2015-2016年山东省日照市五莲县八年级(上)期末数学试卷和解析答案
- 格式:doc
- 大小:1.25 MB
- 文档页数:23
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
2016年山东省八年级上学期期末数学模拟试卷一、精心选一选(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请选出你认为唯一正确的答案,填到后面的表格中,每小题3分,计36分).1.正方形的对称轴的条数为()A. 1 B. 2 C. 3 D. 42.下列各式的运算结果为a6的是()A. a9÷a3 B.(a3)3 C. a2•a3 D. a3+a33.已知x2﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是()A.﹣2 B. 0 C. 2 D. 44.下列分解因式,错误的是()A. m2﹣16=(m+4)(m﹣4) B. m2+3m+9=(m+3)2C. m2﹣8m+16=(m﹣4)2 D. m2+4m=m(m+4)5.若把分式中的a,b,c都扩大到原来的2倍,则分式的值()A.不变 B.扩大到原来的2倍C.缩小到原来的 D.缩小到原来的6.当a=2时,÷(﹣1)的结果是()A. B.﹣ C. D.﹣7.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A. 90°﹣α B. 90°+α C. D. 360°﹣α8.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=EC,∠B=∠E B. BC=EC,AC=DC C. BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D9.一个水池有甲、乙两个进水管,单独开甲、乙管各需要x小时、y小时可注满水池,现两管同时打开,则注满空池的时间为()A.小时 B.小时 C.小时 D.小时10.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A. 2.5秒 B. 3秒 C. 3.5秒 D. 4秒11.已知关于x的方程的解大于0,则a的取值范围是()A. a>0 B. a<0 C. a>2 D. a<2且a≠﹣212.如图,在Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值是()A. B. C. D.二、细心填一填(本题共8小题,满分24分,只要求填写最后结果,每小题填对得3分)13.已知1微米=0.000001米,那么2.5微米用科学记数法表示为米.14.请写一个含有x的分式,且不论x取任何实数,该分式都有意义:.15.若x2+mx+9是一个完全平方式,则m的值是.16.解方程:﹣1=,则方程的解是.17.若x+y=xy,则的值为.18.如图,在△ABC中,AB=AC,D,A,E三点都在一条直线上,且∠BDA=∠AEC=∠BAC,BD=3,CE=6,则DE的长为.19.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有对.20.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2= °.三、耐心做一做,相信你能写出正确的解答过程(共60分,注意审题要细心,书写要规范和解答要完整)21.(1)分解因式:8(a2+1)﹣16a;(2)计算:﹣5x(x2y﹣xy2)÷y;(3)计算:;(4)解方程:.22.如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.23.证明:如果两个三角形中有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(写出已知,求证,画出图形并证明)24.如图,在△ABC中,BD平分∠ABC,DE平分∠ADB,且DE∥BC.(1)找出图中所有的等腰三角形,并加以证明;(2)若∠A=90°,AE=1,求BC的长.25.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?参考答案与试题解析一、精心选一选(本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请选出你认为唯一正确的答案,填到后面的表格中,每小题3分,计36分).1.正方形的对称轴的条数为()A. 1 B. 2 C. 3 D. 4考点:轴对称的性质.分析:根据正方形的对称性解答.解答:解:正方形有4条对称轴.故选:D.点评:本题考查了轴对称的性质,熟记正方形的对称性是解题的关键.2.下列各式的运算结果为a6的是()A. a9÷a3 B.(a3)3 C. a2•a3 D. a3+a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂相乘,底数不变指数相加;根据同底数幂相除,底数不变指数相减;根据幂的乘方,底数不变指数相乘.解答:解:A、a9÷a3=a9﹣3=a6,故A正确;B、(a3)3=a3×3=a9,故B错误;C、a2•a3=a2+3=a5,故C错误;D、a3+a3=2a3,故D错误;故选:A.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.3.已知x2﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是()A.﹣2 B. 0 C. 2 D. 4考点:整式的混合运算—化简求值.专题:计算题.分析:原式去括号合并后,将已知等式变形后代入计算即可求出值.解答:解:∵x2﹣2=y,即x2﹣y=2,∴原式=x2﹣3xy+3xy﹣y﹣2=x2﹣y﹣2=2﹣2=0.故选:B.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.4.下列分解因式,错误的是()A. m2﹣16=(m+4)(m﹣4) B. m2+3m+9=(m+3)2C. m2﹣8m+16=(m﹣4)2 D. m2+4m=m(m+4)考点:因式分解-运用公式法.专题:计算题.分析:利用因式分解的定义判断即可.解答:解:不属于因式分解的为:m2+3m+9=(m+3)2,故选B点评:此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.5.若把分式中的a,b,c都扩大到原来的2倍,则分式的值()A.不变 B.扩大到原来的2倍C.缩小到原来的 D.缩小到原来的考点:分式的基本性质.分析:根据分式的基本性质,可得答案.解答:解:分式中的a,b,c都扩大到原来的2倍,则分式的值缩小到原来的,故选:C.点评:本题考查了分式的性质,分子扩大2倍,分母扩大8倍,分是缩小到原来的.6.当a=2时,÷(﹣1)的结果是()A. B.﹣ C. D.﹣考点:分式的化简求值.专题:计算题.分析:通分、因式分解后将除法转化为乘法约分即可.解答:解:原式=÷=•=,当a=2时,原式==﹣.故选:D.点评:本题考查了分式的化简求值,熟悉因式分解和分式除法是解题的关键.7.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A. 90°﹣α B. 90°+α C. D. 360°﹣α考点:多边形内角与外角;三角形内角和定理.专题:几何图形问题.分析:先求出∠ABC+∠BCD的度数,然后根据角平分线的性质以及三角形的内角和定理求解∠P的度数.解答:解:∵四边形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分别为∠ABC、∠BCD的平分线,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,则∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故选:C.点评:本题考查了多边形的内角和外角以及三角形的内角和定理,属于基础题.8.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A. BC=EC,∠B=∠E B. BC=EC,AC=DC C. BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.一个水池有甲、乙两个进水管,单独开甲、乙管各需要x小时、y小时可注满水池,现两管同时打开,则注满空池的时间为()A.小时 B.小时 C.小时 D.小时考点:列代数式(分式).分析:注满空池的时间=工作总量÷甲乙效率之和,设工作总量为1,求出甲、乙的工作效率,然后求共同工作的时间.解答:解:设工作量为1,∥乙的工作效率分别为、,根据题意得1÷(+)=小时.故选:B.点评:此题考查列代数式,读懂题意,找到所求的量的等量关系,当题中没有一些必须的量时,为了简便,可设其为1.10.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A. 2.5秒 B. 3秒 C. 3.5秒 D. 4秒考点:等腰三角形的性质.专题:压轴题;动点型.分析:设运动的时间为x,则AP=20﹣3x,当APQ是等腰三角形时,AP=AQ,则20﹣3x=2x,解得x即可.解答:解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故选D.点评:此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,此题涉及到动点,有一定的拔高难度,属于中档题.11.已知关于x的方程的解大于0,则a的取值范围是()A. a>0 B. a<0 C. a>2 D. a<2且a≠﹣2考点:分式方程的解.分析:分式方程去分母转化为整式方程,求出整式方程的解,令其解大于0列出关于a的不等式,求出不等式的解集即可得到a的范围.解答:解:分式方程去分母得:x+a=﹣x+2,解得:x=,根据题意得:>0且≠2,解得:a<2,且a≠﹣2.故选:D.点评:此题考查了分式方程的解,弄清题意是解本题的关键.12.如图,在Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值是()A. B. C. D.考点:轴对称-最短路线问题.分析:求△BDE周长的最小值,就是要求DE+BE的最小值,根据勾股定理即可求得.解答:解:过点B做BO⊥AC于点O,延长BO到B′,使OB′=OB,连接DB′,交AC于E,此时DB′=DE+EB′=DE+BE的值最小,连接CB′易证CB′⊥BC在RT△DCB′中,根据勾股定理可得DB′=.故△BDE周长的最小值为.故选:A.点评:此题考查了线路最短的问题,确定动点E何位置时,使DE+BE的值最小是关键.二、细心填一填(本题共8小题,满分24分,只要求填写最后结果,每小题填对得3分)13.已知1微米=0.000001米,那么2.5微米用科学记数法表示为 2.5×10﹣6米.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:∵1微米=0.000001米=1×10﹣6米∴2.5微米=2.5×1×10﹣6米=2.5×10﹣6米故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.请写一个含有x的分式,且不论x取任何实数,该分式都有意义:.考点:分式有意义的条件.专题:开放型.分析:所写的分式只要使分母不等于0即可,答案不唯一.解答:解:该分式是.故答案为:.点评:此题主要考查了分式有意义的条件,关键是掌握分母不为零,分式有意义.15.若x2+mx+9是一个完全平方式,则m的值是±6 .考点:完全平方式.专题:计算题.分析:利用完全平方公式的结构特征判断即可确定出m的值.解答:解:∵x2+mx+9是一个完全平方式,∴m=±6,故答案为:±6.点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.解方程:﹣1=,则方程的解是x=﹣.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣x+2=﹣3,解得:x=﹣,经检验是分式方程的解.故答案为:x=﹣.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.若x+y=xy,则的值为0 .考点:分式的化简求值.专题:计算题.分析:原式前两项通分并利用同分母分式的加法法则计算,第三项利用多项式乘多项式法则计算,把已知等式代入计算即可求出值.解答:解:∵x+y=xy,∴原式=﹣[1﹣(x+y)+xy]=1﹣1=0.故答案为:0.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.如图,在△ABC中,AB=AC,D,A,E三点都在一条直线上,且∠BDA=∠AEC=∠BAC,BD=3,CE=6,则DE的长为9 .考点:全等三角形的判定与性质.分析:由条件可知∠BDA=∠AEC=∠BAC,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,利用全等三角形的性质解答即可.解答:解:∵∠BDA=∠AEC=∠BAC,∴∠DBA+∠BAD=∠BAD+∠CAE,∴∠DBA=∠CAE,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴DE=AE+AD=BD+CE=3+6=9.故答案为:9.点评:本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD=AE、CE=AD 是解题的关键.19.如图,OE是∠AOB的平分线,BD⊥OA于点D,AC⊥BO于点C,则关于直线OE对称的三角形共有 4 对.考点:轴对称图形.分析:关于直线OE对称的三角形就是全等的三角形,据此即可判断.解答:解:△ODE和△OCE,△OAE和△OBE,△ADE和△BCE,△OCA和△ODB共4对.故答案为:4.点评:能够理解对称的意义,把找对称三角形的问题转化为找全等三角形的问题,是解决本题的关键.20.三个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2= 130 °.考点:等边三角形的性质;三角形内角和定理.分析:先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.解答:解:∵图中是三个等边三角形,∠3=50°,∴∠ABC=180°﹣60°﹣50°=70°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,∠BAC=180°﹣60°﹣∠1=120°﹣∠1,∵∠ABC+∠ACB+∠BAC=180°,∴70°+(120°﹣∠2)+(120°﹣∠1)=180°,∴∠1+∠2=130°.故答案为:130.点评:本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.三、耐心做一做,相信你能写出正确的解答过程(共60分,注意审题要细心,书写要规范和解答要完整)21.(1)分解因式:8(a2+1)﹣16a;(2)计算:﹣5x(x2y﹣xy2)÷y;(3)计算:;(4)解方程:.考点:分式的混合运算;整式的混合运算;提公因式法与公式法的综合运用;解分式方程.分析:(1)首先去括号,进而提取公因式,再利用完全平方公式分解因式得出即可;(2)首先去括号,进而利用多项式除以单项式运算法则求出即可;(3)首先将括号里面通分,再利用分式的除法运算法则求出即可;(4)利用分式方程的解法首先去分母,进而得出即可.解答:解:(1)8(a2+1)﹣16a=8a2+8﹣16a,=8(a2﹣2a+1),=8(a﹣1)2;(2)﹣5x(x2y﹣xy2)÷y=(﹣5x3y+5x2y2)÷y,=﹣5x3+5x2y;(3)=÷[+]=×=﹣;(4)去分母得:6×(2x+1)=5x,解得:经检验是原方程的解,故原分式方程的解为:.点评:此题主要考查了分式方程的解法以及分式的混合运算以及整式的混合运算,正确掌握运算法则是解题关键.22.如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.考点:轴对称的性质;全等三角形的判定.专题:证明题.分析:作辅助线:连接BC,由CD垂直于AB,且D为AB中点,即CD所在直线为AB的垂直平分线,根据线段垂直平分线上的点到线段两端点的距离相等,得到AC=BC,又E为AC中点,且BE垂直于AC,即BE所在的直线为AC的垂直平分线,同理可得BC=AB,等量代换即可得证.解答:证明:如图,连接BC∵CD⊥AB于D,D是AB的中点,即CD垂直平分AB,∴AC=BC(中垂线的性质),∵E为AC中点,BE⊥AC,∴BC=AB(中垂线的性质),∴AC=AB.点评:本题主要考查了中垂线的性质.做这类题,要学会作辅助线,以便使解题更简便.23.证明:如果两个三角形中有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(写出已知,求证,画出图形并证明)考点:全等三角形的判定.专题:证明题.分析:先根据条件,利用“SSS”证明△ABD≌△A1B1D1,从而可得∠B=∠B1,再根据“SAS”判断△ABC≌△A1B1C1.解答:已知:△ABC,△A1B1C1中,AB=A1B1,BC=B1C1,AD,A1D1分别为BC,B1C1边上的中线,AD=A1D1,求证:△ABC≌△A1B1C1.证明:∵AD,A1D1分别为BC,B1C1边上的中线,∴BD=BC,B1D1=B1C1,又∵BC=B1C1,∴BD=B1D1,在△ABD和△A1B1D1中,,∴△ABD≌△A1B1D1(SSS),∴∠B=∠B1,∵在△ABC与△A1B1C1中,,∴△ABC≌△A1B1C1(SAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.如图,在△ABC中,BD平分∠ABC,DE平分∠ADB,且DE∥BC.(1)找出图中所有的等腰三角形,并加以证明;(2)若∠A=90°,AE=1,求BC的长.考点:等腰三角形的判定与性质;平行线的性质.分析:(1)在△ABC中,由BD平分∠ABC,得到∠1=∠2在△ABC中,由DE平分∠ADB,得到∠3=∠4,由DE∥BC得到∠3=∠5由DE∥BC得到∠2=∠4,由等量代换得到相等的边,证得△BED是等腰三角形,△BDC是等腰三角形;(2)由DE∥BC得到∠AED=∠ABC=∠1+∠2,因为∠A=90°,∠AED+∠3=90°,∠1+∠2+∠3=90°,求得∠3=30°,根据AE=1得到ED=2EB=ED=2,求得AB=AE+EB=1+2=3,同理BC=2AB=2×3=6.解答:(1)证明:∵在△ABC中,BD平分∠ABC,∴∠1=∠2∵在△ABC中,DE平分∠ADB,∴∠3=∠4,∵DE∥BC∴∠3=∠5,∵DE∥BC∴∠2=∠4,∴∠1=∠2=∠3=∠4=∠5,∴∠1=∠4,∠2=∠5,∴△BED是等腰三角形,△BDC是等腰三角形;(2)解:∵DE∥BC,∴∠AED=∠ABC=∠1+∠2,∵∠A=90°,∴∠AED+∠3=90°,∴∠1+∠2+∠3=90°,∴∠3=30°,∵AE=1,∴ED=2,∴EB=ED=2,∴AB=AE+EB=1+2=3,同理BC=2AB=2×3=6.点评:本题主要考查了平行线的判定与性质,等腰三角形的判定,角平分线的性质.25.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?考点:分式方程的应用.专题:销售问题.分析:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元.根据第二次购进干果数量是第一次的2倍还多300千克,列出方程,解方程即可求解;(2)根据利润=售价﹣进价,可求出结果.解答:解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.点评:本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.。
2015-2016学年八年级上学期期末考试数学试题2016.1.8 一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( ) A.2个 B.3个 C.4个 D.5个3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11.在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12.一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13.在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为。
2014-2015学年度八年级上学期期末数学试题答案(2)解:化简得x-1 ……………4分求值答案不唯一。
代入数值合理(不能取1或2)且正确即可得分。
…………6分18. (1)证明:∵∠A =∠D AB=DC ∠ABE=∠DCE∴△ABE ≌ △DCE(ASA) ……………4分(2)解:∵△ABE ≌ △DCE ∴EB =EC ∴∠EBC =∠ECB∵∠AEB=∠EBC+∠ECB 且∠AEB=50°∴∠EBC=25° ……………8分19.解:设该厂原来每天生产顶帐篷,提高生产效率后每天生产顶帐篷。
据题意得:15003001500300()41.5x x x--+= ……………5分 解之得: ……………8分经检验:是原分式方程的解 ……………10分答:略20.解:(解:(1)∵△ABC 和△DBE 均为等腰直角三角形,∴AB=BC ,BD=BE ,∠ABC=∠DBE=90°,∴∠ABC ﹣∠DBC=∠DBE ﹣∠DBC ,即∠ABD=∠CBE ,∴△ABD ≌△CBE , ……………4分∴AD=CE . ……………5分(2)垂直. ……………6分延长AD 分别交BC 和CE 于G 和F ,∵△ABD ≌△CBE ,∴∠BAD=∠BCE ,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF ,∴∠AFC=∠ABC=90°,∴AD ⊥CE . ……………10分22422222421111121.211222141511112.2y 21131131,.y z 4z 4y x x x x x x x x x x x x x x x x x x x x xy x y x y xy x x -+==∴-++-+++∴+++∴=+++=-+=++=+=∴23解:(1)由知,=即:=1195=1=()-1=-1= 4分44 5分 (2)由知,=-即:- 7分同理可得:-111.41111yz .411yz y 4x z xy yz zx x x x z xy yz zx++=++∴=++=∴=-++- 9分- 分 22.解:(1)∵点A 沿DE 折叠落在点A′的位置,∴∠A=∠DA′E ,根据三角形外角性质,∠1=∠A+∠DA′E=2∠DA′E ,即∠1=2∠DA′E ; ……………3分(2)∵点A 沿DE 折叠落在点A′的位置,∴∠ADE=∠A′DE ,∠AED=∠A′ED ,∴∠ADE=(180°-∠1),∠AED=(180°-∠2),在△ADE 中,∠A+∠ADE+∠AED=180°,∴∠A+(180°-∠1)+(180°-∠2)=180°,整理得,2∠A=∠1+∠2; ……………8分(3)如图③,∵点A 沿DE 折叠落在点A′的位置,∴∠A=∠A′,根据三角形的外角性质,∠AFD=∠2+∠A′,∠1=∠A+∠AFD ,∴∠1=∠A+∠2+∠A′=∠2+2∠A ,即∠1=∠2+2∠A . ……………13分。
八年级上册日照数学期末试卷复习练习(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.2.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F(1) 如图1,直接写出AB与CE的位置关系(2) 如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK【答案】(1)AB⊥CE;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB⊥CE.(2)延长HK于DE 交于H,易得△ACD为等腰直角三角形,∠ADC=45°,易得DH=DE,然后证明△DGH≌△DGE,所以∠H=∠E,则∠H=∠B,可得HK=BK.【详解】解:(1)∵Rt△ABC≌Rt△CED,∴∠ECD=∠A,∠B=∠E,BC=DE,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB⊥CE(2)在Rt△ACD中,AC=CD,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH=DB,∴CH+CD=DB+CD,即HD=BC,∴DH=DE,在△DGH和△DGE中,DH=DEHDG=EDG=45DG=DG⎧⎪∠∠⎨⎪⎩∴△DGH≌△DGE(SAS)∴∠H=∠E又∵∠B=∠E∴∠H=∠B ,∴HK=BK【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.3.如图,在平面直角坐标系中,A 、B 坐标为()6,0、()0,6,P 为线段AB 上的一点.(1)如图1,若P 为AB 的中点,点M 、N 分别是OA 、OB 边上的动点,且保持AM ON =,则在点M 、N 运动的过程中,探究线段PM 、PN 之间的位置关系与数量关系,并说明理由.(2)如图2,若P 为线段AB 上异于A 、B 的任意一点,过B 点作BD OP ⊥,交OP 、OA 分别于F 、D 两点,E 为OA 上一点,且PEA BDO =∠∠,试判断线段OD 与AE 的数量关系,并说明理由.【答案】(1)PM=PN ,PM ⊥PN ,理由见解析;(2)OD=AE ,理由见解析【解析】【分析】(1)连接OP .只要证明△PON ≌△PAM 即可解决问题;(2)作AG ⊥x 轴交OP 的延长线于G .由△DBO ≌△GOA ,推出OD=AG ,∠BDO=∠G ,再证明△PAE ≌△PAG 即可解决问题;【详解】(1)结论:PM=PN ,PM ⊥PN .理由如下:如图1中,连接OP .∵A 、B 坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P 为AB 的中点,∴OP=12AB=PB=PA ,OP ⊥AB ,∠PON=∠PAM=45°, ∴∠OPA=90°,在△PON 和△PAM 中,ON AM PON PAM OP AP =⎧⎪∠=∠⎨⎪=⎩,∴△PON ≌△PAM (SAS ),∴PN=PM ,∠OPN=∠APM ,∴∠NPM=∠OPA=90°,∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G .∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO ,∵OB=OA ,∴△DBO ≌△GOA ,∴OD=AG ,∠BDO=∠G ,∵∠BDO=∠PEA ,∴∠G=∠AEP ,在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PAG (AAS ),∴AE=AG ,∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4.如图①,在ABC 中,90BAC ∠=︒,AB AC =,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD AE ⊥于D ,CE AE ⊥于E .(1)求证:BD DE CE =+.(2)若将直线AE 绕点A 旋转到图②的位置时(BD CE <),其余条件不变,问BD 与DE 、CE 的关系如何?请予以证明.【答案】(1)见解析;(2)BD=DE-CE ,理由见解析.【解析】【分析】(1)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AE=AD+DE ,所以BD=DE+CE ;(2)根据已知利用AAS 判定△ABD ≌△CAE 从而得到BD=AE ,AD=CE ,因为AD+AE=BD+CE ,所以BD=DE-CE .【详解】解:(1)∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ),∴BD=AE ,AD=CE ,∵AE=AD+DE ,∴BD=DE+CE ;(2)BD 与DE 、CE 的数量关系是BD=DE-CE ,理由如下:∵∠BAC=90°,BD ⊥AE ,CE ⊥AE ,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE ,∴∠ABD=∠CAE ,∵AB=AC ,在△ABD 和△CAE 中,BDA AECABD CAEAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE-CE.【点睛】此题主要考查全等三角形的判定和性质,常用的判定方法有SSS,SAS,AAS,HL等.这种类型的题目经常考到,要注意掌握.5.在ABC中,AB AC=,点D在BC边上,且60,ADB E∠=︒是射线DA上一动点(不与点D重合,且DA DB≠),在射线DB上截取DF DE=,连接EF.()1当点E在线段AD上时,①若点E与点A重合时,请说明线段BF DC=;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF ,DC=BG ,BF CD BF BG GF AE ∴+=+==故BF AE CD =-.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.6.如图1,在长方形ABCD 中,AB=CD=5 cm , BC=12 cm ,点P 从点B 出发,以2cm/s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC=___cm ;(用含t 的式子表示)(2)当t 为何值时,△ABP ≌△DCP ?.(3)如图2,当点P 从点B 开始运动,此时点Q 从点C 出发,以vcm/s 的速度沿CD 向点D 运动,是否存在这样的v 值,使得某时刻△ABP 与以P ,Q ,C 为顶点的直角三角形全等?若存在,请求出v 的值;若不存在,请说明理由.【答案】(1)()122t -;(2)3t =;(3)存在,2v =或53v =【解析】【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC 的长减去BP 的长即可得到PC 的长; (2)先根据三角形全等的条件得出当BP=CP ,列方程求解即得;(3)先分两种情况:当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ;或当BA=CQ ,PB=PC 时,△ABP ≌△QCP ,然后分别列方程计算出t 的值,进而计算出v 的值.【详解】解:(1)当点P 以2cm/s 的速度沿BC 向点C 运动时间为ts 时2BP tcm =∵12BC cm =∴()122PC BC BP t cm =-=-故答案为:()122t -(2)∵ABP DCP ∆≅∆∴BP CP =∴2122t t =-解得3t =.(3)存在,理由如下:①当BP=CQ ,AB=PC 时,△ABP ≌△PCQ ,∴PC=AB=5∴BP=BC-PC=12-5=7∵2BP tcm =∴2t=7解得t=3.5∴CQ=BP=7,则3.5v=7解得2v =.②当BA CQ =,PB PC =时,ABP QCP ∆≅∆∵12BC cm = ∴162BP CP BC cm === ∵2BP tcm =∴26t =解得3t =∴3CQ vcm = ∵5AB CQ cm ==∴35v = 解得53v =. 综上所述,当2v =或53v =时,ABP ∆与以P ,Q ,C 为顶点的直角三角形全等. 【点睛】本题考查全等三角形的判定及性质和矩形的性质,解题关键是将动态情况化为某一状态情况,并以这一状态为等量关系建立方程求解.7.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).【答案】(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【解析】【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE ,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.8.如图,ABC ∆是等边三角形,点D 在边AC 上( “点D 不与,A C 重合),点E 是射线BC 上的一个动点(点E 不与点,B C 重合),连接DE ,以DE 为边作作等边三角形DEF ∆,连接CF .(1)如图1,当DE 的延长线与AB 的延长线相交,且,C F 在直线DE 的同侧时,过点D 作//DG AB ,DG 交BC 于点G ,求证:CF EG =;(2)如图2,当DE 反向延长线与AB 的反向延长线相交,且,C F 在直线DE 的同侧时,求证:CD CE CF =+;(3)如图3, 当DE 反向延长线与线段AB 相交,且,C F 在直线DE 的异侧时,猜想CD 、CE 、CF 之间的等量关系,并说明理由.【答案】(1)证明见详解;(2)证明见详解;(3)CF =CD +CE ,理由见详解.【解析】【分析】(1)由ABC ∆是等边三角形,//DG AB ,得∠CDG=∠A=60°,∠ACB=60°,CDG ∆是等边三角形,易证∆ GDE ≅ ∆ CDF(SAS),即可得到结论;(2)过点D 作DG ∥AB 交BC 于点G ,易证∆ GDE ≅ ∆ CDF(SAS),即可得到结论;(3)过点D 作DG ∥AB 交BC 于点G ,易证∆ GDE ≅ ∆ CDF(SAS),即可得到结论.【详解】(1)∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG-∠GDF=∠EDF-∠GDF ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF EG =;(2)过点D 作DG ∥AB 交BC 于点G ,如图2,∵ABC ∆是等边三角形,//DG AB ,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG ∆是等边三角形,∴DG=DC.∵DEF ∆是等边三角形,∴DE=DF ,∠EDF=60°,∴∠CDG-∠CDE=∠EDF-∠CDE ,即:∠GDE=∠CDF ,在∆ GDE 和∆ CDF 中,∵DE DF GDE CDF DG DC =⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE ≅ ∆ CDF(SAS),∴CF GE =,∴CD CG CE GE CE CF ==+=+(3)CF =CD +CE ,理由如下:过点D 作DG ∥AB 交BC 于点G ,如图3,∵ABC∆是等边三角形,//DG AB,∴∠CDG=∠A=60°,∠ACB=60°,∴CDG∆是等边三角形,∴DG=DC=GC.∵DEF∆是等边三角形,∴DE=DF,∠EDF=60°,∴∠CDG+∠CDE=∠EDF+∠CDE,即:∠GDE=∠CDF,在∆ GDE和∆ CDF中,∵DE DFGDE CDFDG DC=⎧⎪∠=∠⎨⎪=⎩,∴∆ GDE≅∆ CDF(SAS),∴CF GE==GC+CE=CD+CE.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.9.在等边ABC中,点D是边BC上一点.作射线AD,点B关于射线AD的对称点为点E.连接CE并延长,交射线AD于点F.(1)如图,连接AE,①AE与AC的数量关系是__________;②设BAFα∠=,用α表示BCF∠的大小;(2)如图,用等式表示线段AF,CF,EF之间的数量关系,并证明.【答案】(1)①AB=AE;②∠BCF=α;(2) AF-EF=CF,理由见详解.【解析】【分析】(1)①根据轴对称性,即可得到答案;②由轴对称性,得:AE=AB,∠BAF=∠EAF=α,由ABC是等边三角形,得AB=AC,∠BAC=∠ACB=60°,再根据等腰三角形的性质和三角形内角和等于180°,即可求解;(2)作∠FCG=60°交AD于点G,连接BF,易证∆FCG是等边三角形,得GF=FC,再证∆ACG≅∆BCF(SAS),从而得AG=BF,进而可得到结论.【详解】(1)①∵点B关于射线AD的对称点为点E,∴AB和AE关于射线AD的对称,∴AB=AE.故答案是:AB=AE;②∵点B关于射线AD的对称点为点E,∴AE=AB,∠BAF=∠EAF=α,∵ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∴∠EAC=60°-2α,AE=AC,∴∠ACE=1180(602)602αα⎡⎤--=+⎣⎦,∴∠BCF=∠ACE-∠ACB=60α+-60°=α.(2)AF-EF=CF,理由如下:作∠FCG=60°交AD于点G,连接BF,∵∠BAF=∠BCF=α,∠ADB=∠CDF,∴∠ABC=∠AFC=60°,∴∆FCG是等边三角形,∴GF=FC,∵ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠ACG=∠BCF=α.在∆ACG和∆BCF中,∵CA CBACG BCFCG CF=⎧⎪∠=∠⎨⎪=⎩,∴∆ACG≅∆BCF(SAS),∴AG=BF,∵点B关于射线AD的对称点为点E,∴AG=BF=EF,∵AF-AG=GF,∴AF-EF=CF.【点睛】本题主要考查等边三角形的性质和三角形全等的判定和性质定理,添加辅助线,构造全等三角形,是解题的关键.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.二、八年级数学轴对称解答题压轴题(难)11.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.12.数学课上,同学们探究下面命题的正确性,顶角为36°的等腰三角形我们称之为黄金三角形,“黄金三角形“具有一种特性,即经过它某一顶点的一条直线可以把它分成两个小等腰三角形,为此,请你,解答问题:(1)已知如图1:黄金三角形△ABC中,∠A=36°,直线BD平分∠ABC交AC于点D,求证:△ABD和△DBC都是等腰三角形;(2)如图,在△ABC中,AB=AC,∠A=36°,请你设计三种不同的方法,将△ABC分割成三个等腰三角形,不要求写出画法,不要求证明,但是要标出所分得的每个三角形的各内角的度数.(3)已知一个三角形可以被分成两个等腰三角形,若原三角形的一个内角为36°,求原三角形的最大内角的所有可能值.【答案】(1)见解析;(2)见解析;(3)最大角的可能值为72°,90°,108°,126°,132°【解析】【分析】(1)通过角度转换得到∠ABD=∠BAD,和∠BDC=72°=∠C,即可判断;(2)根据等腰三角形的两底角相等及三角形内角和定理进行解答即可;(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时②当分割三角形的直线过点D时情况和过点B一样的,③当分割三角形的直线过点A时,在分别求出最大角的度数即可.【详解】解:(1)证明:∵∠ABC=(180-36)÷2=72;BD平分∠ABC,∠ABD=72÷2=36°,∴∠ABD=∠BAD,∴△ABD为等腰三角形,∴∠BDC=72°=∠C,∴△BCD为等腰三角形;(2)根据等腰三角形的两底角相等及三角形内角和定理作出,如图所示:(3)设原△ABD中有一个角为36°,可分成两个等腰三角形,逐个讨论:①当分割的直线过顶点B时,【1】:第一个等腰三角形ABC以A为顶点:则第二个等腰三角形BCD只可能以C为顶点此时∠A=36°,∠D=36°,∠B=72+36=108°,最大角的值为108°;【2】:第一个等腰三角形ABC以B为顶点:第二个等腰三角形BCD只可能以C为顶点此时:∠A=36°,∠D=18°,∠B=108+18=126°,最大角的值为126°;【3】第一个等腰三角形ABC以C为顶点:第二个等腰三角形BCD有三种情况△BCD以B为顶点:∠A=36°,∠D=72°,∴∠ABD=72°,最大角的值为72°;△BCD以C为顶点:∠A=36°,∠D=54°,∴∠ABD=90°,最大角的值为90°;△BCD以D为顶点:∠A=36°,∠D=36°∴∠ABD=108°,最大角的值为108°;②当分割三角形的直线过点D时情况和过点B一样的;③当分割三角形的直线过点A时,此时∠A=36°,∠D=12°,∠B=132°,最大角的值为132°;综上所述:最大角的可能值为72°,90°,108°,126°,132°.【点睛】本题是对三角形知识的综合考查,熟练掌握等腰三角形的性质和角度转换是解决本题的关键,难度较大,分类讨论是解决本题的关键.13.如图,ABC 中,A ABC CB =∠∠,点D 在BC 所在的直线上,点E 在射线AC 上,且AD AE =,连接DE .(1)如图①,若35B C ∠=∠=︒,80BAD ∠=︒,求CDE ∠的度数;(2)如图②,若75ABC ACB ∠=∠=︒,18CDE ∠=︒,求BAD ∠的度数;(3)当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究BAD ∠与CDE ∠的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B 的左侧时,∠ADC=x°-α,②如图2,当点D 在线段BC 上时,∠ADC=y°+α,③如图3,当点D 在点C 右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE ,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y x ay x aβ⎧=+⎨=-+⎩①②,①-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴y x ay a xβ⎧=+⎨+=+⎩①②,②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y a xx y aβ︒︒⎧-++=⎨++=⎩①②,②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】考核知识点:等腰三角形性质综合运用.熟练运用等腰三角形性质和三角形外角性质,分类讨论分析问题是关键.14.如图,在等边ABC∆中,点D,E分别是AC,AB上的动点,且AE CD=,BD 交CE于点P.(1)如图1,求证120BPC︒∠=;(2)点M是边BC的中点,连接PA,PM.①如图2,若点A,P,M三点共线,则AP与PM的数量关系是;②若点A,P,M三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM =;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS ≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM =;由等边三角形的性质和已知条件得出AM ⊥BC ,∠CAP =30°,可得PB =PC ,由∠BPC =120°和等腰三角形的性质可得∠PCB =30°,进而可得AP =PC ,由30°角的直角三角形的性质可得PC =2PM ,于是可得结论;②延长BP 至D ,使PD =PC ,连接AD 、CD ,根据SAS 可证△ACD ≌△BCP ,得出AD =BP ,∠ADC =∠BPC =120°,然后延长PM 至N ,使MN =MP ,连接CN ,易证△CMN ≌△BMP (SAS ),可得CN =BP =AD ,∠NCM =∠PBM ,最后再根据SAS 证明△ADP ≌△NCP ,即可证得结论.【详解】(1)证明:因为△ABC 为等边三角形,所以60A ACB ∠=∠=︒∵AC BC A ACB AE CD =⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS ≌ ,∴AEC CDB ∠=∠, 在四边形AEPD 中,∵360AEC EPD PDA A ∠+∠+∠+∠=︒,∴18060360AEC EPD CDB ∠+∠+︒-∠+︒=︒,∴120EPD ∠=︒,∴120BPC ∠=︒;(2)①如图2,∵△ABC 是等边三角形,点M 是边BC 的中点,∴∠BAC =∠ABC =∠ACB =60°,AM ⊥BC ,∠CAP =12∠BAC =30°,∴PB =PC , ∵∠BPC =120°,∴∠PBC =∠PCB =30°,∴PC =2PM ,∠ACP =60°﹣30°=30°=∠CAP ,∴AP =PC ,∴AP =2PM ;故答案为:2AP PM =;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN≌△BMP(SAS),∴CN=BP=AD,∠NCM=∠PBM,∴CN∥BP,∴∠NCP+∠BPC=180°,∴∠NCP=60°=∠ADP,在△ADP和△NCP中,∵AD=NC,∠ADP=∠NCP,PD=PC,∴△ADP≌△NCP(SAS),∴AP=PN=2CM;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.15.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠, BCF ∴是等腰三角形,90BCF ∠=︒, BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.16.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C能重合,请在图①中作出点M;∆沿着过点N的某一条直线折叠,点B能落在(2)在边BC上找一点N,使得:将ABC⊥,请在图②中作出点N.边AC上的点D处,且ND AC【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC的垂直平分线,交BC于点M,即可;(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即可.【详解】(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.17.如图,在等边三角形ABC的外侧作直线AP,点C关于直线AP的对称点为点D,连接AD,BD,其中BD交直线AP于点E.(1)依题意补全图形;(2)若∠PAC=20°,求∠AEB的度数;(3)连结CE,写出AE,BE,CE之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE +AE =BE .【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC =AD ,∠PAC =∠PAD=20°,根据等边三角形的性质可得AC =AB ,∠BAC =60°,即可得AB =AD ,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴()11802602D BAC x x︒︒∠=-∠-=-∴∠AEB=60-x+x=60°.∴△AME为等边三角形.∴AM=AE,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB和△AEC中,AB ACBAM CAEAM AE=⎧⎪∠=∠⎨⎪=⎩,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE转化到BE 上,再证明CE=BM即可得结论.18.在等边ABC∆中,点O在BC边上,点D在AC的延长线上且OA OD=.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP ,证得AOP ∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC ∆≅∆得到AOE DOC ∠=∠,通过角的关系得到60AOP COE ∠=∠=°,即可证得AOP ∆是等边三角形.【详解】(1)∵ABC ∆为等边三角形∴60BAC ∠=︒∵O 为BC 中点 ∴1302CAO BAC ∠=∠=︒ 且,90AO BC AOC ⊥∠=︒∵OA OD =∴AOD ∆中,30D CAO ∠=∠=︒∴180120AOD D CAO ∠=︒-∠-∠=︒∴30COD AOD AOC ∠=∠-∠=︒(2)过O 作//OE AB ,OE 交AD 于E。
日照市五莲县八年级上学期期末质量调查数学试题(时间100分钟 总分120分)一、选择题:(本题共12小题,第l ~8小题,每小题3分,第9~12小题.每小题4分,共40分。
在每小题给出的四个选项中,只有一项是正确的,请你把正确的选项选出来) 1.下列运算中,正确的是A .401520082007x x x=+B .020070= C .326a a a =÷D .32)()(a a a -=-⋅-2.已知119×21=2499,则2321249821119⨯-⨯ A .431B .441C .451D .4613.若)3(-x 与)5(+x 是q px x ++2的因式,则P 为A .一l5B .一2C .2D .84.将多项式142+x 加上一个单项式后,使它能成为一个整式的完全平方。
则添加的单 项式不可以为A .x 4-B .44xC .1-D .35.下图是小方画的正方形风筝图案,且他以图中的对角线为对称轴,在对角线的下方画一个三角形,使得新的风筝图案成为一对称图形。
若下列有一图形为此对称图形,则此图为6.在边长为a 的正方形中挖去一个边长为b 的小正方形(b a >),再沿虚线剪开,如图(1);然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是A .))((22b a b a b a -+=- B .2222)(b ab a b a ++=+ C .2222)(b ab a b a +-=-D .222)(b a b a -=-7.如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边垂直平分线的交点 C .在AC 、BC 两边中线的交点处D .在∠A 、∠B 两内角平分线的交点处8.一次函数b kx y +=1与a kx y +=2的图象如图,则下列结论①k<0;②a >0;③b>0;④当x <3时,21y y <中,正确的个数A .0B .1C .2D .39.九年级某班在一次考试中对某道单选题的答题情况如下图所示: 人数根据以上统计图,下列判断中错误的是 A .选A 的人有8人 B .选A 与选B 的人数比为2:1 C .选C 的人有26人D .扇形D 的圆心角为72°10.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,下列说法错误的是A .△EBD 是等腰三角形,EB=EDB .折叠后∠ABE 和∠CBD 一定相等C .△EBA 和△EDC 一定是全等三角形D .折叠后得到的图形是轴对称图形11.如图,OB 、AB 分别表示甲、乙两名同学进行跑步运动的一次函数图像,图中s 和t 分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB 表示甲同学跑步运动经过的路程与时间的函数关系;②甲的速度比乙快1米/秒;③甲让乙先跑了12米;④8秒后甲超过了乙。
2015-2016学年第一学期初二数学期末考试综合试卷(1)一、选择题:1. (2015•呼伦贝尔)25的算术平方根是……………………………………………( ) A .5; B .-5; C .±5;D2. (2015•金华)如图,数轴上的A 、B 、C 、D 四点中,与数( ) A .点A ;B .点B ;C .点C ;D .点D ;3. (2015•绥化)在实数0、π、227无理数的个数有………………( ) A .1个;B .2个 ;C .3个;D .4个;4.(2015•内江)函数11y x =-中自变量x 的取值范围是………………………( ) A .2x ≤; B .2x ≤且1x ≠; C .x <2且1x ≠; D .1x ≠;5. (2014•南通)点P (2,-5)关于x 轴对称的点的坐标为……………………………( ) A .(-2,5) B .(2,5) C .(-2,-5) D .(2,-5)6. 两条直线y=ax+b 与y=bx+a 在同一直角坐标系中的图象位置可能是…………( )7. (2015•济南)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P (1,3),则关于x 的不等式x+b >kx+4的解集是……………………………………………………( )A .x >-2B .x >0C .x >1D .x <18. 已知等腰三角形的两边长分別为a 、b ,且a 、b()223130a b +-=,则此等腰三角形的周长为………………………………………………………………( )A .7或8B .6或1OC .6或7D .7或10;9. 如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 共有……………………………………………………………………………( ) A .2个 ;B .3个; C .4个 ;D .5个;A. B. C. D. 第2题图 第7题第9题10. (2015•泰安)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F .若AB=6,BC= 则FD 的长为……………………………( ) A .2; B .4; C;D.二、填空题:11. 在等腰△ABC 中,AB=AC ,∠A=50°,则∠B= . 12. (2015•泉州)比较大小:).13. 由四舍五入法得到的近似数38.810⨯精确到 位.14. 已知点P (a ,b )在一次函数y=4x+3的图象上,则代数式4a-b-2的值等于 .15. 如图,已知△ABC 中,AB=AC ,点D 、E 在BC 上,要使△ABD ≌ACE ,则只需添加一个适当的条件是 .(只填一个即可)16. 一次函数y=(m+2)x+1,若y 随x 的增大而增大,则m 的取值范围是 . 17. 如图,将Rt △ABO 绕点O 顺时针旋转90°,得到Rt A B O '',已知点A 的坐标为(4,2),则点A ′的坐标为 .18. 如图,已知等边三角形ABC 的边长为10,点P 、Q 分别为边AB 、AC 上的一个动点,点P 从点B 出发以1cm/s 的速度向点A 运动,点Q 从点C 出发以2cm/s 的速度向点A 运动,连接PQ ,以Q 为旋转中心,将线段PQ 按逆时针方向旋转60°得线段QD ,若点P 、Q 同时出发,则当运动_______s 时,点D 恰好落在BC 边上. 三、解答题:(本大题共76分) 19.(本题满分8分)(1)求()2116x +=中的x ; (2);20. (本题满分6分)(2015•温州)如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D .(1)求证:AB=CD .(2)若AB=CF ,∠B=30°,求∠D 的度数.21. (本题满分6分)△ABC 在平面直角坐标系xOy 中的位置如图所示.第10题图第15题第17题第18题图(1)将△ABC 沿x 轴翻折得到111A B C ,作出111A B C ; (2)将111A BC 向右平移4个单位,作出平移后的222A B C .(3)在x 轴上求作一点P ,使12PA PC +的值最小,并写出点P 的坐标: .(不写解答过程,直接写出结果)22. (本题满分6分)已知一个正数的两个平方根分别为a 和29a -. (1)求a 的值,并求这个正数; (2)求2179a -的立方根.23. (本题满分6分)(2015•淄博)在直角坐标系中,一条直线经过A (-1,5),P (-2,a ),B (3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.24. (本题满分6分)如图,在△ABC 中,点D 在边AC 上,DB=BC ,E 是CD 的中点,F 是AB 的中点,求证:EF=12AB .25. (本题满分9分)如图,在△ABC 中,AB=AC ,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:△ABD 是等腰三角形; (2)若∠A=40°,求∠DBC 的度数;(3)若AE=6,△CBD 的周长为20,求△ABC 的周长.26. (本题满分7分)(2015•盐城)如图,在平面直角坐标系xOy 中,已知正比例函数34y x =与一次函数7y x =-+的图象交于点A .(1)求点A 的坐标;(2)设x 轴上有一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交34y x =和7y x =-+的图象于点B 、C ,连接OC .若BC=75OA ,求△OBC 的面积.如图,在平面直角坐标系中,A (a ,0),B (b ,0),C (-1,3),且()2411023a b a b ++-+=.(1)求a 、b 的值;(2)①在y 轴上的负半轴上存在一点M ,使△COM 的面积=12△ABC 的面积,求出点M 的坐标;②在坐标轴的其它位置是否存在点M ,使结论“△COM 的面积=12△ABC 的面积”仍然成立?若存在,请直接写出符合条件的点M 的坐标;若不存在,请说明理由.28. (本题满分7分)(2015•黔西南州)某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小黄家3月份用水26吨,他家应交水费多少元?(2015•齐齐哈尔)甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y (千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.2015-2016学年第一学期初二数学期末考试综合试卷(1)参考答案 一、选择题:1.A ;2.B ;3.B ;4.B ;5.B ;6.A ;7.C ;8.A ;9.C ;10.B ; 二、填空题:11.65°;12.>;13.百;14.-5;15.BD=EC (答案不唯一);16. 2m >-;17.(2,-4);18. 103; 三、解答题:19.(1)3或-5;(2)8.5;20.(1)略;(2)75°;21.(1)略;(2)略;(3)8,05⎛⎫ ⎪⎝⎭;22.(1)3a =,这个正数是9;(2)-4; 23. (1)7a =;(2)3;24. 证明:如图,连接BE ,∵在△BCD 中,DB=BC ,E 是CD 的中点, ∴BE ⊥CD ,∵F 是AB 的中点,∴在Rt △ABE 中,EF 是斜边AB 上的中线,∴EF=12AB . 25.(1)略;(2)30°;(3)32; 26.(1)A (4,3);(2)28; 27. (1)2a =-,3b =;(2)①M (0,-7.5);②存在. M (0,7.5),M (2.5,0);M (-2.5,0);28. 解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元. 根据题意得()()1224124212201232a b a b +-=⎧⎪⎨+-=⎪⎩,解得:12.5a b =⎧⎨=⎩. 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. (2)∵当0≤x ≤12时,y=x ;当x >12时,y=12+(x-12)×2.5=2.5x-18,∴所求函数关系式为:()()022.51812x x y x x ≤≤⎧⎪=⎨->⎪⎩. (3)∵x=26>12,∴把x=26代入y=2.5x-18,得:y=2.5×26-18=47(元). 答:小黄家三月份应交水费47元.29. 解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:(360×2)÷(480÷60-1-1)=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x ≤3时,设1y k x =,把(3,360)代入,可得31k =360, 解得1k =120,∴y=120x (0≤x ≤3). ②当3<x ≤4时,y=360. ③4<x ≤7时,设2y k x b =+, 把(4,360)和(7,0)代入,可得2120840k b =-⎧⎨=⎩,∴y=-120x+840(4<x ≤7).(3)①(480-60-120)÷(120+60)+1=300÷180+1=53+1=83(小时) ②当甲车停留在C 地时,(480-360+120)÷60=240÷6=4(小时) ③两车都朝A 地行驶时,设乙车出发x 小时后两车相距120千米,则60x-[120(x-1)-360]=120,所以480-60x=120,所以60x=360,解得x=6.小时、4小时、6小时后两车相距120千米.综上,可得乙车出发83。
2015-2016学年山东省日照市莒县八年级(上)期末数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,第1-8小题选对每小题得3分,第9-12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.1.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.a+a=a2B.a3•a2=a5 C.2=2 D.a6÷a3=a23.(3分)的平方根是()A.2 B.±2 C.D.±4.(3分)用科学记数法表示﹣0.00059为()A.﹣59×10﹣5B.﹣0.59×10﹣4C.﹣5.9×10﹣4D.﹣590×10﹣75.(3分)使分式有意义的x的取值范围是()A.x≤3 B.x≥3 C.x≠3 D.x=36.(3分)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC7.(3分)若有意义,则的值是()A.B.2 C.D.78.(3分)已知a﹣b=1且ab=2,则式子a+b的值是()A.3 B.±C.±3 D.±49.(4分)如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE ⊥AC交AD于E,则△DCE的周长是()A.a B.2a C.3a D.4a10.(4分)已知xy<0,化简二次根式y的正确结果为()A.B.C.D.11.(4分)如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为()A.B.C.2 D.12.(4分)若关于x的分式方程无解,则常数m的值为()A.1 B.2 C.﹣1 D.﹣2二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分.13.(4分)将xy﹣x+y﹣1因式分解,其结果是.14.(4分)腰长为5,一条高为3的等腰三角形的底边长为.15.(4分)若x2﹣4x+4+=0,则xy的值等于.16.(4分)如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=度.三、解答题:本大题共6小题,共64分。
山东省日照市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·岳池模拟) 要使分式有意义,则的取值范围是()A .B .C . >D . <2. (2分)如果不等式(m﹣2)x>m﹣2的解集为x<1,那么()A . m≠2B . m>2C . m<2D . m为任意有理数3. (2分)下列运算中正确的是()A . 3a+2a=5a2B . (2a2)3=8a6C . 2a2•a3=2a6D . (2a+b)2=4a2+b24. (2分) (2017八上·黄梅期中) 如图,AB∥CD,∠A=35°,∠C=75°,则∠E的度数为()A . 35°B . 40°C . 45°D . 75°5. (2分) (2017七上·醴陵期末) 把x2y﹣2y2x+y3分解因式正确的是()A . y(x﹣y)2B . x2y﹣y2(2x﹣y)C . y(x2﹣2xy+y2)D . y(x+y)26. (2分) (2019八上·武汉月考) 等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为()A . 40B . 46C . 48D . 507. (2分)化简:﹣ =()A . 0B . 1C . xD .8. (2分)(2013·梧州) 父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为()A . 1.1vB . 1.2vC . 1.3vD . 1.4v9. (2分)已知关于x的方程=3,下列说法正确的有()个①当m>-6时,方程的解是正数;②当m<-6时,方程的解是负数;③当m=-4时,方程无解A . 0个B . 1个C . 2个D . 3个10. (2分)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A . 3cmB . 6cmC . 3cmD . 6cm二、填空题 (共5题;共6分)11. (2分)已知点A(6a+3,4)与点B(2﹣a,b)关于y轴对称,则ab=________.12. (1分)(-x+2y)(-x-2y)等于________;13. (1分) (2019八上·集美期中) 计算:(2x2)3(﹣3xy3)=________.(x﹣2)(x+3)=________.14. (1分)已知x=﹣3a+4,y=2a+3,如果用x表示y,则y=________15. (1分)(2017·乌拉特前旗模拟) 如图,若点A的坐标为,则sin∠1=________.三、解答题 (共8题;共62分)16. (10分) (2019八上·同安期中) 化简:(1)(﹣2x2)2·3xy÷(﹣6x2y);(2)(x+3)(3﹣x)+x(x+1).17. (5分) (2020八上·德城期末) 因式分解:(1)–a4+16;(2)18. (2分)(2011·金华) 如图,将一块直角三角板OAB放在平面直角坐标系中,B(2,0),∠AOB=60°,点A在第一象限,过点A的双曲线为.在x轴上取一点P,过点P作直线OA的垂线l,以直线l为对称轴,线段OB经轴对称变换后的像是O′B′.(1)当点O′与点A重合时,点P的坐标是________;(2)设P(t,0),当O′B′与双曲线有交点时,t的取值范围是________.19. (10分)(2013·台州) 化简:(x+1)(x﹣1)﹣x2 .20. (5分) (2015九下·深圳期中) 解分式方程:.21. (10分)(2017·丰润模拟) 如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连结BF.(1)求证:①△EAF≌△EDC;②D是BC的中点;(2)若AB=AC,求证:四边形AFBD是矩形.22. (10分)(2017·雅安模拟) 某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?23. (10分)(2017·吉林) 某学生化简分式 + 出现了错误,解答过程如下:原式= + (第一步)= (第二步)= .(第三步)(1)该学生解答过程是从第________步开始出错的,其错误原因是________;(2)请写出此题正确的解答过程.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共62分)16-1、16-2、17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、。
2015-2016学年山东省日照市五莲县八年级(上)期末数学试卷一、选择题:本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共30分.在每小题给出地四个选项中,只有一项是正确地,请将正确选项代号填入表格中.1.(3分)下列图案属于轴对称图形地是()A.B.C.D.2.(3分)下列计算正确地是()A.(x3)3=x6B.a6•a4=a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x23.(3分)如图,为估计池塘岸边A、B两点地距离,小方在池塘地一侧选取一点O,测得OA=8米,OB=6米,A、B间地距离不可能是()A.12米B.10米C.15米D.8米4.(3分)若分式地值为零,则x地值为()A.±2 B.﹣2 C.2 D.不存在5.(3分)如图所示,一个60°角地三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2地度数为()A.120°B.180°C.240° D.300°6.(3分)若分式中地x和y都扩大2倍,那么分式地值()A.扩大2倍B.不变C.缩小2倍D.扩大4倍7.(3分)点P(a+b,2a﹣b)与点Q(﹣2,﹣3)关于x轴对称,则a=()A.B.C.﹣2 D.28.(3分)九年级学生去距学校10km地博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车地速度是骑车学生速度地2倍,求骑车学生地速度.设骑车学生地速度为xkm/h,则所列方程正确地是()A.=﹣B.=﹣20 C.=+D.=+209.(4分)如果一个多边形地内角和是外角和地5倍,那么这个多边形地边数是()A.10 B.11 C.12 D.1310.(4分)一辆汽车从山南泽当饭店出发开往拉萨布达拉宫.如果汽车每小时行使V1千米,则t小时可以到达,如果汽车每小时行使V2千米,那么可以提前到达布达拉宫地时间是()小时.A.B.C.D.11.(4分)已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确地是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°12.(4分)为了求1+2+22+23+…+22011+22012地值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012地值是()A.52013﹣1 B.52013+1 C.D.二、填空题:本大题共4个小题,每小题4分,共16分,把答案写在题中横线上.13.(4分)分解因式:a4(x﹣y)+(y﹣x)=.14.(4分)代数式4x2+3mx+9是完全平方式,则m=.15.(4分)若关于x地分式方程﹣1=无解,则m地值.16.(4分)如图,四边形ABCD中,∠C=40°,∠B=∠D=90°,E、F分别是BC、DC上地一点,当△AEF地周长最小时,∠EAF地度数为.三、解答题:本大题共6小题,共64分。
解答应写出文字说明、证明过程或演算步骤。
17.(12分)(1)解分式方程:;(2)先化简再求值:,其中x=2,y=5.18.(8分)如图,在平面直角坐标系中有一个△ABC,点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴地对称轴图形△A1B1C1(不写画法);(2)若网格上地每个小正方形地边长为2,则△ABC地面积是多少?写出解答过程.19.(10分)已知:△ABC中,BD、CE分别是AC、AB边上地高,BQ=AC,点F 在CE地延长线上,CF=AB,求证:AF⊥AQ.20.(10分)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3:2,两队共同施工6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们3000元报酬,若按各自完成地工程量分配这笔钱,问甲、乙两队各得到多少元?21.(10分)如图,D是等边△ABC地边AB上一点,E是BC延长线上一点,CE=DA,连接DE交AC于F,过D点作DG⊥AC于G点.证明下列结论:(1)AG=AD;(2)DF=EF;=S△ADG+S△ECF.(3)S△DGF22.(14分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.2015-2016学年山东省日照市五莲县八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,其中1-8小题每小题3分,9-12小题每小题3分,共30分.在每小题给出地四个选项中,只有一项是正确地,请将正确选项代号填入表格中.1.(3分)下列图案属于轴对称图形地是()A.B.C.D.【解答】解:根据轴对称图形地概念知A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.2.(3分)下列计算正确地是()A.(x3)3=x6B.a6•a4=a24C.(﹣bc)4÷(﹣bc)2=b2c2D.x6÷x3=x2【解答】解:A、幂地乘方,应底数不变,指数相乘,所以(x3)3=x9,故本选项错误;B、是同底数幂地乘法,应底数不变,指数相加,所以a6•a4=a10,故本选项错误;C、(﹣bc)4÷(﹣bc)2=(﹣bc)4﹣2=b2c2,正确;D、是同底数幂地除法,应底数不变,指数相减,所以a6÷a3=a3,故本选项错误;故选C.3.(3分)如图,为估计池塘岸边A、B两点地距离,小方在池塘地一侧选取一点O,测得OA=8米,OB=6米,A、B间地距离不可能是()A.12米B.10米C.15米D.8米【解答】解:连接AB,根据三角形地三边关系定理得:8﹣6<AB<8+6,即:2<AB<14,∴AB地值在2和14之间.故选C.4.(3分)若分式地值为零,则x地值为()A.±2 B.﹣2 C.2 D.不存在【解答】解:由分式地值为零,得|x|﹣2=0且x﹣2≠0.解得x=﹣2,故选:B.5.(3分)如图所示,一个60°角地三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2地度数为()A.120°B.180°C.240° D.300°【解答】解:根据三角形地内角和定理得:四边形除去∠1,∠2后地两角地度数为180°﹣60°=120°,则根据四边形地内角和定理得:∠1+∠2=360°﹣120°=240°.故选C.6.(3分)若分式中地x和y都扩大2倍,那么分式地值()A.扩大2倍B.不变C.缩小2倍D.扩大4倍【解答】解:分别用2x和2y去代换原分式中地x和y,得=2×可见新分式是原分式地2倍.故选:A.7.(3分)点P(a+b,2a﹣b)与点Q(﹣2,﹣3)关于x轴对称,则a=()A.B.C.﹣2 D.2【解答】解:∵点P(a+b,2a﹣b)与点Q(﹣2,﹣3)关于x轴对称,∴,解得:则a=.故选:A.8.(3分)九年级学生去距学校10km地博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车地速度是骑车学生速度地2倍,求骑车学生地速度.设骑车学生地速度为xkm/h,则所列方程正确地是()A.=﹣B.=﹣20 C.=+D.=+20【解答】解:设骑车学生地速度为xkm/h,则汽车地速度为2xkm/h,由题意得,=+.故选C.9.(4分)如果一个多边形地内角和是外角和地5倍,那么这个多边形地边数是()A.10 B.11 C.12 D.13【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=12.故选C.10.(4分)一辆汽车从山南泽当饭店出发开往拉萨布达拉宫.如果汽车每小时行使V1千米,则t小时可以到达,如果汽车每小时行使V2千米,那么可以提前到达布达拉宫地时间是()小时.A.B.C.D.【解答】解:甲乙两地之间地距离是v1t,实际地速度是v2,则时间是,则提前到达地小时数为t﹣=.故选D.11.(4分)已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确地是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°【解答】解:∵AB=AC,∴∠B=∠C,∵BF=CD,BD=CE,∴△BDF≌△CED(SAS),∴∠BFD=∠EDC,∵α+∠BDF+∠EDC=180°,∴α+∠BDF+∠BFD=180°,∵∠B+∠BDF+∠BFD=180°,∴∠B=α,∴∠C=∠B=α,∵∠A+∠B+∠C=180°,∴2α+∠A=180°.故选:A.12.(4分)为了求1+2+22+23+…+22011+22012地值,可令S=1+2+22+23+…+22011+22012,则2S=2+22+23+24+…+22012+22013,因此2S﹣S=22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012地值是()A.52013﹣1 B.52013+1 C.D.【解答】解:令S=1+5+52+53+ (52012)则5S=5+52+53+…+52012+52013,5S﹣S=﹣1+52013,4S=52013﹣1,则S=.故选D.二、填空题:本大题共4个小题,每小题4分,共16分,把答案写在题中横线上.13.(4分)分解因式:a4(x﹣y)+(y﹣x)=(x﹣y)(a2+1)(a﹣1)(a+1).【解答】解:a4(x﹣y)+(y﹣x)=(x﹣y)(a4﹣1)=(x﹣y)(a2+1)(a2﹣1)=(x﹣y)(a2+1)(a﹣1)(a+1).故答案为:(x﹣y)(a2+1)(a﹣1)(a+1).14.(4分)代数式4x2+3mx+9是完全平方式,则m=±4.【解答】解:∵4x2+3mx+9是完全平方式,∴3mx=±2×3•2x,解得m=±4.15.(4分)若关于x地分式方程﹣1=无解,则m地值﹣或﹣.【解答】解:方程两边同乘x(x﹣3),得x(2m+x)﹣(x﹣3)x=2(x﹣3)(2m+1)x=﹣6x=﹣,当2m+1=0,方程无解,解得m=﹣.x=3时,m=﹣,x=0时,m无解.故答案为:﹣或﹣.16.(4分)如图,四边形ABCD中,∠C=40°,∠B=∠D=90°,E、F分别是BC、DC上地一点,当△AEF地周长最小时,∠EAF地度数为100°.【解答】解:作A关于BC和CD地对称点A′,A″,连接A′A″,交BC于E,交CD 于F,则A′A″即为△AEF地周长最小值.作DA延长线AH,∵∠C=40°,∴∠DAB=140°,∴∠HAA′=40°,∴∠AA′E+∠A″=∠HAA′=40°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=40°,∴∠EAF=140°﹣40°=100°,故答案为:100°.三、解答题:本大题共6小题,共64分。