有且仅有两人选择的项目完成相同,则有,所以有且仅有两人选择的项目完成相同的概率为。
12 在平行四边形中,,边、的长分别为2、1,若、分别是边、上的点,且满足,则的取值范围是。
2012上海高考数学试题(理科)答案与解析一.填空题1.计算:3-i =1+i(i 为虚数单位).【答案】1-2i【解析】3-i (3-i)(1-i)2-4i ===1-2i 1+i(1+i)(1-i)2.【点评】本题着重考查复数的除法运算,首先,将分子、分母同乘以分母的共轭复数,将分母实数化即可.2.若集合}012|{x x A ,}2|1||{x x B,则BA.【答案】3,21【解析】根据集合 A 210x ,解得12x,由12,,13x x 得到,所以3,21BA .【点评】本题考查集合的概念和性质的运用,同时考查了一元一次不等式和绝对值不等式的解法.解决此类问题,首先分清集合的元素的构成,然后,借助于数轴或韦恩图解决.3.函数1sin cos 2)( x x x f 的值域是.【答案】23,25【解析】根据题目22sin 212cos sin )(x x x x f ,因为12sin 1x ,所以23)(25x f .【点评】本题主要考查行列式的基本运算、三角函数的范围、二倍角公式,属于容易题,难度较小.考纲中明确要求掌握二阶行列式的运算性质.4.若)1,2(n 是直线l 的一个法向量,则l 的倾斜角的大小为(结果用反三角函数值表示).【答案】2arctan 【解析】设直线的倾斜角为,则2arctan ,2tan.【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小.5.在6)2(xx的二项展开式中,常数项等于.【答案】160【解析】根据所给二项式的构成,构成的常数项只有一项,就是333462C ()160T x x.【点评】本题主要考查二项式定理.对于二项式的展开式要清楚,特别注意常数项的构成.属于中档题.6.有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为,,,,n V V V 21,则)(lim 21n nV V V .【答案】78【解析】由正方体的棱长组成以1为首项,21为公比的等比数列,可知它们的体积则组成了一个以1为首项,81为公比的等比数列,因此,788111)(lim 21n nV V V .【点评】本题主要考查无穷递缩等比数列的极限、等比数列的通项公式、等比数列的定义.考查知识较综合.7.已知函数||)(a x ex f (a 为常数).若)(x f 在区间),1[上是增函数,则a 的取值范围是.【答案】1,【解析】根据函数,(),x ax ax ae x af x eexa看出当a x 时函数增函数,而已知函数)(x f 在区间,1上为增函数,所以a 的取值范围为:1,.【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中.8.若一个圆锥的侧面展开图是面积为2的半圆面,则该圆锥的体积为.【答案】33【解析】根据该圆锥的底面圆的半径为r,母线长为l ,根据条件得到2212l ,解得母线长2l ,1,22r l r 所以该圆锥的体积为:331231S 3122h V 圆锥.【点评】本题主要考查空间几何体的体积公式和侧面展开图.审清题意,所求的为体积,不是其他的量,分清图形在展开前后的变化;其次,对空间几何体的体积公式要记准记牢,属于中低档题.9.已知2)(x x f y是奇函数,且1)1(f ,若2)()(x f x g ,则)1(g .【答案】1【解析】因为函数2)(xx f y为奇函数,所以,3)1(,1)1(,2)1()1(g f f g 所以,又1232)1()1(,3)1(f g f .(1)(1).f f 【点评】本题主要考查函数的奇偶性.在运用此性质解题时要注意:函数)(x f y为奇函数,所以有)()(x f x f 这个条件的运用,平时要加强这方面的训练,本题属于中档题,难度适中.10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6,若将l 的极坐标方程写成)(f 的形式,则)(f .【答案】)6sin(1【解析】根据该直线过点)0,2(M ,可以直接写出代数形式的方程为:)2(21xy,将此化成极坐标系下的参数方程即可,化简得)6sin(1)(f .【点评】本题主要考查极坐标系,本部分为选学内容,几乎年年都有所涉及,题目类型以小题为主,复习时,注意掌握基本规律和基础知识即可.对于不常见的曲线的参数方程不作要求.本题属于中档题,难度适中.11.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).【答案】32【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32.【点评】本题主要考查排列组合概率问题、古典概型.要分清基本事件数和基本事件总数.本题属于中档题.12.在平行四边形ABCD 中,3A,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM ,则AN AM 的取值范围是.【答案】5,2【解析】以向量AB 所在直线为x 轴,以向量AD 所在直线为y 轴建立平面直角坐标系,如图所示,因为1,2AD AB ,所以51(0,0),(2,0),(,1)(,1).22A B C D 设1515515151(,1)(), ,- ,- ,(2,()sin ).22224284423N x xBMCN CNx BMx M x x 则根据题意,有)83235,4821(),1,(xx AMx AN . 所以83235)4821(x x x AN AM 2521x,所以2 5.AM AN 642246105510ADCBMN 【点评】本题主要考查平面向量的基本运算、概念、平面向量的数量积的运算律.做题时,要切实注意条件的运用.本题属于中档题,难度适中.13.已知函数)(x f y 的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C ,函数)(x xf y (10x )的图象与x 轴围成的图形的面积为.【答案】45【解析】根据题意得到,110,02()11010,12x x f x x x从而得到22110,02()11010,12x x yxf x xx x 所以围成的面积为45)1010(10121221dxx xxdxS,所以围成的图形的面积为45.【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大.14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC ,若c AD 2,且a CDACBD AB 2,其中a 、c 为常数,则四面体ABCD 的体积的最大值是.【答案】13222cac 【解析】据题a CDACBDAB 2,也就是说,线段CD ACBD AB与线段的长度是定值,因为棱AD 与棱BC 互相垂直,当ABD BC平面时,此时有最大值,此时最大值为:13222cac .【点评】本题主要考查空间四面体的体积公式、空间中点线面的关系.本题主要考虑根据已知条件构造体积表达式,这是解决问题的关键,本题综合性强,运算量较大.属于中高档试题.二、选择题(20分)15.若i 21是关于x 的实系数方程02c bx x的一个复数根,则()A .3,2cb B .3,2c b C .1,2c bD .1,2c b【答案】B【解析】根据实系数方程的根的特点12i 也是该方程的另一个根,所以b i i 22121,即2b ,c i i 3)21)(21(,故答案选择 B.【点评】本题主要考查实系数方程的根的问题及其性质、复数的代数形式的四则运算,属于中档题,注重对基本知识和基本技巧的考查,复习时要特别注意.16.在ABC 中,若C BA222sin sin sin ,则ABC 的形状是()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A Ra 代入得到222abc ,由余弦定理的推理得222cos 02abcCab,所以C 为钝角,所以该三角形为钝角三角形.故选择 A.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.17.设443211010x x x x ,5510x ,随机变量1取值54321x x x x x 、、、、的概率均为2.0,随机变量2取值222221554433221x x x x x x x x x x 、、、、的概率也均为2.0,若记21DD 、分别为21、的方差,则()A .21D D B .21D D C .21DDD .1D与2D的大小关系与4321x x x x 、、、的取值有关【答案】 A【解析】由随机变量21,的取值情况,它们的平均数分别为:1123451(),5x x x x x x ,2334455112211,522222x x x x x x x x x x x x 且随机变量21,的概率都为2.0,所以有1D>2D.故选择 A.【点评】本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.18.设25sin1n na n,n n a a a S 21,在10021,,,S S S 中,正数的个数是()A .25B .50C .75D .100【答案】C【解析】依据正弦函数的周期性,可以找其中等于零或者小于零的项.【点评】本题主要考查正弦函数的图象和性质和间接法解题.解决此类问题主要找到规律,从题目出发可以看出来相邻的14项的和为0,这就是规律,考查综合分析问题和解决问题的能力.三、解答题(74分):19.(6+6=12分)如图,在四棱锥ABCD P 中,底面ABCD 是矩形,PA 底面ABCD ,E 是PC 的中点,已知2AB,22AD ,2PA,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小. 【答案及解析】所以三角形PCD 的面积为3232221................6分【点评】本题主要考查直线与直线、直线与平面的位置关系,考查空间想象能力和推理论证能力.综合考查空间中两条异面直线所成的角的求解,同时考查空间几何体的体积公式的运用.本题源于《必修2》立体几何章节复习题,复习时应注重课本,容易出现找错角的情况,要考虑全面,考查空间想象能力,属于中档题.20.(6+8=14分)已知函数)1lg()(x x f .(1)若1)()21(0x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10x时,有)()(x f x g ,求函数)(x g y(]2,1[x)的反函数.【答案及解析】,3132x【点评】本题主要考查函数的概念、性质、分段函数等基础知识.考查数形结合思想,熟练掌握指数函数、对数函数、幂函数的图象与性质,属于中档题.21.(6+8=14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0t时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?22.(4+6+6=16分)在平面直角坐标系xOy 中,已知双曲线1C :1222yx.(1)过1C 的左顶点引1C 的一条渐进线的平行线,求该直线与另一条渐进线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122yx相切,求证:OQ OP;(3)设椭圆2C :1422yx,若M 、N 分别是1C 、2C 上的动点,且ON OM,求证:O 到直线MN 的距离是定值. 【答案及解析】过点A 与渐近线x y 2平行的直线方程为22,2 1.2y xyx 即1ON ,22OM,则O 到直线MN 的距离为33.设O 到直线MN 的距离为d .【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为2,它的渐近线为x y,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题.23.(4+6+8=18分)对于数集}1{21n x x x X,,,,,其中n x x x 210,2n ,定义向量集},),,(|{X tX s t s a a Y ,若对任意Y a 1,存在Y a 2,使得021a a ,则称X 具有性质P .例如}2,1,1{具有性质P .(1)若2x,且},2,1,1{x 具有性质P ,求x 的值;(2)若X 具有性质P ,求证:X 1,且当1n x 时,11x ;(3)若X 具有性质P ,且11x 、q x 2(q 为常数),求有穷数列n x x x ,,,21的通项公式.【答案及解析】必有形式),1(b 显然有2a 满足021a a【点评】本题主要考查数集、集合的基本性质、元素与集合的关系等基础知识,本题属于信息给予题,通过定义“X具有性质P”这一概念,考查考生分析探究及推理论证的能力.综合考查集合的基本运算,集合问题一直是近几年的命题重点内容,应引起足够的重视.。
2012年普通高等学校招生全国统一考试(四川卷) =,{A B a b【提示】由题意,集合选项。
【考点】并集及其运算。
AE=,正方形的边长也为【解析】||1||||||EC CD EC -CED △||||a ba b =成立,则a 与b 方向相同,选项中只有【提示】利用向量共线的充要条件,求已知等式的充要条件,进而可利用命题充要条件的定义得其充分条M 在抛物线上,M∴到焦点的距离等于到准线的距离,即22 4AO POR==2arccos4R【考点】反三角函数的运用,球面距离及相关计算。
【解析】()(f x x=()2f x-,1()f a f +1()g a ∴+()g a ∴为747a a +=【提示】根据()f x =7a +的值。
z ,轴,建立空间直角坐标系。
故10,2,12,1,2DN MA ==-(),(11(,)0||||DN MA DN MA DN MA ==,故D 为坐标原点,建立空间直角坐标系,利用向量的方法求出DN 与1MA 夹角求出异面直线,又22a c-=【提示】先画出图象,结合图象以及椭圆的定义求出FAB△【提示】(1)求出“至少有一个系统不发生故障”的对立事件的概率,利用至少有一个系统不发生故障的概率为49,可求p的值。
【提示】(1)将21cos sin cos 222()2x x x x f =--化为π()4f x x ⎛⎫=+ ⎪⎝⎭即可求得()f x 的最小正周期和值19.【答案】(1)解:连接OC 。
由已知,OCP ∠为直线PC 与平面ABC 所成的角。
设AB 的中点为D ,连接.PD CD 、因为AB BC CA ==,所以CD AB ⊥.因为9060APB PAB ∠=︒∠=︒,,所以PAD △为等边三角形,不妨设2PA =,则14OD OP AB ===,.所以CD =,OC ==。
【提示】(1)连接OC 。
由已知,OCP ∠为直线PC 与平面ABC 所成的角。
2012年普通高等学校招生全国统一考试(大纲卷)文科数学(必修+选修Ⅰ)答案解析第Ⅰ卷CF=,选D。
等积法得1,即4444()5555AD AB a b a b==-=-,选D。
平行关系,作图,可以得到回到EA点时,需要碰撞6次即可。
【提示】通过相似三角形,来确定反射后的点的落的位置,结合图像分析反射的次数即可。
【考点】三角形相似知识的运用第Ⅱ卷【考点】简单线性规划。
5π5255⨯⨯【考点】等角定理、异面直线所成的角的概念。
【考点】数列与三角函数的综合。
18.【答案】(1)解:由224=3S a 得1223()4a a a +=,解得2133a a ==;由335=3S a 得12333()5a a a a ++=,解得3123()62a a a =+=(2)解:由题设知11a =19.【答案】(1)证法一:因为底面ABCD 为菱形,所以BD AC ⊥,又PA ⊥底面ABCD ,所以PC BD ⊥设=ACBD F ,连接EF 。
因为AC 2PA =,2PE EC =,故PC EC FC =PC AC ==,证法二:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A xyz -设00)C ,,0)D b ,,0)B b ,P ,E ,,0)B b -于是2222(22,0,2),,=,33PA BE b DE b ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,, 从而0PC BE =,0PC DE =,故PC BE PC DE ⊥,⊥ 又BEDE E =,所以PC ⊥平面BDEPABP 平面PBC PAB 内两条相交直线AB ,所以底面所以PD 与平面PBC 所成角为30︒解法二:(00,2)AP =,,(2,0)AB b =-, 设(,,m x y =的法向量,则0=0m AP m AB =, ,则(,2,0)m b =设(,,)n p q r =的法向量,则00n PC n BE ==,, =0,且,21,n b ⎛⎫=- ,故0m n =,即于是(1,1,n =-,=(2,DP -1,2n DP n DP n DP<>==,60n DP <>=︒所成角和,n DP <>互余,故PD 与平面PBC 所成角为30︒(2)解:五次发球,甲领先时的比分有:3:14:0,这两种情况 开始第5次发球时比分为3:1的概率为:22112222220.60.40.60.60.40.40.17280.07680.2496C C C C ⨯⨯+⨯⨯=+=开始第5次发球时比分为4:0的概率为:2222220.60.40.0576C C ⨯=所以开始第5次发球时,甲得分领先的概率为0.24960.05760.3072+=【提示】首先要理解发球的具体情况,然后对于事件的情况分析,讨论,并结合独立事件的概率求解结论。
2012年上海高考数学(理科)试卷及参考答案一、填空题(本大题共有14题,满分56分)1.计算:ii +-13= (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = . 3.函数1sin cos 2)(-=x xx f 的值域是 .4.若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.在6)2(xx -的二项展开式中,常数项等于 .6.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .7.已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 .8.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 . 9.已知2)(x x f y +=是奇函数,且1)1(=f .若2)()(+=x f x g ,则=-)1(g . 10.如图,在极坐标系中,过点)0,2(M 的直线lπα=.若将l 的极坐标方程写成)(θρf =的形式,则 =)(θf .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||CD BC =,则AN AM ⋅的取值范围是 .13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0). 函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2.若AD=2c ,且AB+BD=AC+CD=2a ,其中a 、c 为 常数,则四面体ABCD 的体积的最大值是 .二、选择题(本大题共有4题,满分20分)15.若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则( )(A )3,2==c b . (B )3,2=-=c b . (C )1,2-=-=c b .(D )1,2-==c b . 16.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )不能确定. 17.设443211010≤<<<≤x x x x ,5510=x . 随机变量1ξ取值1x 、2x 、3x 、4x 、5x 的概率均为0.2,随机变量2ξ取值21x x +、32x x +、43x x +、54x x +、15x x +的概率也为0.2. 若记1ξD 、2ξD 分别为1ξ、2ξ的方差,则( )(A )1ξD >2ξD . (B )1ξD =2ξD . (C )1ξD <2ξD .ABCD(D )1ξD 与2ξD 的大小关系与1x 、2x 、3x 、4x 的取值有关.18.设1sin πnn a =,n n a a a S +++= 21. 在10021,,,S S S 中,正数的个数是 ( ) (A )25. (B )50.(C )75.(D )100.三、解答题(本大题共有5题,满分74分)19.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB=2, AD=22,PA=2.求:(1)三角形PCD 的面积;(6分)(2)异面直线BC 与AE 所成的角的大小.(6分)20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分)(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数ABCD PE)(x g y =])2,1[(∈x 的反函数.(8分)21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图.24912x y =援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8分)22.在平面直角坐标系xOy 中,已知双曲线12:221=-y x C .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(4分)(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OP ⊥OQ ;(6分)(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.(6分)23.对于数集},,,,1{21n x x x X -=,其中n x x x <<<< 210,2≥n ,定义向量集},),,(|{X t X s t s a a Y ∈∈==. 若对于任意Y a ∈1,存在Y a ∈2,使得021=⋅a a ,则称X 具有性质P. 例如}2,1,1{-=X 具有性质P.(1)若x >2,且},2,1,1{x -,求x 的值;(4分)(2)若X 具有性质P ,求证:1∈X ,且当x n >1时,x 1=1;(6分) (3)若X 具有性质P ,且x 1=1,x 2=q (q 为常数),求有穷数列n x x x ,,,21 的通项公式.(8分)2012年上海高考数学(理科)试卷解答一、填空题(本大题共有14题,满分56分)1. 1-2i 2. )3,(21- . 3. ],[2325-- . 4. arctan2 5. -160 . 6.78. 7. (-∞, 1] . 8.π33 .9. -1 .10. )sin(1θπ- .11.3212. [2, 5] .13. 45.14.12232--c a c .二、选择题(本大题共有4题,满分20分) 15. B ; 16. C ; 17. A ; 18. D ;三、解答题(本大题共有5题,满分74分)19. [解](1)因为PA ⊥底面ABCD ,所以PA ⊥CD ,又AD ⊥CD ,所以CD ⊥平面PAD ,从而CD ⊥PD . ……3分因为PD=32)22(222=+,CD =2,所以三角形PCD 的面积为32221=⨯⨯分 (2)[解法一] 则B (2, 0, 0),C (2, 22,0),E (1, 2 )1,2,1(=AE ,)0,22,0(=BC . 设与的夹角为θ,则222224cos ===⨯⋅BCAE θ,θ=4π. 由此可知,异面直线BC 与AE 所成的角的大小是4π ……12分[解法二]取PB 中点F ,连接EF 、AF ,则 EF ∥BC ,从而∠AEF (或其补角)是异面直线 BC 与AE 所成的角 ……8分 在AEF ∆中,由EF =2、AF =2、AE =2 知AEF ∆是等腰直角三角形, 所以∠AEF =4π. 因此异面直线BC 与AE 所成的角的大小是4π ……12分20[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .yAB C DPEF由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x . ……3分因为01>+x ,所以1010221+<-<+x x x ,3132<<-x . 由⎩⎨⎧<<-<<-1211x x 得3132<<-x . ……6分 (2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==. ……10分由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x . ……14分21.[解](1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程24912x y = 中,得P 的纵坐标y P =3. ……2分由|AP |=2949,得救援船速度的大小为949海里/时. ……4分由tan∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度.6分(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .……10分 因为2212≥+t t ,当且仅当t =1时等号成立, 所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分22. [解](1)双曲线1:21212=-y C x ,左顶点)0,(2-A ,渐近线方程:x y 2±=.过点A 与渐近线x y 2=平行的直线方程为)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x . ……2分所以所求三角形的面积1为21||||==y OA S . ……4分(2)设直线PQ 的方程是b x y +=.因直线与已知圆相切,故12||=b ,即22=b . ……6分由⎩⎨⎧=-+=1222y x b x y ,得01222=---b bx x . 设P (x 1, y 1)、Q (x 2, y 2),则⎩⎨⎧--==+1222121b x x bx x . 又2,所以221212121)(2b x x b x x y y x x OQ OP +++=+=⋅022)1(2222=-=+⋅+--=b b b b b ,故OP ⊥OQ . (10)分(3)当直线ON 垂直于x 轴时, |ON |=1,|OM |=22,则O 到直线MN 的距离为33.当直线ON 不垂直于x 轴时, 设直线ON 的方程为kx y =(显然22||>k ),则直线OM 的方程为x y k1-=. 由⎩⎨⎧=+=1422y x kx y ,得⎪⎩⎪⎨⎧==++22242412k k k y x ,所以22412||k k ON ++=.同理121222||-+=k k OM . ……13分设O 到直线MN 的距离为d ,因为22222||||)|||(|ON OM d ON OM =+,所以3133||1||1122222==+=++k k ON OM d ,即d =33.综上,O 到直线MN 的距离是定值. ……16分23. [解](1)选取)2,(1x a =,Y 中与1a 垂直的元素必有形式),1(b -. ……2分 所以x =2b ,从而x =4. ……4分 (2)证明:取Y x x a ∈=),(111.设Y t s a ∈=),(2满足021=⋅a a . 由0)(1=+x t s 得0=+t s ,所以s 、t 异号.因为-1是X 中唯一的负数,所以s 、t 中之一为-1,另一为1,故1∈X . (7)分假设1=k x ,其中n k <<1,则n x x <<<101.选取Y x x a n ∈=),(11,并设Y t s a ∈=),(2满足021=⋅a a ,即01=+n tx sx , 则s 、t 异号,从而s 、t 之中恰有一个为-1. 若s =-1,则2,矛盾;若t =-1,则n n x s sx x ≤<=1,矛盾.所以x 1=1. ……10分(3)[解法一]猜测1-=i i q x ,i =1, 2, …, n . ……12分 记},,,1,1{2k k x x A -=,k =2, 3, …, n .先证明:若1+k A 具有性质P ,则k A 也具有性质P.任取),(1t s a =,s 、t ∈k A .当s 、t 中出现-1时,显然有2a 满足021=⋅a a ; 当1-≠s 且1-≠t 时,s 、t ≥1.因为1+k A 具有性质P ,所以有),(112t s a =,1s 、1t ∈1+k A ,使得021=⋅a a ,从而1s 和1t 中有一个是-1,不妨设1s =-1.假设1t ∈1+k A 且1t ∉k A ,则11+=k x t .由0),1(),(1=-⋅+k x t s ,得11++≥=k k x tx s ,与s ∈k A 矛盾.所以1t ∈k A .从而k A 也具有性质P. ……15分现用数学归纳法证明:1-=i i q x ,i =1, 2, …, n . 当n =2时,结论显然成立;假设n=k 时,},,,1,1{2k k x x A -=有性质P ,则1-=i i q x ,i =1, 2, …, k ; 当n=k +1时,若},,,,1,1{121++-=k k k x x x A 有性质P ,则},,,1,1{2k k x x A -=也有性质P ,所以},,,,1,1{111+-+-=k k k x q q A .取),(11q x a k +=,并设),(2t s a =满足021=⋅a a ,即01=++qt s x k .由此可得s与t 中有且只有一个为-1.若1-=t ,则1,不可能;所以1-=s ,k k k q q q qt x =⋅≤=-+11,又11-+>k k q x ,所以k k q x =+1. 综上所述,1-=i i q x 1-=i i q x ,i =1, 2, …, n . ……18分 [解法二]设),(111t s a =,),(222t s a =,则021=⋅a a 等价于2211s t t s -=. 记|}|||,,|{t s X t X s B ts >∈∈=,则数集X 具有性质P 当且仅当数集B 关于原点对称. ……14分注意到-1是X 中的唯一负数,},,,{)0,(32n x x x B ---=-∞ 共有n -1个数,所以),0(∞+ B 也只有n -1个数.由于1221x x x x x x x xn n n n n n <<<<-- ,已有n -1个数,对以下三角数阵1221x x x x x x x x n n n n n n <<<<--113121x x x x x x n n n n n -----<<<……12x x注意到12111x x x x x x n n >>>- ,所以12211x x x x x xn n n n ===--- ,从而数列的通项公式为111)(12--==k k x x k q x x ,k =1, 2, …, n . ……18分。
2012年上海市高考数学试卷(理科)参考答案与试题解析一、填空题(56分):1.(4分)(2012•上海)计算:= 1﹣2i (i为虚数单位).考点:复数代数形式的乘除运算.专题:计算题.分析:由题意,可对复数代数式分子与分母都乘以1﹣i,再由进行计算即可得到答案解答:解:故答案为1﹣2i点评:本题考查复数代数形式的乘除运算,解题的关键是分子分母都乘以分母的共轭,复数的四则运算是复数考查的重要内容,要熟练掌握2.(4分)(2012•上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=(﹣,3).考点:交集及其运算.专题:计算题.分析:由题意,可先将两个数集化简,再由交的运算的定义求出两个集合的交集即可得到答案解答:解:由题意A={x|2x+1>0}={x|x>﹣},B={x||x﹣1|<2}={x|﹣1<x<3},所以A∩B=(﹣,3)故答案为(﹣,3)点评:本题考查交集的运算,解题的关键是熟练掌握交集的定义及运算规则,正确化简两个集合对解题也很重要,要准确化简3.(4分)(2012•上海)函数f(x)=的值域是.考点:二阶矩阵;三角函数中的恒等变换应用.专题:计算题.分析:先根据二阶行列式的运算法则求出函数的解析式,然后化简整理,根据正弦函数的有界性可求出该函数的值域.解答:解:f(x)==﹣2﹣sinxcosx=﹣2﹣sin2x∵﹣1≤sin2x≤1∴﹣≤﹣sin2x≤则﹣≤﹣2﹣sin2x≤﹣∴函数f(x)=的值域是故答案为:点评:本题主要考查了二阶行列式的求解,以及三角函数的化简和值域的求解,同时考查了计算能力,属于基础题.4.(4分)(2012•上海)若=(﹣2,1)是直线l的一个法向量,则l的倾斜角的大小为arctan2 (结果用反三角函数值表示).考点:平面向量坐标表示的应用.专题:计算题.分析:根据直线的法向量求出直线的一个方向向量,从而得到直线的斜率,根据k=tanα可求出倾斜角.解答:解:∵=(﹣2,1)是直线l的一个法向量∴可知直线l的一个方向向量为(1,2),直线l的倾斜角为α得,tanα=2∴α=arctan2故答案为:arctan2点评:本题主要考查了方向向量与斜率的关系,以及反三角的应用,同时运算求解的能力,属于基础题.5.(4分)(2012•上海)在的二项展开式中,常数项等于﹣160 .考点:二项式定理的应用.专题:计算题.分析:研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.解答:解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣160点评:本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.6.(4分)(2012•上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═.考点:数列的极限;棱柱、棱锥、棱台的体积.专题:计算题.分析:由题意可得,正方体的体积=是以1为首项,以为公比的等比数,由等不数列的求和公式可求解答:解:由题意可得,正方体的棱长满足的通项记为an则∴=是以1为首项,以为公比的等比数列则(V1+V2+…+v n)==故答案为:点评:本题主要考查了等比数列的求和公式及数列极限的求解,属于基础试题7.(4分)(2012•上海)已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是(﹣∞,1] .考点:指数函数单调性的应用.专题:综合题.分析:由题意,复合函数f(x)在区间[1,+∞)上是增函数可得出内层函数t=|x﹣a|在区间[1,+∞)上是增函数,又绝对值函数t=|x﹣a|在区间[a,+∞)上是增函数,可得出[1,+∞)⊆[a,+∞),比较区间端点即可得出a的取值范围解答:解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数又t=|x﹣a|在区间[a,+∞)上是增函数所以[1,+∞)⊆[a,+∞),故有a≤1故答案为(﹣∞,1]点评:本题考查指数函数单调性的运用及复合函数单调性的判断,集合包含关系的判断,解题的关键是根据指数函数的单调性将问题转化为集合之间的包含关系,本题考查了转化的思想及推理判断的能力,属于指数函数中综合性较强的题型.8.(4分)(2012•上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:通过侧面展开图的面积.求出圆锥的母线,底面的半径,求出圆锥的体积即可.解答:解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以l=2,半圆的弧长为2π,圆锥的底面半径为2πr=2π,r=1,所以圆锥的体积为:=.故答案为:.点评:本题考查旋转体的条件的求法,侧面展开图的应用,考查空间想象能力,计算能力.9.(4分)(2012•上海)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(﹣1)= ﹣1 .考点:函数奇偶性的性质;函数的值.专题:计算题.分析:由题意,可先由函数是奇函数求出f(﹣1)=﹣3,再将其代入g(﹣1)求值即可得到答案解答:解:由题意,y=f(x)+x2是奇函数,且f(1)=1,所以f(1)+1+f(﹣1)+(﹣1)2=0解得f(﹣1)=﹣3所以g(﹣1)=f(﹣1)+2=﹣3+2=﹣1故答案为:﹣1.点评:本题考查函数奇偶性的性质,利用函数奇偶性求值,解题的关键是根据函数的奇偶性建立所要求函数值的方程,基本题型.10.(4分)(2012•上海)如图,在极坐标系中,过点M(2,0)的直线l与极轴的夹角a=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)= .考点:简单曲线的极坐标方程.专题:计算题.分析:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ,在三角形POM中,利用正弦定理建立等式关系,从而求出所求.解答:解:取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ在三角形POM中,利用正弦定理可知:解得ρ=f(θ)=故答案为:点评:本题主要考查了简单曲线的极坐标方程,以及正弦定理的应用,同时考查了分析问题的能力和转化的思想,属于基础题.11.(4分)(2012•上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).考点:古典概型及其概率计算公式.专题:概率与统计.分析:先求出三个同学选择的所求种数,然后求出有且仅有两人选择的项目完全相同的种数,最后利用古典概型及其概率计算公式进行求解即可.解答:解:每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有××=18种其中表示3个同学中选2个同学选择的项目,表示从三种组合中选一个,表示剩下的一个同学有2中选择故有且仅有两人选择的项目完全相同的概率是=故答案为:点评:本题主要考查了古典概型及其概率计算公式,解题的关键求出有且仅有两人选择的项目完全相同的个数,属于基础题.12.(4分)(2012•上海)在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是[2,5] .考点:平面向量的综合题.专题:计算题.分析:画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.解答:解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设==λ,λ∈[0,1],M(2+),N(),所以=(2+)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].点评:本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力.13.(4分)(2012•上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.考点:函数的图象.专题:计算题;综合题;压轴题.分析:根据题意求得f(x)=,从而y=xf(x)=,利用定积分可求得函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积.解答:解:由题意可得,f(x)=,∴y=xf(x)=,设函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S,则S=10x2dx+(﹣10x2+10x)dx=10×+(﹣10)×+10×=﹣+5﹣==.故答案为:.点评:本题考查函数的图象,着重考查分段函数的解析式的求法与定积分的应用,考查分析运算能力,属于难题.14.(4分)(2012•上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:作BE⊥AD于E,连接CE,说明B与C都是在以AD为焦距的椭球上,且BE、CE都垂直于焦距AD,BE=CE.取BC中点F,推出四面体ABCD的体积的最大值,当△ABD是等腰直角三角形时几何体的体积最大,求解即可.解答:解:作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦点的椭圆上,且BE、CE都垂直于焦距AD,AB+BD=AC+CD=2a,显然△ABD≌△ACD,所以BE=CE.取BC中点F,∴EF⊥BC,EF⊥AD,要求四面体ABCD的体积的最大值,因为AD是定值,只需三角形EBC的面积最大,因为BC是定值,所以只需EF最大即可,当△ABD是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a,∴AB=a,所以EB=,EF=,所以几何体的体积为:×=.故答案为:.点评:本题考查棱柱、棱锥、棱台的体积,考查空间想象能力,逻辑推理能力以及计算能力.二、选择题(20分):(5分)(2012•上海)若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则()15.A.b=2,c=3B.b=﹣2,c=3C.b=﹣2,c=﹣1D.b=2,c=﹣1考点:复数相等的充要条件.专题:计算题;转化思想.分析:由题意,将根代入实系数方程x2+bx+c=0整理后根据得数相等的充要条件得到关于实数a,b的方程组,解方程得出a,b的值即可选出正确选项解答:解:由题意1+i是关于x的实系数方程x2+bx+c=0∴1+2i﹣2+b+bi+c=0∴,解得b=﹣2,c=3故选B点评:本题考查复数相等的充要条件,解题的关键是熟练掌握复数相等的充要条件,能根据它得到关于实数的方程,本题考查了转化的思想,属于基本计算题16.(5分)(2012•上海)在△ABC中,若sin2A+sin2B<sin2C,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定考点:余弦定理的应用;三角形的形状判断.专题:解三角形.分析:由sin2A+sin2B<sin2C,结合正弦定理可得,a2+b2<c2,由余弦定理可得CosC=可判断C的取值范围解答:解:∵sin2A+sin2B<sin2C,由正弦定理可得,a2+b2<c2由余弦定理可得cosC=∴∴△ABC是钝角三角形故选C点评:本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础试题17.(5分)(2012•上海)设10≤x1<x2<x3<x4≤104,x5=105,随机变量ξ1取值x1、x2、x3、x4、x5的概率均为0.2,随机变量ξ2取值、、、、的概率也均为0.2,若记Dξ1、Dξ2分别为ξ1、ξ2的方差,则()A.Dξ>Dξ21B.Dξ=Dξ21C.Dξ<Dξ21D.Dξ与Dξ2的大小关系与x1、x2、x3、x4的取值有关1考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:计算题;压轴题.分析:根据随机变量ξ、ξ2的取值情况,计算它们的平均数,根据随机变量ξ1、ξ2的取1值的概率都为0.2,即可求得结论.解答:解:由随机变量ξ、ξ2的取值情况,它们的平均数分别为:1=(x1+x2+x3+x4+x5),=(++++)=且随机变量ξ1、ξ2的取值的概率都为0.2,所以有Dξ1>Dξ2,故选择A.点评:本题主要考查离散型随机变量的期望和方差公式.记牢公式是解决此类问题的前提和基础,本题属于中档题.18.(5分)(2012•上海)设a n=sin,S n=a1+a2+…+a n,在S1,S2,…S100中,正数的个数是()A.25B.50C.75D.100考点:数列的求和;三角函数的周期性及其求法.专题:计算题;压轴题.分析:由于f(n)=sin的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=单调递减,a25=0,a26…a50都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24,从而可判断解答:解:由于f(n)=sin的周期T=50由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0且sin,sin…但是f(n)=单调递减a26…a49都为负数,但是|a26|<a1,|a27|<a2,…,|a49|<a24∴S1,S2,…,S25中都为正,而S26,S27,…,S50都为正同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,故选D点评:本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.三、解答题(共5小题,满分74分)19.(12分)(2012•上海)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2,PA=2,求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.考点:直线与平面垂直的性质;异面直线及其所成的角.专题:证明题;综合题;空间位置关系与距离;空间角.分析:(1)可以利用线面垂直的判定与性质,证明出三角形PCD是以D为直角顶点的直角三角形,然后在Rt△PAD中,利用勾股定理得到PD=2,最后得到三角形PCD的面积S;(2)[解法一]建立如图空间直角坐标系,可得B、C、E各点的坐标,从而=(1,,1),=(0,2,0),利用空间向量数量积的公式,得到与夹角θ满足:cosθ=,由此可得异面直线BC与AE所成的角的大小为;[解法二]取PB的中点F,连接AF、EF,△PBC中,利用中位线定理,得到EF∥BC,从而∠AEF或其补角就是异面直线BC与AE所成的角,然后可以通过计算证明出:△AEF是以F为直角顶点的等腰直角三角形,所以∠AEF=,可得异面直线BC与AE所成的角的大小为.解答:解:(1)∵PA⊥底面ABCD,CD⊂底面ABCD,∴CD⊥PA.∵矩形ABCD中,CD⊥AD,PA、AD是平面PDC内的相交直线.∴CD⊥平面PDA,∵PD⊂平面PDA,∴CD⊥PD,三角形PCD是以D为直角顶点的直角三角形.∵Rt△PAD中,AD=2,PA=2,∴PD==2.∴三角形PCD的面积S=×PD×DC=2.(2)[解法一]如图所示,建立空间直角坐标系,可得B(2,0,0),C(2,2,0),E(1,,1).∴=(1,,1),=(0,2,0),设与夹角为θ,则cosθ===,∴θ=,由此可得异面直线BC与AE所成的角的大小为.[解法二]取PB的中点F,连接AF、EF、AC,∵△P BC中,E、F分别是PC、PB的中点,∴EF∥BC,∠AEF或其补角就是异面直线BC与AE所成的角.∵Rt△PAC中,PC==4.∴AE=PC=2,∵在△AEF中,EF=BC=,AF=PB=∴AF2+EF2=AE2,△AEF是以F为直角顶点的等腰直角三角形,∴∠AEF=,可得异面直线BC与AE所成的角的大小为.点评:本题根据一个特殊的四棱锥,求异面直线所成的角和证明线面垂直,着重考查了异面直线及其所成的角和直线与平面垂直的性质等知识,属于中档题.20.(14分)(2012•上海)已知f(x)=lg(x+1)(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.考点:函数的周期性;反函数;对数函数图象与性质的综合应用.专题:计算题.分析:(1)应用对数函数结合对数的运算法则进行求解即可;(2)结合函数的奇偶性和反函数知识进行求解.解答:解:(1)f(1﹣2x)﹣f(x)=lg(1﹣2x+1)﹣lg(x+1)=lg(2﹣2x)﹣lg(x+1),要使函数有意义,则由解得:﹣1<x<1.由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,∵x+1>0,∴x+1<2﹣2x<10x+10,∴.由,得:.(2)当x∈[1,2]时,2﹣x∈[0,1],∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),由单调性可知y∈[0,lg2],又∵x=3﹣10y,∴所求反函数是y=3﹣10x,x∈[0,lg2].点评:本题考查对数的运算以及反函数与原函数的定义域和值域相反等知识,属于易错题.21.(14分)(2012•上海)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t小时后,失事船所在位置的横坐标为7t(1)当t=0.5时,写出失事船所在位置P的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?考点:圆锥曲线的综合.专题:应用题.分析:(1)t=0.5时,确定P的横坐标,代入抛物线方程中,可得P的纵坐标,利用|AP|=,即可确定救援船速度的大小和方向;(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2),从而可得vt=,整理得,利用基本不等式,即可得到结论.解答:解:(1)t=0.5时,P的横坐标x P=7t=,代入抛物线方程中,得P的纵坐标y P=3.…2分由|AP|=,得救援船速度的大小为海里/时.…4分由tan∠OAP=,得∠OAP=arctan,故救援船速度的方向为北偏东arctan 弧度.…6分(2)设救援船的时速为v海里,经过t小时追上失事船,此时位置为(7t,12t2).由vt=,整理得.…10分因为,当且仅当t=1时等号成立,所以v2≥144×2+337=252,即v≥25.因此,救援船的时速至少是25海里才能追上失事船.…14分点评:本题主要考查函数模型的选择与运用.选择恰当的函数模型是解决此类问题的关键,属于中档题.22.(16分)(2012•上海)在平面直角坐标系xOy中,已知双曲线C1:2x2﹣y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1,若M、N分别是C1、C2上的动点,且OM⊥ON,求证:O到直线MN 的距离是定值.考点:直线与圆锥曲线的综合问题;圆锥曲线的综合.专题:计算题;压轴题;转化思想.分析:(1)求出双曲线的渐近线方程,求出直线与另一条渐近线的交点,然后求出三角形的面积.(2)设直线PQ的方程为y=kx+b,通过直线PQ与已知圆相切,得到b2=2,通过求解=0.证明PO⊥OQ.(3)当直线ON垂直x轴时,直接求出O到直线MN的距离为.当直线ON不垂直x 轴时,设直线ON的方程为:y=kx,(显然|k|>),推出直线OM的方程为y=,利用,求出,,设O到直线MN的距离为d,通过(|OM|2+|ON|2)d2=|OM|2|ON|2,求出d=.推出O到直线MN的距离是定值.解答:解:(1)双曲线C1:左顶点A(﹣),渐近线方程为:y=±x.过A与渐近线y=x平行的直线方程为y=(x+),即y=,所以,解得.所以所求三角形的面积为S=.(2)设直线PQ的方程为y=kx+b,因直线PQ与已知圆相切,故,即b2=2,由,得x2﹣2bx﹣b2﹣1=0,设P(x1,y1),Q(x2,y2),则,又y1y2=(x1+b)(x2+b).所以=x1x2+y1y2=2x1x2+b(x1+x2)+b2=2(﹣1﹣b2)+2b2+b2=b2﹣2=0.故PO⊥OQ.(3)当直线ON垂直x轴时,|ON|=1,|OM|=,则O到直线MN的距离为.当直线ON不垂直x轴时,设直线ON的方程为:y=kx,(显然|k|>),则直线OM的方程为y=,由得,所以.同理,设O到直线MN的距离为d,因为(|OM|2+|ON|2)d2=|OM|2|ON|2,所以==3,即d=.综上,O到直线MN的距离是定值.点评:本题考查直线与圆锥曲线的综合问题,圆锥曲线的综合,向量的数量积的应用,设而不求的解题方法,点到直线的距离的应用,考查分析问题解决问题的能力,考查计算能力.23.(18分)(2012•上海)对于数集X={﹣1,x1,x2,…,x n},其中0<x1<x2<…<x n,n≥2,定义向量集Y={=(s,t),s∈X,t∈X},若对任意,存在,使得,则称X具有性质P.例如{﹣1,1,2}具有性质P.(1)若x>2,且{﹣1,1,2,x}具有性质P,求x的值;(2)若X具有性质P,求证:1∈X,且当x n>1时,x1=1;(3)若X具有性质P,且x1=1、x2=q(q为常数),求有穷数列x1,x2,…,x n的通项公式.考点:数列与向量的综合;元素与集合关系的判断;平面向量的综合题.专题:计算题;证明题;综合题;压轴题.分析:(1)在Y中取=(x,2),根据数量积的坐标公式,可得Y中与垂直的元素必有形式(﹣1,b),所以x=2b,结合x>2,可得x的值.(2)取=(x1,x1),=(s,t)根据,化简可得s+t=0,所以s、t异号.而﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,从而证出1∈X,最后通过反证法,可以证明出当x n>1时,x1=1.(3)[解法一]先猜想结论:x i=q i﹣1,i=1,2,3,…,n.记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n,通过反证法证明出引理:若A k+1具有性质P,则A k也具有性质P.最后用数学归纳法,可证明出x i=q i﹣1,i=1,2,3,…,n;[解法二]设=(s1,t1),=(s2,t2),则等价于,得到一正一负的特征,再记B={|s∈X,t∈X且|s|>|t|},则可得结论:数集X具有性质P,当且仅当数集B关于原点对称.又注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数,所以B∩(0.+∞)也有n﹣1个数.最后结合不等式的性质,结合三角形数阵加以说明,可得==…=,最终得到数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.解答:解:(1)选取=(x,2),则Y中与垂直的元素必有形式(﹣1,b),所以x=2b,又∵x>2,∴只有b=2,从而x=4.(2)取=(x1,x1)∈Y,设=(s,t)∈Y,满足,可得(s+t)x1=0,s+t=0,所以s、t异号.因为﹣1是数集X中唯一的负数,所以s、t中的负数必为﹣1,另一个数是1,所以1∈X,假设x k=1,其中1<k<n,则0<x1<1<x n.再取=(x1,x n)∈Y,设=(s,t)∈Y,满足,可得sx1+tx n=0,所以s、t异号,其中一个为﹣1①若s=﹣1,则x1=tx n>t≥x1,矛盾;②若t=﹣1,则x n=sx1<s≤x n,矛盾;说明假设不成立,由此可得当x n>1时,x1=1.(3)[解法一]猜想:x i=q i﹣1,i=1,2,3,…,n记A k═{﹣1,x1,x2,…,x k},k=2,3,…,n先证明若A k+1具有性质P,则A k也具有性质P.任取=(s,t),s、t∈A k,当s、t中出现﹣1时,显然有满足当s、t中都不是﹣1时,满足s≥1且t≥1.因为A k+1具有性质P,所以有=(s1,t1),s1、t1∈A k+1,使得,从而s1、t1其中有一个为﹣1不妨设s1=﹣1,假设t1∈A k+1,且t1∉A k,则t1=x k+1.由(s,t)(﹣1,x k+1)=0,得s=tx k+1≥x k+1,与s∈A k矛盾.所以t1∈A k,从而A k也具有性质P.再用数学归纳法,证明x i=q i﹣1,i=1,2,3,…,n当n=2时,结论显然成立;假设当n=k时,A k═{﹣1,x1,x2,…,x k}具有性质P,则x i=q i﹣1,i=1,2,…,k当n=k+1时,若A k+1═{﹣1,x1,x2,…,x k+1}具有性质P,则A k═{﹣1,x1,x2,…,x k}具有性质P,所以A k+1═{﹣1,q,q2,…,q k﹣1,x k+1}.取=(x k+1,q),并设=(s,t)∈Y,满足,由此可得s=﹣1或t=﹣1若t=﹣1,则x k+1=,不可能所以s=﹣1,x k+1=qt=q j≤q k且x k+1>q k﹣1,因此x k+1=q k综上所述,x i=q i﹣1,i=1,2,3,…,n[解法二]设=(s1,t1),=(s2,t2),则等价于记B={|s∈X,t∈X且|s|>|t|},则数集X具有性质P,当且仅当数集B关于原点对称注意到﹣1是集合X中唯一的负数,B∩(﹣∞,0)={﹣x2,﹣x3,﹣x4,…,﹣x n},共有n﹣1个数.所以B∩(0,+∞)也有n﹣1个数.由于<<<…<,已经有n﹣1个数对以下三角形数阵:<<<…<,<<<…<…注意到>>>…>,所以==…=从而数列的通项公式是x k=x1•()k﹣1=q k﹣1,k=1,2,3,…,n.点评:本题以向量的数量积的坐标运算为载体,着重考查了数列的通项公式的探索、集合元素的性质和数列与向量的综合等知识点,属于难题.本题是一道综合题,请同学们注意解题过程中的转化化归思想、分类讨论的方法和反证法的运用.。
2012年上海市高考数学试卷(理科)一、填空题(56分):=上海)计算:(i为虚数单位).(1.4分)(2012?2.(4分)(2012?上海)若集合A={x|2x+1>0},B={x||x﹣1|<2},则A∩B=..的值域是=)(x分)(2012?上海)函数f3.(4的倾斜角ll的一个法向量,则2,1)是直线4.(分)(2012?上海)若=(﹣4.(结果用反三角函数值表示)的大小为的二项展开式中,常数项等于分)4(2012?上海)在.5.(6.(4分)(2012?上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V,V,…,V,…,则(V+V+…+V)═.n211n2xa||﹣(a为常数).若f()2012?上海)已知函数f(x=ex)在区间[1,47.(分)(+∞)上是增函数,则a的取值范围是.8.(4分)(2012?上海)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.2是奇函数,且f(1)=1,若+xg(x)=f上海)已知9.(4分)(2012?y=f(x)(x)+2,则g(﹣1)=.10.(4分)(2012?上海)如图,在极坐标系中,过点M(2,0)的直线l与极.的形式,则f(θ)=)的极坐标方程写成a=轴的夹角,若将lρ=f(θ上海)三位同学参加跳高、跳远、铅球项目的比赛,若每人(2012?分)11.(4都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是.(结果用最简分数表示)的长分别、,边中,∠上海)在平行四边形(4.12(分)2012?ABCDA=ABAD 的CD上的点,且满足=,则,为2、1若M、N分别是边BC、取值范围是.13.(4分)(2012?上海)已知函数y=f(x)的图象是折线段ABC,其中A(0,0)、B(,5)、C(1,0),函数y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为.14.(4分)(2012?上海)如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.:20分)二、选择题(2的一个复数+c=0+bx是关于1+ix的实系数方程x15.(5分)(2012?上海)若)根,则(1﹣b=2,c=,c=﹣1D.﹣,c=3B.b=﹣2,c=3C.b=2.Ab=2222的形状是ABCCsin<Bsin5分)(2012?上海)在△ABC中,若sin,则△A+.16()(.不能确定DC.钝角三角形A.锐角三角形B.直角三角形54取值,随机变量x=10ξx<x<x≤10,1017.(5分)(2012?上海)设≤x<125134、、取值、的概率均为0.2,随机变量ξ、x、x、xx、x242315)(ξ分别为、ξ的方差,则、,、的概率也均为0.2若记DξDξ2211 Dξ>DξA.21=Dξ.BDξ21DξDξ<.C21.D.Dξ与Dξ的大小关系与x、x、x、x的取值有关41322118.(5分)(2012?上海)设a=sin,S=a+a+…+a,在S,S,…S中,正100n21n12n数的个数是()A.25B.50C.75D.100分)三、解答题(共小题,满分745PA中,底面ABCDABCD是矩形,分)(2012?上海)如图,在四棱锥P﹣1219.(,求:,PA=2PC的中点,已知AB=2,AD=2是⊥底面ABCD,E的面积;)三角形PCD(1所成的角的大小.AE(2)异面直线BC与)+1)=lg(x14分)(2012?上海)已知f(x20.(的取值范围;x)<1,求x1﹣2x)﹣f(f(1)若0<(,求函)(xg(x)=f0g(x)是以2为周期的偶函数,且当≤x≤1时,2()若)的反函数.2]∈[1,y=g数(x)(x上海)海事救援船对一艘失事船进行定位:以失事船的当前2012?14分)((21.海里为单1位置为原点,以正北方向为y轴正方向建立平面直角坐标系(以处,如图,现假设:A12海里位长度),则救援船恰好在失事船正南方向;①失事船的移动路径可视为抛物线②定位后救援船即刻沿直线匀速前往救援;7t小时后,失事船所在位置的横坐标为③救援船出发t的纵坐标,若此时两船恰好会合,求P)当t=0.5时,写出失事船所在位置1(救援船速度的大小和方向.)问救援船的时速至少是多少海里才能追上失事船?(222.y:2x=1﹣分)(2012?上海)在平面直角坐标系xOy中,已知双曲线C22.(16 1xC的一条渐近线的平行线,求该直线与另一条渐近线及1)过C的左顶点引(11轴围成的三角形的面积;22OP=1+y相切,求证:P、Q两点,若l与圆x1(2)设斜率为的直线l交C于1;⊥OQ22,求ONOMC上的动点,且⊥M、N分别是C(3)设椭圆C:4x+y、=1,若212的距离是定值.MN证:O到直线x<<x}…,x,其中02012?(上海)对于数集X={﹣1,x,x,23.(18分)2211n存在,,}若对任意,t∈Xsnx,≥2,定义向量集Y={=(s,t),∈X<<…n.}2具有性质P.例如,则称X具有性质P{﹣1,1,,使得的值;,求1,,2,x}具有性质Px{x(1)若>2,且﹣1;x1时,=1>∈具有性质(2)若XP,求证:1X,且当x1n的,x,,求有穷数列q=qx=1xPX3()若具有性质,且、(为常数)x…,x n1221通项公式.。
2012年上海高考数学(理科)试卷一、填空题(本大题共有14题,满分56分)1。
计算:ii+-13= (i 为虚数单位).2.若集合}012|{>+=x x A ,}21|{<-=x x B ,则B A = 。
3。
函数1sin cos 2)(-=x xx f 的值域是 。
4。
若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示). 5。
在6)2(xx -的二项展开式中,常数项等于 . 6。
有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 。
7。
已知函数||)(a x e x f -=(a 为常数).若)(x f 在区间[1,+∞)上是增函数,则a 的取值范围是 。
8。
若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .9.已知2)(x x f y +=是奇函数,且1)1(=f 。
若2)()(+=x f x g ,则=-)1(g 。
10.如图,在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf 。
11.三位同学参加跳高、跳远、铅球项目的比赛。
若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示)。
12.在平行四边形ABCD 中,∠A=3π, 边AB 、AD 的长分别为2、1。
若M 、N 分别是边BC 、CD ||||CD CN BC BM ,则AN AM ⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,5),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 。
14.如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC=2。
2012年普通高等学校招生全国统一考试模拟试题(上海卷)数学(理科)考生注意事项:1. 答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸上答题无效......... 4. 考试结束后,务必将试题卷和答题卡一并上交.说明:若对数据适当的预处理,可避免对大数字进行运算.第Ⅰ卷一、填空题。
在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共14小题,每小题4分,共56分)1.已知(1)2i z i +⋅=-,那么复数z =____________2.若集合{}1,2,3,4,5I =,{}1,3A =,{}2B =,则I B C A ⋃=____________3.若命题“存在实数x ,使210x ax ++<”的否定是假命题,则实数a 的取值范围为_________ 4.将sin 1()cos 201x f x x -=的图像向右平移(0)a a >个单位,所得图像的函数为偶函数,则a 的最小值为___________ 5.在坐标平面内,与点(2,1)A --和点(4,7)B 的距离均为5的直线共有_______条.6.如图,如果执行下面的程序框图,输入正整数,n m ,满足n m ≥,那么输出的p 等于_____________7.代号为“狂飙”的台风于某日晚8点在距港口的A 码头南偏东60°的400千米的海面上形成,预计台风中心将以40千米/时的速度向正北方向移动,离台风中心350千米的范围都会受到台风影响,则A 码头从受到台风影响到影响结束,将持续多少小时________.8.已知某个几何体的三视图如图所示(正视图弧线是半圆),根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是________3cm .9.已知随机变量的分布列如下表,则D ξ等于___________10.若数列}{n a ,)(*N n ∈是等差数列,则有数列)(*21N n na a ab n n ∈+++= 也为等差数列,类比上述性质,相应地:若数列}{n C 是等比数列,且)(0*N n C n ∈>,则有=n d __________)(*N n ∈也是等比数列.11.若lim )1x x k →-∞-=,则k =_______. 12.若直线2y kx =+与双曲线622=-y x 的右支交于不同的两点,则k 的取值范围是________. 13.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法共有______________.14.过球面上三点A B C 、、的截面和球心的距离是球半径的一半,且68AB BC ==,,10AC =,则球的表面积是_____________. 第Ⅱ卷二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.给出下面四个命题:①“直线a b 、为异面直线”的充分非必要条件是:直线a b 、不相交;②“直线l 垂直于平面α内所有直线”的充要条件是:l ⊥平面α;③“直线a b ⊥”的充分非必要条件是“a 垂直于b 在平面α内的射影”;④“直线α∥平面β”的必要非充分条件是“直线a 至少平行于平面β内的一条直线”.其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个16.若函数)()(3x x a x f --=的递减区间为(33-,33),则a 的取值范围是( ) A .0a > B .10a -<< C .1a > D .01a << 17.在正方体1111DC B A ABCD -中,M N ,分别为棱1AA 和1BB 之中点,则sin (,D 1)的值为( ) A .91 B .9 C .592 D .32 18.若数列2211,(12),(122),,(1222),n -+++++++ 的前n 项和1020n S >,那么n 的最小值是( ) A .7B .8C .9D .10 三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应的编号规定区域内写出必要的步骤.19.(本题满分12分,每小题6分)已知向量,1)4x m = ,2(cos ,cos )44x x n = .(1)若1m n ⋅= ,求2cos()3x π-的值;(2)记()f x m n =⋅ ,在ABC ∆中,角A B C 、、的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=,求函数()f A 的取值范围.20.(本题满分12分)第1小题满分4分,第2小题满分5分,第3小题3分.已知:)lg()(x x b a x f -=(10a b >>>).(1)求)(x f 的定义域(2)判断)(x f 在其定义域内的单调性;(3)若)(x f 在(1.)+∞内恒为正,试比较a b -与1的大小.21.(本题满分14分)第1小题满分8分,第2小题满分6分. 如图,在正三棱柱111C B A ABC -中,M N 、分别为11A B ,BC 之中点.(1)试求AB A A 1,使011=⋅B A . (2)在(1)条件下,求二面角M AC N --1的大小.22.(满分18分)第1小题满分3分,第2小题满分5分,第3小题满分10分. 已知等差数列}{n a 的首项为a ,公差为b ;等比数列}{n b 的首项为b ,公比为a ,其中a ,+∈N b ,且32211a b a b a <<<<. (1)求a 的值; (2)若对于任意+∈N n ,总存在+∈N m ,使n m b a =+3,求b 的值; (3)在(2)中,记}{n c 是所有}{n a 中满足n m b a =+3,+∈N m 的项从小到大依次组成的数列,又记n S 为}{n c 的前n 项和,n T }{n a 的前n 项和,求证:n S ≥n T )(+∈N n .23.(本题满分18分)第1小题满分3分,第2小题满分6分,第3小题满分9分.如图,在直角坐标系中,,,A B C 三点在x 轴上,原点O和点B 分别是线段AB 和AC 的中点,已知AO m=(m 为常数),平面上的点P 满足6PA PB m +=.(1)试求点P 的轨迹1C 的方程;(2)若点(,)x y 在曲线1C 上,求证:点(3x 一定在某圆2C 上;(3)过点C 作直线l ,与圆2C 相交于,M N 两点,若点N 恰好是线段CM 的中点,试求直线l 的方程.2012年普通高等学校招生全国统一考试模拟试题答案(上海卷)数学(理科)一、 填空题1.1i -- 2.{}2,4,5 3.22a a <->或 4.6π5.3 6.m n A 7.2.5小时 8.8π+ 9.0.8 1011.1- 12.(1)-13.1589C A 14.4003π 二.选择题15.B 16.A 17.B 18.D三.解答题19.(1)1cos 12sin()122262xx xm n π+⋅=+=++=1sin()262xπ+=221cos()cos()[12sin ()]33262x x x πππ-=-+=--+=-(2)∵(2)cos cos a c B b C -=∴2sin cos sin cos sin cos A B C B B C =+sin()sin B C A =+=∵sin 0A > ∴1cos 2B =∵(0,)B π∈ ∴3B π= ∵2(0)3A π∈, ∴1()sin()262x f x π=++1()sin()262Af A π=++()2662Aπππ+∈,1sin()(1)262Aπ+∈,3()(1)2f A ∈,20.(1)由0>-x x b a , ∴1)(>x b a ,1>ba . ∴x >0.∴定义域为(0,)+∞.(2)设012>>x x ,∵10a b >>>∴12x x a a >,21x x b b >,12x x b b ->-∴22110x x x x a b a b ->-> ∴11122>--x x x x b a b a . ∴0)()(12>-x f x f . ∴)(x f 在(0,)+∞是增函数.(3)当1(∈x ,+∞)时,)1()(f x f >,要使0)(>x f ,须0)1(≥f ,即lg()0a b -≥ ∴1a b -≥.21.解析:(1)以1C 点为坐标原点,11A C 所在直线为x 轴,C C 1所在直线为z 轴,建立空间直角坐标系,设b B A =11,a AA =1(a ,∈b (0,)+∞). ∵三棱柱111C B A ABC -为正三棱柱,则11,,,A B B C 的坐标分别为:(b ,0,0),b 21(,b 23,)a , b 21(,b 23,)0,(0,0,a ). ∴A 1b 21(-=,b 23,)a ,B 1b 21(-=,b 23-,⎪⎭⎪⎬⎫=-=⇒⋅⋅.01121)2211B A b a B A a 又,2221==⇒=⇒b a AB A A a b . (2)在(1)条件下,不妨设b =2,则2=a , 又,,A M N 坐标分别为(b ,0,a ),(b 43,b 43,0),(b 41,b 43,a ). ∴332||==b AN ,3||1=N C . ∴3||||1==N C AN同理||||1M C AM =.∴△N AC 1与△M AC 1均为以1AC 为底边的等腰三角形,取1AC 中点为p ,则1AC NP ⊥,NPM AC MP ∠⇒⊥1为二面角M AC N --1的平面角,而点p 坐标为(1,0,22), ∴PN 21(-=,23,)22. 同理PM 21(=,23,)22-. ∴⋅⇒=-+-=0214341⊥.∴NPM ∠=90°⇒二面角M AC N --1的大小等于90°.22.(1)∵b a ab b a a 2+<<+<,a ,+∈N b ,∴⎩⎨⎧+<<+.2,b a ab ab b a ∴⎪⎪⎩⎪⎪⎨⎧-<->.121b b a b ba , ∴⎪⎪⎩⎪⎪⎨⎧-+<-+>.122111b a b a ,∴⎩⎨⎧<>41a a ,.∴a =2或a =3(a =3时不合题意,舍去). ∴a =2.(2)b m a m )1(2-+=,12-⋅=n n b b ,由n m b a =+3可得12)1(5-⋅=-+n b b m . ∴5)12(1=+--m b n .∴5b =(3)由(2)知35-=n a n ,125-⋅=n n b ,∴32531-=-=-⋅n n m b a .∴3251-=-⋅n n C .∴n S n n 3)12(5--=,)15(21-=n n T n .∵211==T S ,922==T S .当3n ≥时,]121212[52---=-n n T S nn n]12121)11[(52---+=n n n]12121)1[52321---++++=n n C C C n n n0]121212)1(1[52=----++>n n n n n .∴n n T S >.综上得n n T S ≥)(+∈N n .23.(1)由题意可得点P 的轨迹1C 是以,A B 为焦点的椭圆且半焦距长c m =,长半轴长3a m =,则2C 的方程为2222198x y m m += (2)若点(,)x y 在曲线1C 上,则2222198x y m m +=.设03x x =0y =,则03x x =,0y =. 代入2222198x y m m+=,得222x y m +=, 所以点(3x 一定在某一圆2C 上. (3)由题意(3,0)C m设11(,)M x y ,则222x y m +=.因为点N 恰好是线段CM 的中点, 所以113()22x m y N +,.代入2C 的方程得 222113()()22x m y m ++=. 联立①②,解得1x m =-,10y =.故直线l 有且只有一条,方程为0y =.。