2018届高考(新课标)数学(理)大一轮复习检测:第二章 函数概念与基本初等函数Ⅰ 2-4 Word版含答案
- 格式:doc
- 大小:118.00 KB
- 文档页数:5
1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1〈x2时,都有f(x1)〈f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y =f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值【知识拓展】函数单调性的常用结论(1)对∀x1,x2∈D(x1≠x2),错误!>0⇔f(x)在D上是增函数,错误!<0⇔f(x)在D上是减函数.(2)对勾函数y=x+错误!(a>0)的增区间为(-∞,-错误!]和[错误!,+∞),减区间为[-a,0)和(0,错误!].(3)在区间D上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f(g(x))的单调性与函数y=f(u)和u=g(x)的单调性的关系是“同增异减”.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R上的函数f(x),有f(-1)〈f(3),则函数f(x)在R上为增函数.( ×)(2)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y=错误!的单调递减区间是(-∞,0)∪(0,+∞).( ×)(4)所有的单调函数都有最值.( ×)(5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(6)闭区间上的单调函数,其最值一定在区间端点取到.( √) 1.(2016·北京)下列函数中,在区间(-1,1)上为减函数的是( )A.y=11-x B.y=cos xC.y=ln(x+1) D.y=2-x答案D解析y=错误!与y=ln(x+1)在区间(-1,1)上为增函数;y=cos x在区间(-1,1)上不是单调函数;y=2-x=错误!x在(-1,1)上单调递减.2.若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a的值为()A.-2 B.2 C.-6 D.6答案C解析由图象易知函数f(x)=|2x+a|的单调增区间是[-错误!,+∞),令-a2=3,得a=-6。
(浙江专用)2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.1 函数及其表示教师用书1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】1.函数实质上就是数集上的一种映射,即函数是一种特殊的映射,而映射可以看作函数概念的推广.2.函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数有几段,它的图象就由几条曲线组成,同时要注意每段曲线端点的虚实,而且横坐标相同的地方不能有两个及两个以上的点. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( × )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × )1.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数的定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2],故选B.2.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x答案 D 解析 函数y =10lg x的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D.3.已知f (1x)=x 2+5x ,则f (x )=________.答案5x +1x2(x ≠0)解析 令1x=t (t ≠0),则f (t )=1t 2+51t =5t +1t2,∴f (x )=5x +1x2(x ≠0).4.(2016·诸暨期末)已知函数f (x )=⎩⎪⎨⎪⎧-x +10,x >0,x 2+4,x ≤0,则f [f (0)]=________;若f [f (x 0)]=2,则x 0=________. 答案 6 2或-2解析 由题意知f (0)=4,f (4)=6,设f (x 0)=t ,则f (t )=2,当t >0时,-t +10=2,得t =8,当t <0时,t 2+4=2,无解,当x 0>0时,由-x 0+10=8,得x 0=2,当x 0≤0时,由x 20+4=8,得x 0=-2,所以x 0=2或-2.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x -x表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1.综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应关系唯一确定,当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).(1)下列所给图象中函数图象的个数为( )A .1B .2C .3D .4(2)下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=x 2x和g (x )=x x2答案 (1)B (2)D解析 (1)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象,故选B.(2)A 中两个函数的定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同.故选D.题型二 函数的定义域问题 命题点1 求函数的定义域例2 (2016·临安中学一模)(1)函数f (x )=1-2x+1x +3的定义域为( )A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f 2xx -1的定义域是________. 答案 (1)A (2)[0,1)解析 (1)由题意得⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0.所以函数f (x )的定义域为(-3,0].(2)由0≤2x ≤2,得0≤x ≤1, 又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1). 引申探究例2(2)中,若将“函数y =f (x )的定义域为[0,2]”改为“函数y =f (x +1)的定义域为[0,2]”,则函数g (x )=f 2xx -1的定义域为________________. 答案 [12,1)∪(1,32]解析 由函数y =f (x +1)的定义域为[0,2], 得函数y =f (x )的定义域为[1,3],令⎩⎪⎨⎪⎧1≤2x ≤3,x -1≠0,得12≤x ≤32且x ≠1, ∴g (x )的定义域为[12,1)∪(1,32].命题点2 已知函数的定义域求参数范围例3 (1)若函数f (x )的定义域为R ,则a 的取值范围为________.(2)若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.答案 (1)[-1,0] (2)[0,3)解析 (1)因为函数f (x )的定义域为R , 所以22210x ax a+--≥对x ∈R 恒成立,即22022x ax a+-≥,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. (2)因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =3的图象与x 轴无交点; 当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上所述,a 的取值范围是[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.(1)已知函数f (x )的定义域为[3,6],则函数y=的定义域为( ) A .[32,+∞)B .[32,2)C .(32,+∞)D .[12,2)(2)若函数y = 的定义域为R ,则实数m 的取值范围是( ) A .(0,34]B .(0,34)C .[0,34]D .[0,34)答案 (1)B (2)D 解析 (1)要使函数y有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,12log (2)0x ->⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2. (2)要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立. ①当m =0时,得到不等式3≠0,恒成立; ②当m ≠0时,要使不等式恒成立, 需⎩⎪⎨⎪⎧ m >0,Δ=m2-4×m ×3<0,即⎩⎪⎨⎪⎧m >0,m4m -或⎩⎪⎨⎪⎧m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,m4m-解得0<m <34.由①②得0≤m <34,故选D.题型三 求函数解析式例4 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17,不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x)·x -1中,用1x代替x ,得f (1x )=2f (x )·1x-1,将f (1x)=2f x x-1代入f (x )=2f (1x )·x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法. (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ); (3)已知f (x )+3f (-x )=2x +1,求f (x ). 解 (1)设x +1=t (t ≥1), ∴f (t )=(t -1)2+2(t -1)=t 2-1,∴f (x )=x 2-1(x ≥1).(2)设f (x )=kx +b (k ≠0),则f (f (x ))=k 2x +kb +b , 即k 2x +kb +b =4x -1,∴⎩⎪⎨⎪⎧k 2=4,kb +b =-1,∴⎩⎪⎨⎪⎧k =2,b =-13或⎩⎪⎨⎪⎧k =-2,b =1.故f (x )=2x -13或f (x )=-2x +1.(3)以-x 代替x ,得f (-x )+3f (x )=-2x +1, ∴f (-x )=-3f (x )-2x +1, 代入f (x )+3f (-x )=2x +1, 可得f (x )=-x +14.2.分类讨论思想在函数中的应用典例 (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________________.(2)(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1, +∞)思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解. (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.解析 (1)当a >0时,1-a <1,1+a >1, 由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a ,解得a =-32,不合题意.当a <0时,1-a >1,1+a <1, 由f (1-a )=f (1+a ),可得-(1-a )-2a =2(1+a )+a ,解得a =-34,符合题意.(2)由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.答案 (1)-34(2)C1.下列各组函数中,表示同一函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 答案 C解析 A 项中两函数的定义域不同;B 项、D 项中两函数的对应关系不同,故选C. 2.函数f (x )=10+9x -x2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]答案 D解析 要使函数f (x )有意义, 则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,x -,即⎩⎪⎨⎪⎧x +x -,x >1,x ≠2,解得1<x <2或2<x ≤10,所以函数f (x )的定义域为(1,2)∪(2,10].3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x答案 B解析 (待定系数法) 设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x ,故选B.4.(2015·陕西)设f (x )=⎩⎨⎧1-x ,x ≥0,2x,x <0,则f (f (-2))等于( )A .-1 B.14 C.12 D.32答案 C解析 ∵f (-2)=2-2=14>0,则f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12,故选C. 5.(2016·余杭六校联考)已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2答案 B解析 当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4, 即-x 20=4,无解,所以x 0=2, 故选B.*6.(2016·嘉兴期末)已知f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12) D .(0,12) 答案 C解析 要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧ 1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧ a <12,a ≥-1,∴-1≤a <12. 即a 的取值范围是[-1,12). 7.(2016·济南模拟)已知函数f (1-x 1+x)=x ,则f (2)=________. 答案 -13解析 令t =1-x 1+x ,则x =1-t 1+t, ∴f (t )=1-t 1+t ,即f (x )=1-x 1+x, ∴f (2)=1-21+2=-13. 8.(2017·金华十校调研)已知函数f (x )=⎩⎪⎨⎪⎧ 3x -1,x ≤1,f x -,x >1,则f (f (2))=________,值域为______.答案 2 (-1,2]解析 ∵f (2)=f (1)=2,∴f [f (2)]=f (2)=2.又x >1时,f (x )=f (x -1),∴f (x )的值域即为x ≤1时函数值的范围.又x ≤1时,-1<3x -1≤2,故f (x )的值域为(-1,2].9.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧ x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. *10.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足; 对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足. 综上可知,满足“倒负”变换的函数是①③.11.已知f (x )=⎩⎪⎨⎪⎧ f x +,-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f (-32)的值; (2)若f (a )=4且a >0,求实数a 的值.解 (1)由题意,得f (-32)=f (-32+1)=f (-12) =f (-12+1)=f (12)=2×12+1=2. (2)当0<a <2时,由f (a )=2a +1=4,得a =32, 当a ≥2时,由f (a )=a 2-1=4,得a =5或a =-5(舍去).综上所述,a =32或a = 5. 12.若函数f (x )=x 2-1x 2+1. (1)求f 2f 12的值;(2)求f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)的值. 解 (1)∵f (2)=35,f (12)=-35, ∴f 2f 12=-1.(2)∵f (1x )=1x 2-11x 2+1=1-x 2x 2+1=-f (x ), ∴f (3)+f (13)=0,f (4)+f (14)=0,…,f (2 017)+f (12 017)=0, 故f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)=0. 13.(2016·嘉兴期末)已知函数f (x )=x 2+mx +n (m ,n ∈R ),f (0)=f (1),且方程x =f (x )有两个相等的实数根.(1)求函数f (x )的解析式;(2)当x ∈[0,3]时,求函数f (x )的值域.解 (1)∵f (x )=x 2+mx +n 且f (0)=f (1),∴n =1+m +n ,∴m =-1,∴f (x )=x 2-x +n .∵方程x =f (x )有两个相等的实数根,∴方程x =x 2-x +n 有两个相等的实数根,即方程x 2-2x +n =0有两个相等的实数根,∴(-2)2-4n =0,∴n =1.∴f (x )=x 2-x +1.(2)由(1),知f (x )=x 2-x +1.此函数的图象是开口向上,对称轴为直线x =12的抛物线,∴当x =12时,f (x )有最小值f (12). ∴f (12)=(12)2-12+1=34,∵f (0)=1,f (3)=32-3+1=7,∴当x ∈[0,3]时,函数f (x )的值域是[34,7].。
1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f (x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y =f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)〈0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)〈0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y =ax2+bx+c(a〉0)的图象与零点的关系Δ〉0Δ=0Δ<0二次函数y=ax2+bx+c (a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数210【知识拓展】1.有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.2.三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×")(1)函数的零点就是函数的图象与x轴的交点.(×)(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.(×)(3)只要函数有零点,我们就可以用二分法求出零点的近似值.(×)(4)二次函数y=ax2+bx+c(a≠0)在b2-4ac〈0时没有零点.( √) (5)若函数f(x)在(a,b)上单调且f(a)·f(b)〈0,则函数f(x)在[a,b]上有且只有一个零点.(√)1.(教材改编)函数121()()2xf x x=-的零点个数为( )A.0 B.1 C.2 D.3答案B解析f(x)是增函数,又f(0)=-1,f(1)=错误!,∴f(0)f(1)〈0,∴f(x)有且只有一个零点.2.下列函数中,既是偶函数又存在零点的是()A.y=cos x B.y=sin xC.y=ln x D.y=x2+1答案A解析由于y=sin x是奇函数;y=ln x是非奇非偶函数;y=x2+1是偶函数但没有零点;只有y=cos x是偶函数又有零点.3.(2016·吉林长春检测)函数f(x)=错误!ln x+x-错误!-2的零点所在的区间是( )A.(错误!,1) B.(1,2)C.(2,e)D.(e,3)答案C解析因为f(错误!)=-错误!+错误!-e-2<0,f(1)=-2<0,f(2)=错误!ln2-12〈0,f(e)=错误!+e-错误!-2>0,所以f(2)f(e)<0,所以函数f(x)=错误!ln x+x-错误!-2的零点所在区间是(2,e).4.函数f(x)=2x|log0。
1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换(2)对称变换①y=f(x)错误!y=-f(x);②y=f(x)错误!y=f(-x);③y=f(x)错误!y=-f(-x);④y=a x(a>0且a≠1)错误!y=log a x(a>0且a≠1).(3)伸缩变换()11101a a a ay f x ><<−−−−−−−−−−−−−→,横坐标缩短为原来的倍,纵坐标不变,横坐标伸长为原来的倍,纵坐标不变①=y =f (ax ).②y =f (x )错误!y =af (x ). (4)翻折变换①y =f (x )错误!y =|f (x )|。
②y =f (x )错误!y =f (|x |). 【知识拓展】1.函数对称的重要结论(1)函数y =f (x )与y =f (2a -x )的图象关于直线x =a 对称.(2)函数y =f (x )与y =2b -f (2a -x )的图象关于点(a ,b )中心对称. (3)若函数y =f (x )对定义域内任意自变量x 满足:f (a +x )=f (a -x ),则函数y =f (x )的图象关于直线x =a 对称.2.函数图象平移变换八字方针(1)“左加右减",要注意加减指的是自变量. (2)“上加下减”,要注意加减指的是函数值. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × )(2)函数y=af(x)与y=f(ax)(a〉0且a≠1)的图象相同.(×)(3)函数y=f(x)与y=-f(x)的图象关于原点对称.( ×) (4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.( √)(5)将函数y=f(-x)的图象向右平移1个单位得到函数y=f(-x-1)的图象.( ×)1.(教材改编)函数f(x)=x+错误!的图象关于( )A.y轴对称B.x轴对称C.原点对称D.直线y=x对称答案C解析函数f(x)的定义域为(-∞,0)∪(0,+∞)且f(-x)=-f(x),即函数f(x)为奇函数,故选C。
A组专项基础训练(时间:35分钟)1.(2017·湖南株洲二中月考)如图,设a,b,c,d>0,且不等于1,y=a x,y=b x,y =c x,y=d x在同一坐标系中的图象如图,则a,b,c,d的大小顺序为( )A.a<b<c<d B.b<a<c<dC.b<a<d<c D.a<b<d<c由题意得,根据指数函数的图象与性质,可作直线x=1,得到四个交点,自下而上可知指数函数的底数依次增大,即b<a<d<c.故选C.【答案】 C2.(2017·河南三市一模)函数f(x)=2|x-1|的图象是( )f(x)=2|x-1|的图象是由y=2|x|的图象向右平移1个单位得到的,由此得到正确选项为B.【答案】 B3.(2017·湖北宜昌一模)如图,面积为8的平行四边形OABC,对角线AC⊥CO,AC与BO交于点E,某指数函数y=a x(a>0,且a≠1)经过点E,B,则a=( )A. 2B. 3C.2 D.3设点E(t,a t),则点B坐标为(2t,2a t).因为2a t=a2t,所以a t=2.因为平行四边形OABC的面积=OC×AC=a t×2t=4t=8,t=2,所以a2=2,a= 2.故选A.【答案】 A4.(2017·株洲模拟)已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.2,c =2log 52,则a ,b ,c 的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <aa =21.2>21=2,b =⎝ ⎛⎭⎪⎫12-0.2=215<21=2,215>20=1,故1<b <2,c =log 54<log 55=1.故c <b <a .【答案】 A5.(2017·山东菏泽一模)若函数f (x )=1+2x +12x +1+sin x 在区间(k >0)上的值域为,则m +n 的值是( )A .0B .1C .2D .4 ∵f (x )=1+2·2x2x +1+sin x=1+2·2x+1-12x +1+sin x=2+1-22x +1+sin x=2+2x-12x +1+sin x .记g (x )=2x-12x +1+sin x ,则f (x )=g (x )+2,易知g (x )为奇函数,g (x )在上的最大值与最小值互为相反数,∴m +n =4. 【答案】 D6.(2017·浙江温州瑞安四校联考)计算0.25-1×⎝ ⎛⎭⎪⎫3212×⎝ ⎛⎭⎪⎫27414-10×(2-3)-1+1+⎝ ⎛⎭⎪⎫1300-12=________. 原式=⎝ ⎛⎭⎪⎫14-1×⎝ ⎛⎭⎪⎫32×33212-102-3+1+30012=4×32-10(2+3)+1+103=6-20+1=-13.【答案】 -137.(2017·江苏徐州沛县歌风中学期中)已知y =f (x )是定义在R 上的奇函数,且当x≥0时,f (x )=-14x +12x ,则此函数的值域为________.设t =12x ,当x ≥0时,2x ≥1,∴0<t ≤1,f (t )=-t 2+t =-⎝ ⎛⎭⎪⎫t -122+14,∴0≤f (t )≤14,故当x ≥0时,f (x )∈⎣⎢⎡⎦⎥⎤0,14.∵y =f (x )是定义在R 上的奇函数,∴当x ≤0时,f (x )∈⎣⎢⎡⎦⎥⎤-14,0.故函数的值域为⎣⎢⎡⎦⎥⎤-14,14. 【答案】 ⎣⎢⎡⎦⎥⎤-14,148.已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x-12为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0. 【答案】 09.(2017·长春模拟)已知函数f (x )=2a ·4x-2x-1. (1)当a =1时,求函数f (x )在x ∈的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围. (1)当a =1时,f (x )=2·4x-2x-1=2(2x )2-2x-1,令t =2x,x ∈,则t ∈⎣⎢⎡⎦⎥⎤18,1.故y =2t 2-t -1=2⎝ ⎛⎭⎪⎫t -142-98,t ∈⎣⎢⎡⎦⎥⎤18,1,故值域为⎣⎢⎡⎦⎥⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2am 2-m -1=0在(0,+∞)上有解.记g (m )=2am 2-m -1,当a =0时,解为m =-1<0,不成立.当a <0时,开口向下,对称轴m =14a<0,过点(0,-1),不成立.当a >0时,开口向上,对称轴m =14a >0,过点(0,-1),必有一个根为正,所以,a>0.综上所述,a 的取值范围是(0,+∞). 10.(2017·上海松江区期末)已知函数f (x )=a|x +b |(a >0,b ∈R ).(1)若f (x )为偶函数,求b 的值;(2)若f (x )在区间[2,+∞)上是增函数,试求a ,b 应满足的条件. (1)∵f (x )为偶函数,∴对任意的x ∈R ,都有f (-x )=f (x ). 即a|x +b |=a|-x +b |,|x +b |=|-x +b |,解得b =0.(2)记h (x )=|x +b |=⎩⎪⎨⎪⎧x +b ,x ≥-b ,-x -b ,x <-b .①当a >1时,f (x )在区间[2,+∞)上是增函数, 即h (x )在区间[2,+∞)上是增函数, ∴-b ≤2,b ≥-2.②当0<a <1时,f (x )在区间[2,+∞)上是增函数,即h (x )在区间[2,+∞)上是减函数,但h (x )在区间[-b ,+∞)上是增函数,故不存在a ,b 的值,使f (x )在区间[2,+∞)上是增函数.∴f (x )在区间[2,+∞)上是增函数时,a ,b 应满足的条件为a >1且b ≥-2.B 组 专项能力提升 (时间:20分钟)11.(2016·课标全国Ⅲ)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b因为a =243=423,c =2513=523,函数y =x 23在(0,+∞)上单调递增,所以423<523,即a <c ,又因为函数y =4x在R 上单调递增,所以425<423,即b <a ,所以b <a <c ,故选A.【答案】 A12.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b .其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x 的图象如图所示.由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b得a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立. 【答案】 B13.(2017·福建四地六校联考)y =2·a|x -1|-1(a >0,a ≠1)过定点________.由题根据指数函数性质令|x -1|=0,可得x =1,此时y =1,所以函数恒过定点(1,1).【答案】 (1,1)14.(2017·皖北协作区联考)函数f (x )=1-e x的值域为________.由1-e x ≥0,e x ≤1,故函数f (x )的定义域为{x |x ≤0}.所以0<e x ≤1,-1≤-e x<0,0≤1-e x<1,函数f (x )的值域为[0,1).【答案】 [0,1)15.(2017·广元模拟)已知定义在实数集R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求函数f (x )在(-1,1)上的解+析式; (2)判断f (x )在(0,1)上的单调性;(3)当λ取何值时,方程f (x )=λ在(-1,1)上有实数解? (1)∵f (x )是x ∈R 上的奇函数,∴f (0)=0. 设x ∈(-1,0),则-x ∈(0,1), f (-x )=2-x4-x +1=2x4x +1=-f (x ),∴f (x )=-2x 4x+1,∴f (x )=⎩⎪⎨⎪⎧-2x4x +1,x ∈(-1,0),0,x =0,2x 4x+1,x ∈(0,1).(2)设0<x 1<x 2<1,f (x 1)-f (x 2)=(2x 1-2x 2)+(2x 1+2x 2-2x 2+2x 1)(4x 1+1)(4x 2+1)=(2x 1-2x 2)(1-2x 1+x 2)(4x 1+1)(4x 2+1),∵0<x 1<x 2<1,∴2x 1<2x 2,2x 1+x 2>20=1,∴f (x 1)-f (x 2)>0,∴f (x )在(0,1)上为减函数. (3)∵f (x )在(0,1)上为减函数,∴2141+1<f (x )<2040+1,即f (x )∈⎝ ⎛⎭⎪⎫25,12. 同理,f (x )在(-1,0)上时,f (x )∈⎝ ⎛⎭⎪⎫-12,-25.又f (0)=0,当λ∈⎝ ⎛⎭⎪⎫-12,-25∪⎝ ⎛⎭⎪⎫25,12,或λ=0时,方程f (x )=λ在x ∈(-1,1)上有实数解.。
第二章 函数的概念、基本初等函数(Ⅰ)及函数的应用1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用(函数分段不超过三段).(4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(5)会运用基本初等函数的图象分析函数的性质.2.指数函数(1)了解指数函数模型的实际背景. (2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,12,13的指数函数的图象. (4)体会指数函数是一类重要的函数模型. 3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,会画底数为2,10,12的对数函数的图象.(3)体会对数函数是一类重要的函数模型. (4)了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.4.幂函数(1)了解幂函数的概念.(2)结合函数y =x ,y =x 2,y =x 3,y =x 12,y=1x的图象,了解它们的变化情况.5.函数与方程结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数.6.函数模型及其应用(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.2.1 函数及其表示1.函数的概念一般地,设A,B是_______两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有_______f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个________,记作y=f(x),x∈A,其中,x叫做,x的取值范围A叫做函数的_______;与x的值相对应的y值叫做_______,其集合{f(x)|x∈A}叫做函数的_______.2.函数的表示方法(1)解析法:就是用_______表示两个变量之间的对应关系的方法.(2)图象法:就是用_______表示两个变量之间的对应关系的方法.(3)列表法:就是来_______表示两个变量之间的对应关系的方法.3.构成函数的三要素(1)函数的三要素是:,, .(2)两个函数相等:如果两个函数的_______相同,并且_______完全一致,则称这两个函数相等.4.分段函数若函数在定义域的不同子集上的对应关系也不同,这种形式的函数叫做分段函数,它是一类重要的函数.5.映射的概念一般地,设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的_______元素x,在集合B中都有_______元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.6.映射与函数的关系(1)联系:映射的定义是在函数的现代定义(集合语言定义)的基础上引申、拓展而来的;函数是一种特殊的__________________________.(2)区别:函数是从非空数集..A到非空数集..B的映射;对于映射而言,A和B不一定是数集...7.复合函数一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y =f(g(x)),其中y=f(u)叫做复合函数y=f(g(x))的外层函数,u=g(x)叫做y=f(g(x))的内层函数.自查自纠1.唯一确定的数函数自变量定义域函数值值域2.(1)数学表达式(2)图象(3)列出表格3.(1)定义域对应关系值域(2)定义域对应关系5.任意一个唯一确定的6.(1)映射(2015·湖北)函数f(x)=4-|x|+lgx2-5x+6x-3的定义域为( )A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]解:依题意有4-|x|≥0,解得-4≤x≤4,①由x 2-5x +6x -3>0,解得x >2且x ≠3,②由①②求交集得函数的定义域为(2,3)∪(3,4].故选C .下列各图表示两个变量x ,y 的对应关系,则下列判断正确的是()A .都表示映射,都表示y 是x 的函数B .仅③表示y 是x 的函数C .仅④表示y 是x 的函数D .都不能表示y 是x 的函数解:根据映射的定义,①②③中,x 与y 的对应关系都不是映射,当然不是函数关系,④是映射,是函数关系.故选C .(2015·全国新课标Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1, x ≥1, 则f (-2)+f (log 212)=( )A .3B .6C .9D .12解:由条件得f (-2)=1+log 24=3,因为log 212>1,所以f (log 212)=2(log 12)21-=2log 62=6,故f (-2)+f (log 212)=9.故选C .(2015·甘肃模拟)已知f (x )=⎩⎪⎨⎪⎧2x , x >0,f (x +1),x ≤0,则f ⎝ ⎛⎭⎪⎫-43=________.解:由题意知f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=2×23=43.故填43.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2 (a >0,且a ≠1)的值域是.类型一 函数和映射的定义下列对应是集合P 上的函数的是________.(填序号)①P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应;②P ={-1,1,-2,2},Q ={1,4},对应关系f :x →y =x 2,x ∈P ,y ∈Q ;③P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应.解:由于①中集合P 中元素0在集合Q 中没有对应元素,而③中集合P 不是数集,所以①和③都不是集合P 上的函数.由题意知,②正确.故填②.点拨:函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量x 在其定义域内的每一个值是否都有唯一确定的函数值y 与之对应;③集合P ,Q 是否为非空数集.给出下列四个对应:①A =R ,B =R ,对应关系f :x →y ,y =1x +1; ②A =⎩⎨⎧⎭⎬⎫a|12a ∈N *,B =⎩⎨⎧⎭⎬⎫b|b =1n ,n ∈N *,对应关系f :a →b ,b =1a;③A ={x |x ≥0},B =R ,对应关系f :x →y ,y 2=x ;④A ={x |x 是平面α内的矩形},B ={y |y 是平面α内的圆},对应关系f :每一个矩形都对应它的外接圆.其中是从A 到B 的映射的为________.(填序号) 解:对于①,当x =-1时,y 值不存在,所以①不是从A 到B 的映射;对于②,A ,B 两个集合分别用列举法表述为A={2,4,6,…},B =⎩⎨⎧⎭⎬⎫1,12,13,14,…,由对应关系f :a →b ,b =1a知,②是从A 到B 的映射;③不是从A 到B 的映射,如A 中元素1对应B 中两个元素±1;④是从A 到B 的映射. 故填②④.类型二 判断两个函数是否相等已知函数f (x )=|x -1|,则下列函数中与f (x )相等的函数是( )A .g (x )=|x 2-1||x +1|B .g (x )=⎩⎪⎨⎪⎧|x 2-1||x +1|,x ≠-1,2,x =-1C .g (x )=⎩⎪⎨⎪⎧x -1,x >0,1-x ,x ≤0D .g (x )=x -1解:因为g (x )=⎩⎪⎨⎪⎧|x 2-1||x +1|=|x -1|,x ≠-1,2,x =-1 与f (x )的定义域和对应关系完全一致,故选B .点拨:两个函数相等的充要条件是它们的定义域和对应关系完全一致,与函数的自变量和因变量用什么字母表示无关.在对函数解析式进行化简变形时应注意定义域是否发生改变(即是否是等价变形);对于含绝对值的函数式可以展开为分段函数后再判断.下列各组函数中,表示同一函数的是( )A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1 解:A 中,g (x )=|x |,所以f (x )=g (x ). B 中,f (x )=|x |,g (x )=x (x ≥0), 所以两函数的定义域不同.C 中,f (x )=x +1(x ≠1),g (x )=x +1, 所以两函数的定义域不同.D 中,f (x )=x +1·x -1(x +1≥0且x -1≥0),f (x )的定义域为{x |x ≥1};g (x )=x 2-1(x 2-1≥0),g (x )的定义域为{x |x ≥1或x ≤-1}.所以两函数的定义域不同.故选A .类型三 求函数的定义域(1)(2016·江苏)函数y =3-2x -x2的定义域是________.解:要使函数有意义,必须3-2x -x 2≥0,即x 2+2x -3≤0,所以-3≤x ≤1.故填.(2)若函数y =f (x )的定义域为∪[2,2). 故填(-2,-2]∪[2,2). 点拨:求函数定义域的原则:用列表法表示的函数的定义域,是指表格中实数x 的集合;用图象法表示的函数的定义域,是指图象在x 轴上的投影所对应的实数的集合;当函数y =f (x )用解析法表示时,函数的定义域是指使解析式有意义的实数x 的集合,一般通过列不等式(组)求其解集.常见的条件有:分式的分母不等于0,对数的真数大于0,偶次根式下的被开方数大于或等于0等.若已知函数y =f (x )的定义域为,则函数y =f (g (x ))的定义域由不等式a ≤g (x )≤b 解出.(1)函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解:由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒x ∈(0,1].故填(0,1].(2)已知f (2x)的定义域是,则f (log 2x )的定义域为________.解:由已知x ∈,所以2x∈⎣⎢⎡⎦⎥⎤12,2,故f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2,所以在函数y =f (log 2x )中,12≤log 2x ≤2,即log 22≤log 2x ≤log 24,所以2≤x ≤4,故f (log 2x )的定义域为[2,4].故填[2,4].类型四 求函数的值域求下列函数的值域:(1)y =1-x21+x2; (2)y =2x +1-x ; (3)y =2x +1-x 2; (4)y =x 2-2x +5x -1;(5)若x ,y 满足3x 2+2y 2=6x ,求函数z =x 2+y 2的值域;(6)f (x )=||2x +1-||x -4. 解:(1)解法一:(反解) 由y =1-x 21+x 2,解得x 2=1-y 1+y, 因为x 2≥0,所以1-y 1+y ≥0,解得-1<y ≤1,所以函数值域为(-1,1]. 解法二:(分离常数法) 因为y =1-x 21+x 2=-1+21+x 2,又因为1+x 2≥1,所以0<21+x2≤2,所以-1<-1+2x 2+1≤1, 所以函数的值域为(-1,1]. (2)(代数换元法)令t =1-x (t ≥0),所以x =1-t 2, 所以y =2(1-t 2)+t =-2t 2+t +2=-2⎝ ⎛⎭⎪⎫t -142+178.因为t ≥0,所以y ≤178,故函数的值域为⎝⎛⎦⎥⎤-∞,178.(3)(三角换元法) 令x =cos t (0≤t ≤π),所以y =2cos t +sin t =5sin(t +φ)(其中cos φ=15,sin φ=25).因为0≤t ≤π,所以φ≤t +φ≤π+φ, 所以sin(π+φ)≤sin(t +φ)≤1. 故函数的值域为. (4)解法一:(不等式法)因为y =x 2-2x +5x -1=(x -1)2+4x -1=(x -1)+4x -1, 又因为x >1时,x -1>0,x <1时,x -1<0, 所以当x >1时,y =(x -1)+4x -1≥24=4,且当x =3,等号成立;当x <1时,y =-⎣⎢⎡⎦⎥⎤-(x -1)+4-(x -1)≤-4,且当x =-1,等号成立.所以函数的值域为(-∞,-4]∪∪上单调递增.所以当x =0时,z 有最小值0,当x =2时,z 有最大值4,故所求函数的值域为. (6)(图象法)f (x )=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x ≤4,x +5,x >4,作出其图象,可知函数f (x )的值域是⎣⎢⎡⎭⎪⎫-92,+∞. 点拨:求函数值域的常用方法:①单调性法,如(5);②配方法,如(2);③分离常数法,如(1);④数形结合法;⑤换元法(包括代数换元与三角换元),如(2),(3);⑥判别式法,如(4);⑦不等式法,如(4),(5);⑧导数法,主要是针对在某区间内可导的函数;⑨图象法,求分段函数的值域通常先作出函数的图象,然后由函数的图象写出函数的值域,如(6);对于二元函数的值域问题,如(5),其解法要针对具体题目的条件而定,有些题目可以将二元函数化为一元函数求值域,有些题目也可用不等式法求值域.求函数的值域是个较复杂的问题,它比求函数的定义域难度要大,而单调性法,即根据函数在定义域内的单调性求函数的值域是较为简单且常用的方法,应重点掌握.(1)(2015·江西模拟)函数y =x -3x +1的值域为________.解:y =x -3x +1=x +1-4x +1=1-4x +1,因为4x +1≠0,且可取除0外的一切实数,所以1-4x +1≠1,且可取除1外的一切实数.故函数的值域是{y |y ∈R 且y ≠1}.故填{y |y ∈R 且y ≠1}.(2)函数f (x )=x +1-2x 的值域为________.解:(代数换元法)函数的定义域为⎝ ⎛⎦⎥⎤-∞,12,令t =1-2x (t ≥0),则x =1-t22.所以y =1-t 22+t =-12(t -1)2+1(t ≥0),故当t =1(即x =0)时,y 有最大值1,故函数f (x )的值域为(-∞,1].故填(-∞,1].(3)函数y =2x 2-x +2x 2+x +1的值域是________.解:因为x 2+x +1>0恒成立,所以函数的定义域为R .由y =2x 2-x +2x 2+x +1,得(y -2)x 2+(y +1)x +y -2=0.当y -2=0,即y =2时,上式化为3x +0=0,所以x =0∈R .当y -2≠0,即y ≠2时,因为当x ∈R 时,方程(y -2)x 2+(y +1)x +y -2=0恒有实根,所以Δ=(y +1)2-4×(y -2)2≥0,所以1≤y ≤5且y ≠2.故函数的值域为.故填.(4)(2015·江西模拟)设O 为坐标原点,给定一个定点A (4,3),点B (x ,0)在x 轴的正半轴上移动.l (x )表示AB →的长,则函数y =xl (x )的值域为________.解:依题意有x >0,l (x )=(x -4)2+32=x 2-8x +25,所以y =xl (x )=x x 2-8x +25=11-8x +25x2.由于1-8x +25x 2=25⎝ ⎛⎭⎪⎫1x -4252+925,所以1-8x +25x 2≥35,故0<y ≤53. 即函数y =x l (x )的值域是⎝ ⎛⎦⎥⎤0,53.故填⎝ ⎛⎦⎥⎤0,53. 类型五 求函数的解析式 根据要求求函数的解析式: (1)(2015·福建模拟)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(2)已知f (x )是一次函数,并且f (f (x ))=4x +3,求f (x ).(3)(2015·武昌模拟)已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,求f (x ).(4)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2-3,求f (x ).解:(1)当-1≤x ≤0时,有0≤x +1≤1, 故f (x +1)=(x +1)=-x (x +1),又f (x +1)=2f (x ),故f (x )=12f (x +1)=-x (x +1)2.所以当-1≤x ≤0时,f (x )=-x (x +1)2.故填-x (x +1)2. (2)设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a (ax +b )+b =a 2x +ab +b =4x +3,所以⎩⎪⎨⎪⎧a 2=4,ab +b =3,解得⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-2,b =-3. 故所求的函数为f (x )=2x +1或f (x )=-2x -3.(3)设t =1-x 1+x ,由此得x =1-t1+t(t ≠-1),则f (t )=1-⎝ ⎛⎭⎪⎫1-t 1+t 21+⎝ ⎛⎭⎪⎫1-t 1+t 2=2t1+t 2, 故f (x )的解析式为f (x )=2x1+x2(x ≠-1).(4)因为f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2-3=⎝ ⎛⎭⎪⎫x +1x 2-5,而x +1x ≥2或x +1x≤-2,所以f (x )=x 2-5(x ≥2或x ≤-2). 点拨:由y =f (g (x ))的解析式求函数y =f (x )的解析式,应根据条件,采取不同的方法:①若函数g (x )的类型已知,则用待定系数法;②已知复合函数f (g (x ))的解析式,可用换元法,此时要注意变量的取值范围;③函数方程法(即解方程组法),将f (x )作为一个“未知数”,建立方程(组),消去另外的“未知数”,便得到f (x )的解析式,含f ⎝ ⎛⎭⎪⎫1x或f (-x )的类型常用此法.(1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.(3)(2015·湖南模拟)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.(4)已知f (2x +1)=4x 2+8x +3,求f (x )的解析式.解:(1)令2x+1=t ,由于x >0,所以t >1且x=2t -1, 所以f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).(2)设f (x )=ax +b (a ≠0), 由题意得3-2=2x +17, 即ax +5a +b =2x +17,所以⎩⎪⎨⎪⎧a =2,5a +b =17, 所以⎩⎪⎨⎪⎧a =2,b =7. 所以f (x )=2x +7.(3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).①-x ∈(-1,1),以-x 代替x 得, 2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).(4)设2x +1=t ,则x =12(t -1),所以f (2x +1)=f (t )=4⎣⎢⎡⎦⎥⎤12(t -1)2+8⎣⎢⎡⎦⎥⎤12(t -1)+3=t 2+2t ,所以f (x )=x 2+2x . 类型六 分段函数(1)(2016·山西四校联考)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(8-x ),x ≤0,f (x -1)-f (x -2),x >0, 则f (3)的值为( )A .1B .2C .-2D .-3(2)(2014·上海)设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x+a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .B .C .D .(3)设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f (f (a ))=2,则a =________.解:(1)f (3)=f (2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-log 28=-3.故选D .(2)因为当x ≤0时,f (x )=(x -a )2,又f (0)是f (x )的最小值,所以a ≥0;当x >0时,f (x )=x +1x+a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,须2+a ≥f (0)=a 2,即a 2-a -2≤0,解之得-1≤a ≤2,所以a 的取值范围是.故选D .(3)当a >0时,f (a )=-a 2<0,f (f (a ))=a4-2a 2+2=2,解得a =2(a =0与a =-2舍去).当a ≤0时,f (a )=a 2+2a +2=(a +1)2+1>0,f (f (a ))=-(a 2+2a +2)2=2,此方程无解.故填2.点拨:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现形如f (f (x 0))的求值问题时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.(1)(2015·浙江)函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1, 则f (f (-2))=________. (2)已知函数f (x )=⎩⎪⎨⎪⎧f (x +1),x ≤2,3-x ,x >2, 则f (log 32)的值为________.(3)(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1, 则满足f (f (a ))=2f (a )的a 的取值范围是( )A .⎣⎢⎡⎦⎥⎤23,1 B . C.⎣⎢⎡⎭⎪⎫23,+∞ D .,D 项值域不是,C 项对定义域中除2以外的任一x 均有两个y 与之对应,故A ,C ,D 均不符合条件.故选B .2.有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个;③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确的有( )A .1个B .2个C .3个D .4个解:对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数,①错误;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有1个交点,即y =f (x )的图象与直线x =1最多有1个交点,②正确;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以是同一函数,③正确;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1,④错误. 综上可知,正确的判断是②③.故选B. 3.设f (x )=lg 2+x2-x ,则f ⎝ ⎛⎭⎪⎫x 2+f ⎝ ⎛⎭⎪⎫2x 的定义域为( )A .(-4,0)∪(0,4)B .(-4,-1)∪(1,4)C .(-2,-1)∪(1,2)D .(-4,-2)∪(2,4)解:因为2+x2-x>0,所以f (x )的定义域为(-2,2),所以-2<x 2<2且-2<2x<2,解得-4<x <-1或1<x <4.故选B.4.(2014·南充模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≤0,log 2x ,x >0,则“f (x )≤0”是“x ≥0”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 解:若f (x )≤0,则当x ≤0时,f (x )=x 2-x =x (x -1)≤0,解得x =0;当x >0时,f (x )=log 2x ≤0,解得0<x ≤1,所以0≤x ≤1,所以“f (x )≤0”是“x ≥0”的充分不必要条件.故选A.5.某校要召开学生代表大会,规定各班每10人推选1名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =(表示不大于x 的最大整数)可以表示为( )A .y =⎣⎢⎡⎦⎥⎤x 10B .y =⎣⎢⎡⎦⎥⎤x +310C .y =⎣⎢⎡⎦⎥⎤x +410 D .y =⎣⎢⎡⎦⎥⎤x +510解法一:特殊值法,若x =56,则y =5,排除C ,D ;若x =57,则y =6,排除A ,故B 正确.解法二:设x =10m +α(0≤α≤9,m ,α∈N ), 当0≤α≤6时,⎣⎢⎡⎦⎥⎤x +310=⎣⎢⎡⎦⎥⎤m +α+310=m =⎣⎢⎡⎦⎥⎤x 10,当6<α≤9时,⎣⎢⎡⎦⎥⎤x +310=⎣⎢⎡⎦⎥⎤m +α+310=m +1=⎣⎢⎡⎦⎥⎤x 10+1.故选B .6.定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x ≤0,f (x -1)-f (x -2),x >0, 则f (2 018)的值为( )A .-1B .0C .1D .2解:因为f (2 018)=f (2 017)-f (2 016)=f (2 016)-f (2 015)-f (2 016)=-f (2 015),同理有f (2 015)=-f (2 012),所以f (2 018)=f (336×6+2)=f (2),f (2)=-f (-1)=-1.故选A.7.函数f (x )=1-x +x +3的值域是________.解:由⎩⎪⎨⎪⎧1-x ≥0,x +3≥0,解得-3≤x ≤1.因为y ≥0,所以y 2=4+2(1-x )(x +3), 即y 2=4+2-(x +1)2+4(-3≤x ≤1). 从而y 2∈,即y ∈,所以函数f (x )的值域是.故填.8.(2015·山东模拟)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a , x <1,-x -2a ,x ≥1. 若f (1-a )=f (1+a ),则a 的值为________.解:当a >0时,1-a <1,1+a >1.此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a ),得2-a =-1-3a ,解得a =-32,不合题意,舍去.当a <0时,1-a >1,1+a <1.此时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a .由f (1-a )=f (1+a ),得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.故填-34.9.已知f (x )是二次函数,若f (0)=0,且f (x+1)=f (x )+x +1.(1)求函数f (x )的解析式; (2)求函数y =f (x 2-2)的值域. 解:(1)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=0,所以c =0,即f (x )=ax 2+bx .因为f (x +1)=f (x )+x +1.所以a (x +1)2+b (x +1)=ax 2+bx +x +1. 所以(2a +b )x +a +b =(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1, 解得⎩⎪⎨⎪⎧a =12,b =12.所以f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12⎝ ⎛⎭⎪⎫x 2-322-18,当x 2=32时,y 取最小值-18.所以函数y =f (x 2-2)的值域为⎣⎢⎡⎭⎪⎫-18,+∞.10.已知函数f (x )=(1-a 2)x 2+3(1-a )x +6.(1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为=sg n x B .sg n =-sg n x C .sg n =sg n D .sg n =-sg n解:因为f (x )是R 上的增函数,又a >1,所以当x >0时,f (x )<f (ax ),即g (x )<0;当x =0时,f (x )=f (ax ),即g (x )=0;当x <0时,f (x )>f (ax ),即g (x )>0.由符号函数sg n x =⎩⎪⎨⎪⎧1, x >0,0, x =0,-1,x <0可得,sg n =⎩⎪⎨⎪⎧-1,x >0,0, x =0,1, x <0=-sg n x .故选B.1.已知集合A ={x |0≤x ≤8},集合B ={x |0≤x ≤4},则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12x D .f :x →y =x解:按照对应关系f :x →y =x ,对集合A 中某些元素(如x =8),集合B 中不存在元素与之对应,故不能看作从A 到B 的映射.选项A ,B ,C 都符合题意.故选D .2.(2016·厦门模拟)函数f (x )=2x +12x 2-x -1的定义域是( )A.⎩⎨⎧⎭⎬⎫x|x ≠-12B.⎩⎨⎧⎭⎬⎫x|x >-12C.⎩⎨⎧⎭⎬⎫x|x ≠-12且x ≠1 D.⎩⎨⎧⎭⎬⎫x|x >-12且x ≠1 解:由题意得⎩⎪⎨⎪⎧2x +1≥0,2x 2-x -1≠0,解得x >-12且x ≠1.故选D .3.函数f (x )=⎩⎪⎨⎪⎧si n (πx 2),-1<x <0,e x -1,x ≥0, 若f (1)+f (a )=2,则a 的所有可能值为( )A .1B .1,-22 C .-22 D .1,22解:f (1)=1,当a ≥0时,f (a )=e a -1,所以1+ea -1=2,所以a =1;当-1<a <0时,f (a )=sin(πa 2),所以1+sin(πa 2)=2,所以πa 2=π2+2k π(k ∈Z ),因为-1<a <0,所以a =-22.故选B. 4.(2015·浙江)存在函数f (x )满足:对于任意x ∈R 都有( )A .f (sin2x )=sin xB .f (sin2x )=x 2+xC .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1| 解:选项A 中:取x =0,π2,可得f (0)=0且f (0)=1,这与函数定义矛盾,错误;选项B 中:取x =0,π2,可得f (0)=0且f (0)=π24+π2,这与函数定义矛盾,错误;选项C 中:取x =1,-1,可得f (2)=2且f (2)=0,这与函数定义矛盾,错误;选项D 中,取f (x )=x +1,那么有f (x 2+2x )=x 2+2x +1=|x +1|对任意x ∈R 成立.故选D.5.具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解:对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足定义;对于②,f ⎝ ⎛⎭⎪⎫1x=1x+x =f (x ),不满足定义;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足定义.综上可知,满足“倒负”变换的函数是①③.故选B.6.已知函数f (x )=⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是,则实数a 的取值范围是( )A .(-∞,-3]B . D .{-3}解:当0≤x ≤4时,f (x )∈;当a ≤x <0时,f (x )∈⎣⎢⎡⎭⎪⎫-12a ,-1,所以⎣⎢⎡⎭⎪⎫-12a ,-1⊆,-8≤-12a <-1,即-3≤a <0.故选B.7.已知f (x +1)=x +2x ,则f (x )=________.解:设x +1=t (t ≥1),则x =t -1, 代入f (x +1)=x +2x ,得f (t )=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).故填x 2-1(x ≥1). 8.(2016·陕西联考)设集合A ={x |0≤x <1},B ={x |1≤x ≤2},f (x )=⎩⎪⎨⎪⎧2x,x ∈A ,4-2x ,x ∈B , 若x 0∈A且f (f (x 0))∈A ,则x 0的取值范围是________.解:因为0≤x 0<1,所以f (x 0)=∈. 整理可得这次行车总费用y 关于x 的表达式是y =3 600x+2x ,x ∈.(2)y =3 600x+2x ≥1202,当且仅当3 600x=2x ,即x =302时取等号.故当x =302时,这次行车的总费用最低,为1202元.10.规定为不超过t 的最大整数,例如=12,=-4,对任意实数x ,令f 1(x )=,g (x )=4x -,进一步令f 2(x )=f 1(g (x )).(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时成立,求x 的取值范围.解:(1)因为x =716时,4x =74,所以f 1(x )=⎣⎢⎡⎦⎥⎤74=1.因为g (x )=74-⎣⎢⎡⎦⎥⎤74=34.所以f 2(x )=f 1(g (x ))=f 1⎝ ⎛⎭⎪⎫34==3.(2)因为f 1(x )==1,g (x )=4x -1, 所以f 2(x )=f 1(4x -1)==3.所以⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,所以716≤x <12.故x 的取值范围是⎣⎢⎡⎭⎪⎫716,12.(2016·广州模拟)已知映射f :P (m ,n )→P ′(m ,n )(m ≥0,n ≥0).设点A (1,3),B (2,2),点M 是线段AB 上一动点,f :M →M ′.当点M 在线段AB 上从点A 开始运动到点B 结束时,点M 的对应点M ′所经过的路线长度为( )A .π12 B .π6 C.π4 D.π3解: 因为点A (1,3),B (2,2),所以线段AB 的方程为x +y =4(1≤x ≤2).设M ′(x ,y ),则M (x 2,y 2),又因为点M 是线段AB 上一动点,所以x 2+y 2=4(1≤x ≤2),所以点M 的对应点M ′的轨迹是一段圆弧,且该圆弧所对圆心角为π3-π4=π12,所以点M 的对应点M ′所经过的路线长度为π12×2=π6.故选B.2.2 函数的单调性与最大(小)值1.函数的单调性(1)增函数与减函数一般地,设函数f(x)的定义域为I:①如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是.②如果对于定义域I内某个区间D上的自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是.(2)单调性与单调区间如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的) ,区间D叫做y=f(x)的.2.函数的最值(1)最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么,我们称M是函数y=f(x)的最大值.(2)最小值一般地,设函数y=f(x)的定义域为I,如果存在实数N满足:①对于任意的x∈I,都有;②存在x0∈I,使得.那么我们称N是函数y=f(x)的最小值.自查自纠1.(1)①任意两个增函数②任意两个减函数(2)单调性单调区间2.(1)①f(x)≤M②f(x0)=M(2)①f(x)≥N②f(x0)=N(2016·北京)下列函数中,在区间(-1,1)上为减函数的是( )A.y=11-xB.y=cos xC.y=ln(x+1) D.y=2-x解:选项A中函数y=11-x=-1x-1在区间(-1,1)上是增函数;选项B中函数y=cos x在区间(-1,0)上是增函数,在区间(0,1)上是减函数;选项C中函数y=ln(x+1)在区间(-1,1)上是增函数;选项D中函数y=2-x=⎝⎛⎭⎪⎫12x在区间(-1,1)上是减函数.故选D.(2015·湖南)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是( )A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数解:f(x)的定义域为(-1,1),关于原点对称.又f(-x)=ln(1-x)-ln(1+x)=-f(x),故f(x)为奇函数.显然,f(x)在(0,1)上单调递增.故选A.已知函数f(x)=log a|x|在(0,+∞)上单调递增,则( )A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3) C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)解:因为f(x)=log a|x|在(0,+∞)上单调递增,所以a>1,f(1)<f(2)<f(3).又函数f(x)=log a|x|为偶函数,所以f(2)=f(-2),所以f(1)<f(-2)<f(3).故选B.(2014·天津)函数f(x)=log12(x2-4)的单调递增区间为________.解:函数y=f(x)的定义域为(-∞,-2)∪(2,+∞),因为函数y=f(x)由y=log12t与t=g(x)=x2-4复合而成,又y=log12t在(0,+∞)上单调递减,g(x)在(-∞,-2)上单调递减,所以函数y=f(x)在(-∞,-2)上单调递增.故填(-∞,-2).已知函数f(x)=x2-2ax-3在区间上具有单调性,则实数a的取值范围为________.解:函数的对称轴为直线x=a,因此要使函数f(x)在区间上具有单调性,只需a≤1或a≥2.故填(-∞,1]∪,上是增函数,在,和;单调减区间为和时,u为减函数,当x∈,单调减区间为上是减函数;当a<x1<x2时,x1x2>a,又x1-x2<0,故f(x1)-f(x2)<0,即f(x1)<f(x2),故函数f(x)在(a,+∞)上是增函数.综上可知,函数f(x)=x+ax(a>0)在(0,a]上是减函数,在(a,+∞)上是增函数.解法二:求导可得f′(x)=1-ax2 .令f′(x)>0,则1-ax2>0,解得x>a或x <-a(舍).令f′(x)≤0,则1-ax2≤0,解得-a≤x≤a.因为x>0,所以0<x≤a.所以f(x)在(0,a]上是减函数;在(a,+∞)上是增函数.点拨:求函数的单调区间和判断函数的单调性方法一致,通常有以下几种方法:(1)复合函数法:f(g(x))的单调性遵循“同增异减”的原则;(2)定义法:先求定义域,再利用单调性定义求解;(3)图象法:可由函数图象的直观性写出它的单调区间;(4)导数法:利用导数取值的正负确定函数的单调区间.特别注意:单调区间必为定义域的子集.(1)函数y=⎝⎛⎭⎪⎫122x2-3x+1的递减区间为__________________________.解:作出t=2x2-3x+1的图象如图,因为0<12<1,所以y=⎝⎛⎭⎪⎫12t单调递减.要使y=⎝⎛⎭⎪⎫122x2-3x+1递减,只要x∈⎣⎢⎡⎭⎪⎫34,+∞.故填⎣⎢⎡⎭⎪⎫34,+∞.(2)求证:函数f(x)=x3+x在(-∞,+∞)上是增函数.证法一:(定义法)任取x1<x2,则x1-x2<0,所以f(x1)-f(x2)=(x31+x1)-(x32+x2)=(x31-x32)+(x1-x2)=(x1-x2)(x21+x1x2+x22+1)=(x1-x2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x1+12x22+34x22+1<0,即f(x1)<f(x2),所以f(x)=x3+x在(-∞,+∞)上是增函数.证法二:(导数法)因为f ′(x )=3x 2+1>0在(-∞,+∞)上恒成立,所以f (x )在(-∞,+∞)上是增函数.类型二 函数单调性的应用(2015·汕头月考)已知函数f (x )=log a (ax 2-x +12)在⎣⎢⎡⎦⎥⎤1,32上恒正,则实数a 的取值范围是________.解:设g (x )=ax 2-x +12,需满足g (x )=ax 2-x +12>0,即a >1x -12x 2.因为x ∈⎣⎢⎡⎦⎥⎤1,32,所以⎝ ⎛⎭⎪⎫1x -12x 2ma x=12,从而a >12.函数g (x )=ax 2-x +12的对称轴为x =12a <1,所以函数g (x )=ax 2-x +12在⎣⎢⎡⎦⎥⎤1,32上单调递增.当a >1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,32上单调递增,所以f (1)=log a ⎝⎛⎭⎪⎫a -1+12>0,解得a >32; 当12<a <1时,函数f (x )在⎣⎢⎡⎦⎥⎤1,32上单调递减,故f ⎝ ⎛⎭⎪⎫32=log a ⎝ ⎛⎭⎪⎫94a -32+12>0,解得12<a <89.综上得实数a 的取值范围为⎝ ⎛⎭⎪⎫12,89∪⎝ ⎛⎭⎪⎫32,+∞. 故填⎝ ⎛⎭⎪⎫12,89∪⎝ ⎛⎭⎪⎫32,+∞.点拨:利用函数单调性讨论参数的取值范围一般要弄清三个环节:(1)考虑函数的定义域,保证研究过程有意义,如本题中不能忽视g (x )=ax 2-x +12>0;(2)弄清常见函数单调区间与题中给出的区间的关系,如本题中g (x )的单调增区间为⎝ ⎛⎭⎪⎫12a ,+∞,⎣⎢⎡⎦⎥⎤1,32是它的子集;(3)注意恒成立不等式的等价转化.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1.若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围为________.解:易知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1在区间⎝ ⎛⎭⎪⎫-∞,12 上单调递增,在区间⎝ ⎛⎭⎪⎫12,+∞上单调递减,所以函数在x =12处取得最大值14,所以有14≤m2-3m 4,解得m ≤-14或m ≥1.故填⎝⎛⎦⎥⎤-∞,-14∪上的最大值与最小值.解:(1)证明:令x =y =0,可得f (0)+f (0)=f (0+0)=f (0),从而f (0)=0.令y =-x ,可得f (x )+f (-x )=f (x -x )=f (0)=0,即f (-x )=-f (x ),故f (x )为奇函数. (2)证明:对任意x 1,x 2∈R ,不妨设x 1>x 2,则x 1-x 2>0,于是f (x 1-x 2)<0,从而f (x 1)-f (x 2)=f -f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2)<0,所以f (x )在R 上是减函数.(3)由(2)知,所求函数在上的最大值为f (-3),最小值为f (6).因为f (-3)=-f (3)=-=-=-3f (1)=2,f (6)=-f (-6)=-=-4,所以f (x )在上的最大值为2,最小值为-4. 点拨:对于抽象函数单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f (x 1)f (x 2)与1的大小.有时根据需要,需作适当的变形,如x 1=x 2+x 1-x 2或x 1=x 2·x 1x 2等.深挖已知条件,是求解此类题的关键.在客观题的求解中,解这类题目也可考虑用特殊化方法,如本题可依题目条件取f (x )=-23x .f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),当x >1时,有f (x )>0.(1)求f (1)的值;(2)判断f (x )的单调性并证明;(3)若f (6)=1,解不等式f (x +5)-f ⎝ ⎛⎭⎪⎫1x<2. 解:(1)f (1)=f ⎝ ⎛⎭⎪⎫x x =f (x )-f (x )=0,x >0.(2)f (x )在(0,+∞)上是增函数.证明:设0<x 1<x 2,则由f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),得f (x 2)-f (x 1)=f ⎝ ⎛⎭⎪⎫x 2x 1,因为x 2x 1>1,所以f ⎝ ⎛⎭⎪⎫x 2x 1>0.所以f (x 2)-f (x 1)>0,即f (x )在(0,+∞)上是增函数.(3)因为f (6)=f ⎝ ⎛⎭⎪⎫366=f (36)-f (6),又f (6)=1,所以f (36)=2,原不等式化为:f (x 2+5x )<f (36),又因为f (x )在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧x +5>0,1x >0,x 2+5x <36,解得0<x <4.1.证明函数的单调性与求函数的单调区间,均可运用函数单调性的定义,具体方法为差式比较法或商式比较法.注意单调性定义还有如下的两种等价形式:设x 1,x 2∈(a ,b ),且x 1≠x 2,那么(1)f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在(a ,b )内是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在(a ,b )内是减函数.上式的几何意义:增(减)函数图象上任意两点(x 1,f (x 1)),(x 2,f (x 2))连线的斜率恒大于(或小于)零.(2)(x 1-x 2)>0⇔f (x )在(a ,b )内是增函数;(x 1-x 2)<0⇔f (x )在(a ,b )内是减函数.2.函数单调性的判断(1)常用的方法有:定义法、导数法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;(3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性;(4)复合函数的单调性:如果y =f (u )和u =g (x )的单调性相同,那么y =f (g (x ))是增函数;如果y =f (u )和u =g (x )的单调性相反,那么y =f (g (x ))是减函数.在应用这一结论时,必须注意:函数u =g (x )的值域必须是y =f (u )的单调区间的子集.(5)在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的函数的单调性,因此掌握一次函数、二次函数、幂函数、对数函数等的单调性,将大大缩短我们的判断过程.3.函数最值的重要结论(1)设f (x )在某个集合D 上有最小值,m 为常数,则f (x )≥m 在D 上恒成立的充要条件是f (x )min ≥m ;(2)设f (x )在某个集合D 上有最大值,m 为常数,则f (x )≤m 在D 上恒成立的充要条件是f (x )m ax ≤m .4.自变量取值之间的不等关系和函数值的不等关系可正逆互推,即若f (x )是增(减)函数,则f (x 1)<f (x 2)⇔x 1<x 2(x 1>x 2).在解决“与抽象函数有关的不等式”问题时,可以利用函数单调性的“可逆性”,脱去“函数符号f ”,化为一般不等式求解,但运算必须在定义域内或给定的范围内进行.1.函数y =x -1的单调递增区间是( ) A . D .(-∞,0]解:y =x -1的图象由y =x 的图象向右平移1个单位得到,故y =x -1的单调递增区间是B.⎣⎢⎡⎦⎥⎤-1,43C.⎣⎢⎡⎭⎪⎫0,32D .上是减函数,则实数a的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .上有意义,即集合{x |0≤x ≤1}是关于x 的不等式2-ax >0的解集的子集.因为函数在上是减函数,显然0<a <1不符合题意,所以⎩⎪⎨⎪⎧a >1,2-ax >0,即⎩⎪⎨⎪⎧a >1,x <2a,所以⎩⎪⎨⎪⎧a >1,2a>1,所以1<a <2.故选B .7.(2016·福建厦门质检)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间上的最大值为________.解:由于y =⎝ ⎛⎭⎪⎫13x在R 上递减,y =log 2(x +2)在上单调递增,所以f (x )在上单调递减,故f (x )在上的最大值为f (-1)=3.故填3.8.已知f (x )是定义在上的奇函数且f (1)=1,当x 1,x 2∈,且x 1+x 2≠0时,有f (x 1)+f (x 2)x 1+x 2>0,若f (x )≤m 2-2am +1对所有x ∈,a ∈恒成立,则实数m 的取值范围是________.解:用-x 2替换x 2,得f (x 1)+f (-x 2)x 1+(-x 2)>0,由于f (x )是奇函数,所以f (x 1)-f (x 2)x 1-x 2>0,所以函数f (x )是定义域上的增函数,所以f (x )ma x =f (1)=1.不等式f (x )≤m 2-2am +1对所有x ∈,a∈恒成立,即m 2-2am +1≥1对任意a ∈恒成立,即2ma -m 2≤0对任意a ∈恒成立.令g (a )=2ma -m 2,则只要⎩⎪⎨⎪⎧g (-1)=-2m -m 2≤0,g (1)=2m -m 2≤0 即可,解得m ≤-2或m ≥2或m =0.故填(-∞,-2]∪{0}∪上单调递增,求实数m 的取值范围.解:(1)令x <0,-x >0,f (x )=-f (-x ),即ax 2+bx =-(-x 2-2x ).所以a =1,b =2,所以a -b =-1.(2)由(1)知,f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≥0,x 2+2x ,x <0,易知f (x )的单调递增区间为, 所以⊆,所以⎩⎪⎨⎪⎧m -2>-1,m -2≤1, 解得1<m ≤3.故实数m 的取值范围为(1,3].10.(2015·江淮名校模拟)已知函数g (x )=ax2-2ax +1+b (a >0)在区间上有最大值4和最小值。
1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质与运算法则(1)对数的运算法则如果a〉0,且a≠1,M〉0,N〉0,那么①log a(MN)=log a M+log a N;②log a错误!a M-log a N;③log a M n=n log a M (n∈R).(2)对数的性质①log a Na=N;②log a a N=N(a>0且a≠1).(3)对数的换底公式log a b=错误!(a>0,且a≠1;c>0,且c≠1;b>0).3.对数函数的图象与性质y=log a xa〉10<a<1图象定义域(1)(0,+∞)值域(2)R性质(3)过定点(1,0)(4)当x〉1时,y〉0;当0〈x〈1时,y<0(5)当x>1时,y〈0;当0<x〈1时,y>0(6)在(0,+∞)上是增函数(7)在(0,+∞)上是减函数4.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.【知识拓展】1.换底公式的两个重要结论 (1)log a b =错误!;(2)log log .m n a a nb b m=其中a >0且a ≠1,b >0且b ≠1,m ,n ∈R 。
2.对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c 〈d <1<a <b .由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若MN 〉0,则log a (MN )=log a M +log a N 。
( × ) (2)log a x ·log a y =log a (x +y ).( × ) (3)函数y =log 2x 及13log3y x =都是对数函数.( × )(4)对数函数y =log a x (a 〉0且a ≠1)在(0,+∞)上是增函数.( × ) (5)函数y =ln 错误!与y =ln (1+x )-ln (1-x )的定义域相同.( √ ) (6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0)且过点(a ,1),错误!,函数图象只在第一、四象限.( √ )1.(教材改编)(log 29)·(log 34)等于( ) A.错误! B.错误! C .2 D .4 答案 D解析 (log 29)·(log 34)=2log 23·2log 32=4. 2.函数f (x )=lg(|x |-1)的大致图象是( )答案 B解析 由函数f (x )=lg(|x |-1)的定义域为(-∞,-1)∪(1,+∞),值域为R 。
组专项基础训练(时间:分钟).(·广东茂名一模)下列函数中,在(-,)内有零点且单调递增的是().=.=-.=-.=-【解析】函数=在定义域上是减函数,=-在(-,)上不是单调函数,=-在定义域上单调递减,均不符合要求.对于=-,当=∈(-,)时,=且=-在上单调递增.故选.【答案】.(·江西赣州一模)函数(),()满足:对任意∈,都有(-+)=(),若关于的方程()+=只有个根,则这个根之和为()....【解析】由(-+)=()知()的图象关于直线=对称(若()的图象不关于直线=对称,则存在,,满足+=,但()≠(),而(-+)=(),(-+)=(),且(-+)=(-+),这与()≠()矛盾),由()+=,知()=-,因为=-的图象也关于直线=对称,()+=有个根,故必有一个根为,另外个根的和为.所以原方程所有根之和为.【答案】.(·宁夏银川长庆高中月考)=,函数()=+-的零点所在的区间是().(-,-) .(-,).(,) .(,)【解析】∵===,∴()=+-.∵()=+×-=-,()=+-=(-)>,∴()()<,∴函数()=+-的零点所在的区间是(,).故选.【答案】.(·辽宁五校协作体联考)设函数()是定义在上的奇函数,当>时,()=+-,则()的零点个数为()....【解析】因为函数()是定义域为的奇函数,所以()=,所以是函数()的一个零点.当>时,令()=+-=,则=-+.分别作出函数=和=-+的图象如图所示,可得这两个函数的图象有一个交点,所以函数()在(,+∞)内有一个零点.又根据图象的对称性知,当<时函数()也有一个零点.综上所述,()的零点个数为.故选.【答案】.(·福建三明一中第一次月考)已知函数()=则函数=()+-的零点个数为()....【解析】函数=()+-的零点,即函数=-+与=()的交点的横坐标.如图所示,函数=-+与=()的图象有两个交点,故函数=()+-的零点有个.故选.【答案】.(·吉林实验中学)函数()=-+的零点位于区间(,+)(∈)内,则=.【解析】求函数()=-+的零点,可以大致估算两个相邻自然数的函数值,因为()=-+,由于<=,所以()<,()=+,由于>,所以()>,所以函数()的零点位于区间(,)内,故=.【答案】.若函数()=++的两个零点是-和,则不等式(-)>的解集是.【解析】∵()=++的两个零点是-,.∴-,是方程++=的两根,由根与系数的关系知∴∴()=--.∵不等式(-)>,即-(+-)>⇔+-<,解集为.【答案】.已知函数()=若函数()=()-有个零点,则实数的取值范围是.。
(浙江专用)2018版高考数学大一轮复习第二章函数概念与基本初等函数I 2.1 函数及其表示教师用书1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.【知识拓展】1.函数实质上就是数集上的一种映射,即函数是一种特殊的映射,而映射可以看作函数概念的推广.2.函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数有几段,它的图象就由几条曲线组成,同时要注意每段曲线端点的虚实,而且横坐标相同的地方不能有两个及两个以上的点. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( × )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × )1.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数的定义域不是[-2,2],C 中图象不表示函数,D 中函数值域不是[0,2],故选B.2.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x答案 D 解析 函数y =10lg x的定义域为{x |x >0},值域为{y |y >0},所以与其定义域和值域分别相同的函数为y =1x,故选D.3.已知f (1x)=x 2+5x ,则f (x )=________.答案5x +1x2(x ≠0) 解析 令1x=t (t ≠0),则f (t )=1t 2+51t =5t +1t2,∴f (x )=5x +1x2(x ≠0).4.(2016·诸暨期末)已知函数f (x )=⎩⎪⎨⎪⎧-x +10,x >0,x 2+4,x ≤0,则f [f (0)]=________;若f [f (x 0)]=2,则x 0=________. 答案 6 2或-2解析 由题意知f (0)=4,f (4)=6,设f (x 0)=t ,则f (t )=2,当t >0时,-t +10=2,得t =8,当t <0时,t 2+4=2,无解,当x 0>0时,由-x 0+10=8,得x 0=2,当x 0≤0时,由x 20+4=8,得x 0=-2,所以x 0=2或-2.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x -x表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应关系唯一确定,当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).(1)下列所给图象中函数图象的个数为( )A .1B .2C .3D .4(2)下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=x 2x和g (x )=x x2答案 (1)B (2)D解析 (1)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象,故选B.(2)A 中两个函数的定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同.故选D.题型二 函数的定义域问题 命题点1 求函数的定义域例2 (2016·临安中学一模)(1)函数f (x )=1-2x+1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.答案 (1)A (2)[0,1)解析 (1)由题意得⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0.所以函数f (x )的定义域为(-3,0]. (2)由0≤2x ≤2,得0≤x ≤1, 又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1). 引申探究例2(2)中,若将“函数y =f (x )的定义域为[0,2]”改为“函数y =f (x +1)的定义域为[0,2]”,则函数g (x )=f x x -1的定义域为________________.答案 [12,1)∪(1,32]解析 由函数y =f (x +1)的定义域为[0,2], 得函数y =f (x )的定义域为[1,3],令⎩⎪⎨⎪⎧1≤2x ≤3,x -1≠0,得12≤x ≤32且x ≠1, ∴g (x )的定义域为[12,1)∪(1,32].命题点2 已知函数的定义域求参数范围例3 (1)若函数f (x )的定义域为R ,则a 的取值范围为________.(2)若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________.答案 (1)[-1,0] (2)[0,3)解析 (1)因为函数f (x )的定义域为R , 所以22210x ax a+--≥对x ∈R 恒成立,即22022x ax a+-≥,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. (2)因为函数y =ax +1ax 2+2ax +3的定义域为R ,所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点. 当a =0时,函数y =3的图象与x 轴无交点; 当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3. 综上所述,a 的取值范围是[0,3).思维升华 (1)求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.(1)已知函数f (x )的定义域为[3,6],则函数y=( ) A .[32,+∞)B .[32,2)C .(32,+∞)D .[12,2)(2)若函数y = 的定义域为R ,则实数m 的取值范围是( ) A .(0,34]B .(0,34)C .[0,34]D .[0,34)答案 (1)B (2)D 解析 (1)要使函数y需满足⎩⎪⎨⎪⎧3≤2x ≤6,12log (2)0x ->⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2. (2)要使函数的定义域为R ,则mx 2+4mx +3≠0恒成立. ①当m =0时,得到不等式3≠0,恒成立; ②当m ≠0时,要使不等式恒成立,需⎩⎪⎨⎪⎧ m >0,Δ=m2-4×m ×3<0,即⎩⎪⎨⎪⎧m >0,m m -或⎩⎪⎨⎪⎧m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,m m-解得0<m <34.由①②得0≤m <34,故选D.题型三 求函数解析式例4 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17,不论x 为何值都成立, ∴⎩⎪⎨⎪⎧a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x)·x -1中,用1x代替x ,得f (1x )=2f (x )·1x-1,将f (1x)=2f x x-1代入f (x )=2f (1x )·x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法. (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)消去法:已知f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ); (3)已知f (x )+3f (-x )=2x +1,求f (x ). 解 (1)设x +1=t (t ≥1), ∴f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=kx +b (k ≠0),则f (f (x ))=k 2x +kb +b , 即k 2x +kb +b =4x -1,∴⎩⎪⎨⎪⎧k 2=4,kb +b =-1,∴⎩⎪⎨⎪⎧k =2,b =-13或⎩⎪⎨⎪⎧k =-2,b =1.故f (x )=2x -13或f (x )=-2x +1.(3)以-x 代替x ,得f (-x )+3f (x )=-2x +1, ∴f (-x )=-3f (x )-2x +1, 代入f (x )+3f (-x )=2x +1, 可得f (x )=-x +14.2.分类讨论思想在函数中的应用典例 (1)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________________.(2)(2015·山东)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1, +∞)思想方法指导 (1)求分段函数的函数值,首先要确定自变量的范围,通过分类讨论求解. (2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.解析 (1)当a >0时,1-a <1,1+a >1, 由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a , 解得a =-32,不合题意.当a <0时,1-a >1,1+a <1, 由f (1-a )=f (1+a ),可得-(1-a )-2a =2(1+a )+a ,解得a =-34,符合题意.(2)由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.答案 (1)-34(2)C1.下列各组函数中,表示同一函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 答案 C解析 A 项中两函数的定义域不同;B 项、D 项中两函数的对应关系不同,故选C. 2.函数f (x )=10+9x -x2x -的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]答案 D解析 要使函数f (x )有意义,则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,x -,即⎩⎪⎨⎪⎧x +x -,x >1,x ≠2,解得1<x <2或2<x ≤10,所以函数f (x )的定义域为(1,2)∪(2,10].3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x答案 B解析 (待定系数法) 设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x ,故选B.4.(2015·陕西)设f (x )=⎩⎨⎧1-x ,x ≥0,2x,x <0,则f (f (-2))等于( )A .-1 B.14 C.12 D.32答案 C解析 ∵f (-2)=2-2=14>0,则f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12,故选C. 5.(2016·余杭六校联考)已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2答案 B解析 当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4, 即-x 20=4,无解,所以x 0=2,故选B.*6.(2016·嘉兴期末)已知f (x )=⎩⎪⎨⎪⎧ -2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1]B .(-1,12)C .[-1,12) D .(0,12) 答案 C解析 要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧ 1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧ a <12,a ≥-1,∴-1≤a <12. 即a 的取值范围是[-1,12). 7.(2016·济南模拟)已知函数f (1-x 1+x)=x ,则f (2)=________. 答案 -13解析 令t =1-x 1+x ,则x =1-t 1+t, ∴f (t )=1-t 1+t ,即f (x )=1-x 1+x, ∴f (2)=1-21+2=-13. 8.(2017·金华十校调研)已知函数f (x )=⎩⎪⎨⎪⎧ 3x -1,x ≤1,f x -,x >1,则f (f (2))=________,值域为______.答案 2 (-1,2]解析 ∵f (2)=f (1)=2,∴f [f (2)]=f (2)=2.又x >1时,f (x )=f (x -1),∴f (x )的值域即为x ≤1时函数值的范围.又x ≤1时,-1<3x-1≤2,故f (x )的值域为(-1,2].9.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧ x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1,∴f (f (-3))=f (1)=0, 当x ≥1时,f (x )=x +2x -3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. *10.具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧ x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.答案 ①③解析 对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足; 对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足; 对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1, 故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.11.已知f (x )=⎩⎪⎨⎪⎧ f x +,-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f (-32)的值; (2)若f (a )=4且a >0,求实数a 的值. 解 (1)由题意,得f (-32)=f (-32+1)=f (-12) =f (-12+1)=f (12)=2×12+1=2. (2)当0<a <2时,由f (a )=2a +1=4,得a =32, 当a ≥2时,由f (a )=a 2-1=4,得a =5或a =-5(舍去).综上所述,a =32或a = 5. 12.若函数f (x )=x 2-1x 2+1. (1)求f f 12的值;(2)求f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)的值. 解 (1)∵f (2)=35,f (12)=-35, ∴f f 12=-1.(2)∵f (1x )=1x 2-11x 2+1=1-x 2x 2+1=-f (x ), ∴f (3)+f (13)=0,f (4)+f (14)=0,…,f (2 017)+f (12 017)=0, 故f (3)+f (4)+…+f (2 017)+f (13)+f (14)+…+f (12 017)=0. 13.(2016·嘉兴期末)已知函数f (x )=x 2+mx +n (m ,n ∈R ),f (0)=f (1),且方程x =f (x )有两个相等的实数根.(1)求函数f (x )的解析式;(2)当x ∈[0,3]时,求函数f (x )的值域.解 (1)∵f (x )=x 2+mx +n 且f (0)=f (1),∴n =1+m +n ,∴m =-1,∴f (x )=x 2-x +n .∵方程x =f (x )有两个相等的实数根,∴方程x =x 2-x +n 有两个相等的实数根,即方程x 2-2x +n =0有两个相等的实数根,∴(-2)2-4n =0,∴n =1.∴f (x )=x 2-x +1.(2)由(1),知f (x )=x 2-x +1.此函数的图象是开口向上,对称轴为直线x =12的抛物线,∴当x =12时,f (x )有最小值f (12). ∴f (12)=(12)2-12+1=34, ∵f (0)=1,f (3)=32-3+1=7,∴当x ∈[0,3]时,函数f (x )的值域是[34,7].。
第二章⎪⎪⎪函数的概念与基本初等函数Ⅰ 第一节 函数及其表示突破点(一) 函数的定义域1.函数与映射的概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.本节主要包括3个知识点:1.函数的定义域;2.函数的表示方法;分段函数.(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞). (7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2][解析] 要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). [答案] C [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连接,而应该用并集符号“∪”连接.求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[解析] 由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).[答案] [0,1)[易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] (2017·杭州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. [答案] D[方法技巧]已知函数定义域求参数的思想方法已知函数的定义域,逆向求解函数中参数的取值,需运用分类讨论以及转化与化归的思想方法.转化与化归的思想方法是通过某种转化过程,将一个难以解决的问题转化为一个已经解决或者比较容易解决的问题,从而获解.基础联通 抓主干知识的“源”与“流” 1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1]D .[0,2]解析:选B 由题意知,x ≥0且2-x >0,解得0≤x <2,故其定义域是[0,2). 2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞)D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 由题意得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12, 所以函数的定义域为⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1.故选D. 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:∵y =f (x 2-1)的定义域为[-3, 3 ],∴x ∈[-3, 3 ],x 2-1∈[-1,2],∴y =f (x )的定义域为[-1,2].答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点[典例] (1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x+1).(3)用1x 代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)A (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]在求解析式时,一定要注意自变量的范围,也就是定义域.如已知f (x )=x +1,求函数f (x )的解析式,通过换元的方法可得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).能力练通 抓应用体验的“得”与“失” 1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0). 答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (-x )=2x ,2f (-x )+f (x )=-2x ,解得f (x )=2x . 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. 解:设t =x +1,则x =(t -1)2,t ≥1,代入原式有 f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. 解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数基础联通 抓主干知识的“源”与“流”1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 考点贯通 抓高考命题的“形”与“神”分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32(2)(2017·张掖高三模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( ) A.14 B.⎝⎛⎭⎫12 21log 5+ C.12D.120[解析] (1)因为f (-2)=2-2=14,所以f (f (-2))=f ⎝⎛⎭⎫14=1- 14=12,故选C. (2)因为2<log 25<3,所以3<1+log 25<4,则4<2+log 25<5,则f (1+log 25)=f (1+log 25+1)=f (2+log 25)=⎝⎛⎭⎫12 22log 5+=14×⎝⎛⎭⎫12 2log 5=14×15=120,故选D. [答案] (1)C (2)D [方法技巧]分段函数求值的解题思路求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.求参数或自变量的值或范围[例2] (1)(2017·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,x 2,x ≤0,若f (4)=2f (a ),则实数a 的值为( )A .-1或2B .2C .-1D .-2(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.[解析] (1)f (4)=log 24=2,因而2f (a )=2,即f (a )=1,当a >0时,f (a )=log 2a =1,因而a =2,当a ≤0时,f (a )=a 2=1,因而a =-1,故选A.(2)当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.[答案] (1)A (2)(-∞,8][方法技巧]求分段函数自变量的值或范围的方法求某条件下自变量的值或范围,先假设所求的值或范围在分段函数定义区间的各段上,然后求出相应自变量的值或范围,切记代入检验,看所求的自变量的值或范围是否满足相应各段自变量的取值范围.能力练通 抓应用体验的“得”与“失”1.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 2,x >0,则f (f (-1))=( )A .2B .1 C.14D.12解析:选C 由题意得f (-1)=1-2-1=12,则f (f (-1))=f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14. 2.[考点一]已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( ) A.12B .-12C .1D .-1解析:选B f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫-13+1=3sin ⎝⎛⎭⎫-π3+1=-12. 3.[考点一]已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得f (0)=a 0+b =1+b =2, 解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.则f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2.4.[考点二]设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞ D .[1,+∞)解析:选C 由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥23,故选C.5.[考点二]已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.解析:由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1.所以实数x 0的值为-1或1.答案:-1或16.[考点二]已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2][全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D 函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D. 2.(2015·新课标全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:选C ∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3.∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.3.(2015·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:选A 由于f (a )=-3,①若a ≤1,则2a -1-2=-3,整理得2a -1=-1.由于2x >0,所以2a -1=-1无解;②若a >1,则-log 2(a +1)=-3,解得a =7,所以f (6-a )=f (-1)=2-1-1-2=-74.综上所述,f (6-a )=-74.4.(2013·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1)C .[-2,1]D .[-2,0]解析:选D y =|f (x )|的图象如图所示,y =ax 为过原点的一条直线,当|f (x )|≥ax 时,必有k ≤a ≤0,其中k 是y =x 2-2x (x ≤0)在原点处的切线的斜率,显然,k =-2.所以a 的取值范围是[-2,0].[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是( )解析:选C A 选项中的值域不对,B 选项中的定义域错误,D 选项不是函数的图象,由函数的定义可知选项C 正确.2.若函数f (x +1)的定义域为[0,1],则f (2x -2)的定义域为( ) A .[0,1] B .[log 23,2] C .[1,log 23]D .[1,2]解析:选B ∵f (x +1)的定义域为[0,1],即0≤x ≤1,∴1≤x +1≤2.∵f (x +1)与f (2x-2)是同一个对应关系f ,∴2x -2与x +1的取值范围相同,即1≤2x -2≤2,也就是3≤2x ≤4,解得log 23≤x ≤2.∴函数f (2x -2)的定义域为[log 23,2].3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2xD .g (x )=-3x 2-2x解析:选B 设g (x )=ax 2+bx +c (a ≠0),∵g (1)=1,g (-1)=5,且图象过原点,∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .4.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________. 解析:f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.答案:12[练常考题点——检验高考能力]一、选择题1.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10]解析:选D 要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,x >1,x ≠2,解得1<x ≤10,且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10].2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .1 B .2 C .3 D .-2解析:选C f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52.故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 3.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1D .-1解析:选A 令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2, ②联立①②得f (1)=2.4.(2017·贵阳检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么c 和a 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:选D 因为组装第a 件产品用时15分钟, 所以ca=15,① 所以必有4<a ,且c 4=c2=30.② 联立①②解得c =60,a =16.5.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x解析:选D 当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.6.已知具有性质:f ⎝⎛⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足“倒负”变换;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足“倒负”变换;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足“倒负”变换.综上可知,满足“倒负”变换的函数是①③.二、填空题7.已知函数f (x )对任意的x ∈R ,f (x +1 001)=2f (x )+1,已知f (15)=1,则f (2 017)=________.解析:根据题意,f (2 017)=f (1 016+1 001)=2f (1 016)+1,f (1 016)=f (15+1 001)=2f (15)+1,而f (15)=1,所以f (1 016)=21+1=1,则f (2 017)=2f (1 016)+1=21+1=1.答案:18.(2017· 绵阳诊断)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32,不合题意,舍去.当a <0时,1-a >1,1+a <1,此时f (1-a )=-(1-a )-2a =-1-a ,f (1+a )=2(1+a )+a =2+3a ,由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-349.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析:由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2,f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2,f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2,又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12×2=1,∴f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7. 答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是________.解析:①当x >0时,f (x )=1,不等式的解集为{x |x >1};②当x =0时,f (x )=0,不等式无解;③当x <0时,f (x )=-1,不等式的解集为{x |x <-3}.所以不等式(x +1)·f (x )>2的解集为{x |x <-3或x >1}.答案:{x |x <-3或x >1} 三、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0, f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x+1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节函数的单调性与最值本节主要包括2个知识点:1.函数的单调性;函数的最值.突破点(一)函数的单调性1.单调函数的定义2.单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”.2.函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)在公共定义域内,函数y =f (x )(f (x )≠0)与y =-f (x ),y =1f (x )单调性相反; (4)在公共定义域内,函数y =f (x )(f (x )≥0)与y =f (x )单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.[例1] (1)下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |(2)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)[解析] (1)当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. (2)设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). [答案] (1)C (2)B [易错提醒](1)单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接.(3)函数的单调性是函数在某个区间上的“整体”性质,所以不能仅仅根据某个区间内的两个特殊变量x 1,x 2对应的函数值的大小就判断函数在该区间的单调性,必须保证这两个变量是区间内的任意两个自变量.函数单调性的应用应用(一) 比较函数值或自变量的大小[例2] 已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c[解析] 由f (x )的图象关于直线x =1对称,可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e),∴b >a >c . [答案] D应用(二) 解函数不等式[例3] f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)[解析] 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x ) 是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.[答案] B [方法技巧]用单调性求解与抽象函数有关不等式的策略(1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(2)有时,在不等式一边没有符号“f ”时,需转化为含符号“f ”的形式.如若已知f (a )=0,f (x -b )<0,则f (x -b )<f (a ).应用(三) 求参数的取值范围[例4] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0 (2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)[解析] (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述得-14≤a ≤0.(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4,故选D.[答案] (1)D (2)D[易错提醒](1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的. (2)对于分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.能力练通 抓应用体验的“得”与“失”1.[考点一]函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].2.[考点二·应用(一)]已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )解析:选C 由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).3.[考点二·应用(二)](2017·太原模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则满足f log 19x >0的x 的集合为________.解析:由题意,y =f (x )为奇函数且f ⎝⎛⎭⎫12=0, 所以f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=0, 又y =f (x )在(0,+∞)上单调递增,则y =f (x )在(-∞,0)上单调递增, 于是⎩⎪⎨⎪⎧log 19x >0,f log 19x >f ⎝⎛⎭⎫12或⎩⎪⎨⎪⎧log 19x <0,f log 19x >f ⎝⎛⎭⎫-12,即⎩⎪⎨⎪⎧log 19x >0,log 19x >12或⎩⎪⎨⎪⎧log19x <0,log 19x >-12,解得0<x <13或1<x <3.答案:⎝⎛⎭⎫0,13∪(1,3) 4.[考点二·应用(三)]已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.解析:由已知条件得f (x )为增函数,∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是⎣⎡⎭⎫32,2.答案:⎣⎡⎭⎫32,25.[考点一]用定义法讨论函数f (x )=x +ax (a >0)的单调性.解:函数的定义域为{x |x ≠0}.任取x 1,x 2∈{x |x ≠0},且x 1<x 2,则f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1·x 2=(x 1-x 2)⎝⎛⎫1-a x 1x 2. 令x 1=x 2=x 0,1-ax 20=0可得到x 0=±a ,这样就把f (x )的定义域分为(-∞,-a ],[-a ,0),(0,a ],[a ,+∞)四个区间,下面讨论它的单调性.若0<x 1<x 2≤a ,则x 1-x 2<0,0<x 1x 2<a ,所以x 1x 2-a <0.所以f (x 1)-f (x 2)=x 1+ax 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1·x 2>0,即f (x 1)>f (x 2),所以f (x )在(0,a ]上单调递减. 同理可得,f (x )在[a ,+∞)上单调递增,在(-∞,-a ]上单调递增,在[-a ,0)上单调递减.故函数f (x )在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.突破点(二) 函数的最值1.函数的最值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大或最小值.1.(1)判断或证明函数的单调性; (2)计算端点处的函数值; (3)确定最大值和最小值.2.分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.[典例] (1)函数y =x +x -1的最小值为________. (2)函数y =2x 2-2x +3x 2-x +1的值域为________.(3)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.[解析] (1)法一:令t =x -1,且t ≥0,则x =t 2+1, ∴原函数变为y =t 2+1+t ,t ≥0. 配方得y =⎝⎛⎭⎫t +122+34, 又∵t ≥0,∴y ≥14+34=1.故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在其定义域[1,+∞)内为增函数,所以当x =1时y 取最小值,即y min =1.(2)y =2x 2-2x +3x 2-x +1=2(x 2-x +1)+1x 2-x +1=2+1x 2-x +1=2+1⎝⎛⎭⎫x -122+34. ∵⎝⎛⎭⎫x -122+34≥34,∴2<2+1⎝⎛⎭⎫x -122+34≤2+43=103.故函数的值域为⎝⎛⎦⎤2,103. (3)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.[答案] (1)1 (2)⎝⎛⎦⎤2,103 (3)2 [方法技巧] 求函数最值的五种常用方法1.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034解析:选D 由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x +1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,∴M =f (a ),N=f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a+1-22 018-a +1=4 034. 2.(2017·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -2⊕x ,x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,且1-2=13-2=-1.∴f (x )的最大值为f (2)=23-2=6.3.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.解析:∵y =⎝⎛⎭⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上是减函数,∴函数f (x )在区间[-1,1]上的最大值为f (-1)=3.答案:34.(2017·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12.令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎝⎛⎭⎫13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,785.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=3-x 是减函数,则h (x )max =h (2)=1.答案:1[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是( )A.⎝⎛⎭⎫13,1 B.⎝⎛⎭⎫-∞,13∪(1,+∞) C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞ 解析:选A ∵f (-x )=ln(1+|-x |)-11+(-x )2=f (x ),∴函数f (x )为偶函数.∵当x ≥0时,f (x )=ln(1+x )-11+x 2,在(0,+∞)上y =ln(1+x )递增,y =-11+x 2也递增,根据单调性的性质知,f (x )在(0,+∞)上单调递增.综上可知:f (x )>f (2x -1)⇔f (|x |)>f (|2x -1|)⇔|x |>|2x -1|⇔x 2>(2x -1)2⇔3x 2-4x +1<0⇔13<x <1.故选A.2.(2013·新课标全国卷Ⅰ)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值为________.解析:∵点(1,0),(-1,0)在f (x )的图象上,且图象关于直线x =-2对称, ∴点(-5,0),(-3,0)必在f (x )的图象上.∴⎩⎪⎨⎪⎧f (-5)=(1-25)(25-5a +b )=0,f (-3)=(1-9)(9-3a +b )=0, 即⎩⎪⎨⎪⎧ 5a -b =25,3a -b =9,解得⎩⎪⎨⎪⎧a =8,b =15.∴f (x )=(1-x 2)(x 2+8x +15) =-(x +1)(x -1)(x +3)(x +5) =-(x 2+4x +3)(x 2+4x -5) 令t =x 2+4x =(x +2)2-4≥-4, 则y =-(t +3)(t -5) =-(t 2-2t -15)=-(t -1)2+16.故当t =1时,f (x )max =16. 答案:16[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎫12xD .y =x +1x解析:选A 函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( ) A .a =-2 B .a =2 C .a ≤-2D .a ≥2解析:选C 二次函数的对称轴方程为x =-a -13,由题意知-a -13≥1,即a ≤-2. 3.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎡⎦⎤0,12 C .[0,+∞) D.⎝⎛⎭⎫12,+∞解析:选B y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的大致图象,如图所示.由图易知函数在⎣⎡⎦⎤0,12上单调递增,故选B.4.函数f (x )=2x -1在[-6,-2]上的最大值是________;最小值是________. 解析:因为f (x )=2x -1在[-6,-2]上是减函数,故当x =-6时,f (x )取最大值-27.当x =-2时,f (x )取最小值-23.答案:-27 -235.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12,即a 的取值范围是⎣⎡⎭⎫-1,12. 答案:⎣⎡⎭⎫-1,12[练常考题点——检验高考能力]一、选择题1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log12(x +1)在(0,1)上递减;③结合图象(图略)可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3)解析:选A 依题意得f (3)=f (1),且-1<1<2,于是由函数f (x )在(-∞,2)上是增函数得f (-1)<f (1)=f (3).3.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18.因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减.所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增,即该函数的单调递增区间为⎝⎛⎦⎤-∞,34. 4.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0,解得17≤a <13.此时,log a x 是减函数,符合题意.5.(2017·九江模拟)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0;当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.6.(2017·日照模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]解析:选D ∵f (x )=-x 2+2ax 在[1,2]上是减函数,∴a ≤1,又∵g (x )=ax +1在[1,2]上是减函数,∴a >0,∴0<a ≤1.二、填空题7.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,由函数图象易得函数g (x )的单调递减区间是[0,1).答案:[0,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-310.(2017·豫南名校联考)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.解析:作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.答案:(-∞,-2) 三、解答题 11.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].12.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎫a -1a x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a ;当0<a <1时,a -1a <0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a =1,∴当a =1时,g (a )取最大值1. 第三节函数的奇偶性及周期性突破点(一) 函数的奇偶性1.函数的奇偶性2.函数奇偶性常用结论(1)如果函数f (x )是偶函数,那么f (x )=f (|x |).本节主要包括3个知识点: 1.函数的奇偶性; 2.函数的周期性;函数性质的综合问题.。
1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.【知识拓展】1.函数奇偶性常用结论(1)如果函数f(x)是偶函数,那么f(x)=f(|x|).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a(a>0).(2)若f(x+a)=错误!,则T=2a(a>0).(3)若f(x+a)=-错误!,则T=2a(a>0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(2)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a 对称.(√)(3)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a〉0)的周期函数.(√)(4)定义域关于原点对称是函数具有奇偶性的一个必要条件.( √)(5)若T是函数的一个周期,则nT(n∈Z,n≠0)也是函数的周期.( √)1.(教材改编)下列函数为偶函数的是()A.f(x)=x-1 B.f(x)=x2+xC.f(x)=2x-2-x D.f(x)=2x+2-x答案D解析D中,f(-x)=2-x+2x=f(x),∴f(x)为偶函数.2.已知函数f(x)为奇函数,且当x〉0时,f(x)=x2+错误!,则f(-1)等于()A.-2 B.0 C.1 D.2答案A解析f(-1)=-f(1)=-(1+1)=-2.3.已知定义在R上的奇函数f(x)满足f(x+4)=f(x),则f(8)的值为( )A.-1 B.0 C.1 D.2答案B解析∵f(x)为定义在R上的奇函数,∴f(0)=0,又f(x+4)=f(x),∴f(8)=f(0)=0。
1.几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a、b为常数,a≠0)反比例函数模型f(x)=错误!+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=b log a x+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数模型f(x)=ax n+b(a,b为常数,a≠0)2。
三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n〉0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x〉x0时,有log a x〈x n〈a x 【知识拓展】1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +错误!(a 〉0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-错误!]和[错误!,+∞)上单调递增,在[-错误!,0)和(0,错误!]上单调递减.(2)当x >0时,x =错误!时取最小值2错误!,当x 〈0时,x =-错误!时取最大值-2错误!.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.( √ )(2)幂函数增长比直线增长更快.( × )(3)不存在x 0,使000log .x n a a x x <<( × )(4)在(0,+∞)上,随着x 的增大,y =a x (a >1)的增长速度会超过并远远大于y =x a (a >0)的增长速度.( √ )(5)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b 〉0,b ≠1)增长速度越来越快的形象比喻.( × )1.(教材改编)已知某种动物繁殖量y (只)与时间x (年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到()A.100只B.200只C.300只D.400只答案B解析由题意知100=a log3(2+1),∴a=100。
1.分数指数幂(1)我们规定正数的正分数指数幂的意义是m na =错误!(a 〉0,m ,n ∈N *,且n >1).于是,在条件a 〉0,m ,n ∈N *,且n 〉1下,根式都可以写成分数指数幂的形式.正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定mna =1m na(a 〉0,m ,n ∈N *,且n 〉1)。
0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =a r +s ,(a r )s =a rs ,(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q . 2.指数函数的图象与性质y =a xa 〉1 0<a 〈1图象定义域(1)R值域(2)(0,+∞)性质(3)过定点(0,1)(4)当x>0时,y>1;当x〈0时,0〈y〈1(5)当x>0时,0〈y〈1;当x<0时,y>1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数【知识拓展】1.指数函数图象画法的三个关键点画指数函数y=a x(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),(-1,错误!).2。
指数函数的图象与底数大小的比较如图是指数函数(1)y=a x,(2)y=b x,(3)y=c x,(4)y=d x的图象,底数a,b,c,d与1之间的大小关系为c>d〉1>a>b.由此我们可得到以下规律:在第一象限内,指数函数y=a x(a〉0,且a≠1)的图象越高,底数越大.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)n ,a n =(错误!)n =a 。
( × )(2)分数指数幂m na 可以理解为错误!个a 相乘.( × ) (3)2142(1)(1) 1.-=-=-(× )(4)函数y =a -x 是R 上的增函数.( × )(5)函数21x y a +=(a >1)的值域是(0,+∞).( × )(6)函数y =2x -1是指数函数.( × )1.(教材改编)若函数f (x )=a x (a >0,且a ≠1)的图象经过点P (2,12),则f (-1)等于( ) A 。
组专项基础训练(时间:分钟).(·安徽合肥一中期中)若定义在上的函数()满足:对任意,∈,有(+)=()+()+,则下列说法一定正确的是().()-为奇函数.()-为偶函数.()+为奇函数.()+为偶函数【解析】∵对任意,∈有(+)=()+()+,∴令==,得()=-.令=,=-,得()=()+(-)+.∴()+=-(-)-=-,∴()+为奇函数.故选.【答案】.(·湖南常德一中第五次月考)若()=--为奇函数,则(-)<-的解集为().(-∞,) .(-∞,).(,+∞) .(,+∞)【解析】因为()=--为奇函数,所以()=-=,即=,则()=--在上单调递增,且()=-.则由(-)<-,得(-)<(),即-<,解得<,所以不等式(-)<-的解集为(-∞,).故选.【答案】.(·湖南岳阳平江一中期中)已知函数()是定义在上的奇函数,其最小正周期为,且∈时,()=(-+),则( )=()...-.【解析】∵函数()是定义在上的奇函数,其最小正周期为,∴( )=(×+)=()=-(-).∵-∈,且∈时,()=(-+),∴(-)==,∴( )=-(-)=-.【答案】.(·福建三明一中第一次月考)函数=()是上的奇函数,当<时,()=,则当>时,()=().-.-.--.【解析】>时,-<,∵<时,()=,∴当>时,(-)=-.∵()是上的奇函数,∴当>时,()=-(-)=--.故选.【答案】.(·四川)已知函数()是定义在上的周期为的奇函数,当<<时,()=,则+()=.【解析】∵函数()为奇函数,且周期为,∴()=()=,∴()=-(-)=-(-+)=-(),∴()=,∴==-=-=-,∴+()=-.【答案】-.(·山东东营广饶一中诊断)若()=+-·是奇函数,则实数=.【解析】∵函数()=+-是奇函数,∴()+(-)=,∴+-+-+=,即+-+ (+-)=,∴=-,∴=.【答案】.(·长春质检)已知定义在上的偶函数()在∪∪上单调递增,求实数的取值范围.【解析】 ()设<,则->,所以(-)=-(-)+(-)=--.又()为奇函数,所以(-)=-().于是<时,()=+=+,所以=.()要使()在上单调递增,结合()的图象知所以<≤,故实数的取值范围是(,]..设()是定义在上的奇函数,且对任意实数,恒有(+)=-(),当∈时,()=-.()求证:()是周期函数;()当∈时,求()的解析式;()计算()+()+()+…+( ).【解析】 ()证明∵(+)=-(),∴(+)=-(+)=().∴()是周期为的周期函数.()∵∈,∴-∈,∴-∈,∴(-)=(-)-(-)=-+-,又(-)=(-)=-(),∴-()=-+-,即()=-+,∈.()∵()=,()=,()=,()=-.又()是周期为的周期函数,。
A组专项基础训练(时间:35分钟)1.(2017·山东实验中学第一次诊断性考试)“m=1”是“函数f(x)=x2-6mx+6在区间(-∞,3]上为减函数”的( )A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件【解析】函数f(x)=x2-6mx+6在区间(-∞,3]上为减函数的充要条件是3m≥3,即m∈上为减函数”的充分不必要条件.故选B.【答案】 B2.(2017·四川资阳模拟)已知函数f(x)=x2-2x+4在区间(m>0)上的最大值为4,最小值为3,则实数m的取值范围是( )A. B.(0,1]C.(0,2] D.(m>0)上的最大值为4,最小值为3.故选A.【答案】 A3.(2017·内蒙古呼伦贝尔二模)已知函数f(x)=x2+bx+c(b,c∈R),集合A={x|f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0∉A,则实数b的取值范围是( ) A.0≤b≤4 B.b≤0或b≥4C.0≤b<4 D.b<0或b≥4【解析】由题意可得,A是函数f(x)的零点构成的集合.由f(f(x))=0可得(x2+bx +c)2+b(x2+bx+c)+c=0,把x2+bx+c=0代入,解得c=0,∴f(x)=x2+bx.存在x0∈B,x0∉A,∴f(f(x0))=0.而f(x0)≠0,∴x0≠0,说明f(x)=0有非零实根.∴解f(x)=0,得x=0或x=-b,b≠0,∴A={0,-b}.f(f(x))=(x2+bx)2+b(x2+bx)=x(x+b)(x2+bx+b).∵存在x0∈B,x0∉A,∴方程x2+bx+b=0有解,∴Δ=b2-4b≥0.又b≠0,可解得b<0或b≥4,∴实数b的取值范围为{b|b<0或b≥4}.故选D.【答案】 D4.(2017·山东实验中学二诊)已知y =f (x )是奇函数,且满足f (x +2)+3f (-x )=0,当x ∈时,f (x )=x 2-2x ,则当x ∈时,f (x )的最小值为( )A .-1B .-13C .-19 D.19【解析】 设x ∈,则x +4∈.∵y =f (x )是奇函数,∴由f (x +2)+3f (-x )=0,可得f (x +2)=-3f (-x )=3f (x ),∴f (x +4)=3f (x +2),故有f (x )=13f (x +2)=f (x +4)9.故f (x )=19f (x +4)=19=19=(x +3)2-19.∴当x =-3时,函数f (x )取得最小值为-19.故选C.【答案】 C5.(2017·安徽江淮十校高三4月联考)二次函数f (x )的图象经过点⎝ ⎛⎭⎪⎫0,32,且f ′(x )=-x -1,则不等式f (10x)>0的解集为( )A .(-3,1)B .(-lg 3,0) C.⎝⎛⎭⎪⎫11 000,1 D .(-∞,0)【解析】 由题意设f (x )=ax 2+bx +32(a ≠0),则f ′(x )=2ax +b ,∵f ′(x )=-x -1,∴⎩⎪⎨⎪⎧2a =-1,b =-1,∴⎩⎪⎨⎪⎧a =-12,b =-1,∴f (x )=-12x 2-x +32,令f (x )>0,得-3<x <1,∵10x>0,∴不等式f (10x )>0可化为0<10x<1,∴x <0,故选D. 【答案】 D6.(2017·湖南师大附中等四校联考)若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________.【解析】 ∵f (x )=x 2+a |x -2|,∴f (x )=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2,x 2-ax +2a ,x <2.又∵f (x )在(0,+∞)上单调递增,∴⎩⎪⎨⎪⎧-a2≤2,a2≤0,解得-4≤a ≤0,即实数a 的取值范围是. 【答案】7.(2017·上海外国语大学附属中学模拟)若函数f (x )=ax 2+b |x |+c (a ≠0)在定义域R 上有四个单调区间,则实数a ,b ,c 应满足的条件为________.【解析】 ∵f (x )为偶函数,∴x ≥0时,f (x )=ax 2+bx +c 有两个单调区间, ∴对称轴x =-b 2a >0,∴ba <0,∴a ,b ,c 应满足的条件为a ,b 异号.【答案】 a ,b 异号8.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为,求g (x )的定义域和值域. 【解析】 (1)因为f (x )在(0,+∞)单调递增,由幂函数的性质得-2m 2+m +3>0,解得-1<m <32.因为m ∈Z ,所以m =0或m =1. 当m =0时,f (x )=x 3不是偶函数; 当m =1时,f (x )=x 2是偶函数, 所以m =1,f (x )=x 2.(2)由(1)知g (x )=log 2(-x 2-2x +3), 由-x 2-2x +3>0,得-3<x <1, 所以g (x )的定义域为(-3,1).设t =-x 2-2x +3,x ∈(-3,1),则t ∈(0,4], 此时g (x )的值域就是函数y =log 2t ,t ∈(0,4]的值域.又y =log 2t 在区间(0,4]上是增函数,所以y ∈(-∞,2],所以函数g (x )的值域为(-∞,2].10.(2015·浙江)已知函数f (x )=x 2+ax +b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间上的最大值.(1)证明:当|a |≥2时,M (a ,b )≥2;(2)当a ,b 满足M (a ,b )≤2时,求|a |+|b |的最大值.【解析】 (1)证明 由f (x )=⎝ ⎛⎭⎪⎫x +a 22+b -a 24,得其图象的对称轴为直线x =-a 2.由|a |≥2,得⎪⎪⎪⎪⎪⎪-a 2≥1,故f (x )在上单调,所以M (a ,b )=max{|f (1)|,|f (-1)|}.当a ≥2时,由f (1)-f (-1)=2a ≥4, 得max{f (1),-f (-1)}≥2, 即M (a ,b )≥2.当a ≤-2时,由f (-1)-f (1)=-2a ≥4, 得max{f (-1),-f (1)}≥2, 即M (a ,b )≥2.综上,当|a |≥2时,M (a ,b )≥2. (2)由M (a ,b )≤2得|1+a +b |=|f (1)|≤2,|1-a +b |=|f (-1)|≤2, 故|a +b |≤3,|a -b |≤3,由|a |+|b |=⎩⎪⎨⎪⎧|a +b |,ab ≥0,|a -b |,ab <0得|a |+|b |≤3.当a =2,b =-1时,|a |+|b |=3,且|x 2+2x -1|在上的最大值为2,即M (2,-1)=2.所以|a |+|b |的最大值为3.B 组 专项能力提升 (时间:20分钟)11.已知函数f (x )=ax 2+2ax +4(0<a <3),x 1<x 2,x 1+x 2=1-a ,则( ) A .f (x 1)=f (x 2) B .f (x 1)<f (x 2) C .f (x 1)>f (x 2)D .f (x 1)与f (x 2)的大小不能确定 【解析】 函数的对称轴为x =-1, 设x 0=x 1+x 22,由0<a <3得到-1<1-a 2<12. 又x 1<x 2,用单调性和离对称轴的远近作判断得f (x 1)<f (x 2). 【答案】 B12.(2017·江门、佛山模拟)已知幂函数f (x )=x α,当x >1时,恒有f (x )<x ,则α的取值范围是________.【解析】 当x >1时,恒有f (x )<x ,即当x >1时,函数f (x )=x α的图象在y =x 的图象的下方,作出幂函数f (x )=x α在第一象限的图象,由图象可知α<1时满足题意.【答案】 (-∞,1)13.(2017·江苏五校联考)已知函数f (x )=mx 2+(2-m )x +n (m >0),当-1≤x ≤1时,|f (x )|≤1恒成立,则f ⎝ ⎛⎭⎪⎫23=________.【解析】 由题意得:|f (0)|≤1⇒|n |≤1⇒-1≤n ≤1; |f (1)|≤1⇒|2+n |≤1⇒-3≤n ≤-1, 因此n =-1,∴f (0)=-1,f (1)=1.由f (x )的图象可知:要满足题意,则图象的对称轴为直线x =0,∴2-m =0,m =2, ∴f (x )=2x 2-1,∴f ⎝ ⎛⎭⎪⎫23=-19.【答案】 -1914.(2017·河北石家庄期中)设二次函数f (x )=ax 2-4x +c (x ∈R )的值域为上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.【解析】 (1)设f (x )=ax 2+bx +c ,由f (0)=1得c =1,故f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .即2ax +a +b =2x ,即有2a =2,a +b =0,解得a =1,b =-1,∴f (x )=x 2-x +1. (2)由题意得x 2-x +1>2x +m 在上恒成立,即x 2-3x +1-m >0在上恒成立. 设g (x )=x 2-3x +1-m ,其图象的对称轴为直线x =32.①当t >32时,g (x )在上单调递增,可得最小值为g (t )=t 2-3t +1-m >0,此时m <t2-3t +1.②当-12≤t ≤32时,g (x )最小值为g (1.5)=-m -54>0,此时m <-54.③当t <-12时,g (x )在上单调递减,可得最小值为g (t +2)=t 2+t -1-m >0,此时m<t 2+t -1.。
A 组 专项基础训练(时间:20分钟)1.下表是函数值y 随自变量x 变化的一组数据,它最可能的函数模型是( )A.C .指数函数模型 D .对数函数模型【解析】 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.【答案】 A2.(2017·四川德阳一诊)将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =a e nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10 【解析】 ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f (t )=a e nt满足f (5)=a e 5n=12a ,可得n =15ln 12,∴f (t )=a ·⎝ ⎛⎭⎪⎫12t5, 因此,当k min 后甲桶中的水只有a4 L 时,f (k )=a ·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k5=14,∴k =10,由题可知m =k -5=5,故选A. 【答案】 A3.(2017·合肥调研)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )【解析】 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图象符合要求,而后3年年产量保持不变,故选A.【答案】 A4.(2017·北京朝阳统一考试)设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流x (0<x <100,x ∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18【解析】 由题意,分流前每年创造的产值为100t (万元),分流x 人后,每年创造的产值为(100-x )(1+1.2x %)t ,则由⎩⎪⎨⎪⎧0<x <100,x ∈N *,(100-x )(1+1.2x %)t ≥100t ,解得0<x ≤503.因为x ∈N *,所以x 的最大值为16. 【答案】 B5.我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x %),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为( )A .2B .6C .8D .10【解析】 由分析可知,每年此项经营中所收取的附加税额为104·(100-10x )·70·x100,令104·(100-10x )·70·x100≥112×104,解得2≤x ≤8.故x 的最小值为2.【答案】 A6.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.【解析】 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400.【答案】 207.(2017·长春模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.【解析】 当t =0时,y =a ,当t =8时,y =a e -8b=12a , ∴e -8b=12,容器中的沙子只有开始时的八分之一时,即y =a e -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,所以再经过16 min.【答案】 168.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-⎝ ⎛⎭⎪⎫x 2+8x (x >0).则当年广告费投入________万元时,该公司的年利润最大.【解析】 由题意得L =512-⎝ ⎛⎭⎪⎫x 2+8x =432-12⎝ ⎛⎭⎪⎫x -4x 2(x >0).当x -4x =0,即x =4时,L 取得最大值21.5.故当年广告费投入4万元时,该公司的年利润最大. 【答案】 4B 组 专项能力提升 (时间:10分钟)9.有浓度为90%的溶液100 g ,从中倒出10 g 后再倒入10 g 水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为(参考数据:lg 2=0.301 0,lg 3=0.477 1)( )A .19B .20C .21D .22【解析】 操作次数为n 时的浓度为⎝ ⎛⎭⎪⎫910n +1,由⎝ ⎛⎭⎪⎫910n +1<10%,得n +1>-1lg 910=-12lg 3-1≈21.8,∴n ≥21.【答案】 C10.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( )A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14 【解析】 由三角形相似得24-y 24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15. 【答案】 A11.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt(其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.【解析】 当t =0.5时,y =2,∴2=e 12k ,∴k =2ln 2,∴y =e 2t ln 2,当t =5时,y =e10ln 2=210=1 024.【答案】 2ln 2 1 02412.一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?【解析】 (1)设每年砍伐面积的百分比为x (0<x <1). 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-⎝ ⎛⎭⎪⎫12110. 即每年砍伐面积的百分比为1-⎝ ⎛⎭⎪⎫12110.(2)设经过m 年剩余面积为原来的22,则a (1-x )m=22a , 即⎝ ⎛⎭⎪⎫12m 10=⎝ ⎛⎭⎪⎫1212,所以m 10=12,解得m =5.故到今年为止,已砍伐了5年. (3)设从今年开始,最多还能砍伐n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 所以⎝ ⎛⎭⎪⎫12n 10≥⎝ ⎛⎭⎪⎫1232, 即n 10≤32, 解得n ≤15.故今后最多还能砍伐15年.。
A 组 专项基础训练(时间:35分钟)1.(2017·安徽合肥一中期中)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R ,有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )-1为奇函数B .f (x )-1为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数【解析】 ∵对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,∴令x 1=x 2=0,得f (0)=-1.令x 1=x ,x 2=-x ,得f (0)=f (x )+f (-x )+1.∴f (x )+1=-f (-x )-1=-,∴f (x )+1为奇函数.故选C.【答案】 C2.(2016·湖南常德一中第五次月考)若f (x )=e x -a e -x 为奇函数,则f (x -1)<e -1e的解集为( )A .(-∞,2)B .(-∞,1)C .(2,+∞)D .(1,+∞)【解析】 因为f (x )=e x -a e -x 为奇函数,所以f (0)=1-a =0,即a =1,则f (x )=e x-e -x 在R 上单调递增,且f (1)=e -1e .则由f (x -1)<e -1e,得f (x -1)<f (1),即x -1<1,解得x <2,所以不等式f (x -1)<e -1e的解集为(-∞,2).故选A. 【答案】 A3.(2017·湖南岳阳平江一中期中)已知函数f (x )是定义在R 上的奇函数,其最小正周期为4,且x ∈⎝ ⎛⎭⎪⎫-32,0时,f (x )=log 2(-3x +1),则f (2 017)=( ) A .4 B .2C .-2D .log 27【解析】 ∵函数f (x )是定义在R 上的奇函数,其最小正周期为4,∴f (2 017)=f (4×504+1)=f (1)=-f (-1).∵-1∈⎝ ⎛⎭⎪⎫-32,0,且x ∈⎝ ⎛⎭⎪⎫-32,0时,f (x )=log 2(-3x +1),∴f (-1)=log 2=2, ∴f (2 017)=-f (-1)=-2.【答案】 C4.(2017·福建三明一中第一次月考)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x【解析】 x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x. ∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .故选C.【答案】 C5.(2016·四川)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________. 【解析】 ∵函数f (x )为奇函数,且周期为2,∴f (2)=f (0)=0,∴f (1)=-f (-1)=-f (-1+2)=-f (1),∴f (1)=0,∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2, ∴f ⎝ ⎛⎭⎪⎫-52+f (1)=-2. 【答案】 -26.(2017·山东东营广饶一中诊断)若f (x )=2x +2-x ·lg a 是奇函数,则实数a =________.【解析】 ∵函数f (x )=2x +2-x lg a 是奇函数,∴f (x )+f (-x )=0,∴2x +2-xlg a +2-x +2x lg a =0,即2x +2-x +lg a (2x +2-x )=0,∴lg a =-1,∴a =110. 【答案】 1107.(2017·长春质检)已知定义在R 上的偶函数f (x )在∪∪上单调递增,求实数a 的取值范围.【解析】 (1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ).于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1, 所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2 017).【解析】 (1)证明 ∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)∵x ∈,∴-x ∈,∴4-x ∈,∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8,又f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即f (x )=x 2-6x +8,x ∈.(3)∵f (0)=0,f (1)=1,f (2)=0,f (3)=-1.又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2 012)+f (2 013)+f (2 014)+f (2 015)=0.∴f (0)+f (1)+f (2)+…+f (2 017)=f (2 016)+f (2 017)=f (0)+f (1)=1.B 组 专项能力提升(时间:20分钟)11.(2016·山东)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( ) A .-2 B .-1C .0D .2【解析】 ∵当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,∴f (x )=f (x +1),∴当x >12时,函数f (x )以T =1为周期.故f (6)=f (1).∵当-1≤x ≤1时,f (-x )=-f (x ),∴f (1)=-f (-1).又当x <0时,f (x )=x 3-1,∴f (-1)=-2,∴f (1)=2.故选D.【答案】 D12.(2016·天津)已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 3恰有两个不相等的实数解,则a 的取值范围是________.【解析】 由题意得⎩⎪⎨⎪⎧0<a <11≤3a <2-4a -32≥0,解得13≤a <23. 【答案】 ⎣⎢⎡⎭⎪⎫13,23 13.(2017·郑州模拟)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间上与x 轴的交点个数为________.【解析】 因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,所以f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图象在区间上与x 轴的交点个数为7.【答案】 714.(2017·湛江月考)定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在上是增函数,给出下列关于f (x )的结论:①f (x )是周期函数;②f (x )的图象关于直线x =1对称;③f (x )在上是增函数;④f (x )在上是减函数;⑤f (2)=f (0).其中正确结论的序号是________.【解析】 对于①,f (x +2)=-f (x +1)=-=f (x ),故2是函数f (x )的一个周期,故①正确;对于②,由于函数f (x )是偶函数,且函数f (x )是以2为周期的函数,则f (2-x )=f (x -2)=f (x ),即f (2-x )=f (x ),故函数f (x )的图象关于直线x =1对称,故②正确;对于③,由于函数f (x )是偶函数且在上是增函数,根据偶函数图象的性质可知,函数f (x )在上是减函数,故③错误;对于④,由于函数f (x )是以2为周期的函数且在上为增函数,由周期函数的性质知,函数f (x )在上是增函数,故④错误;对于⑤,由于函数f (x )是以2为周期的函数,所以f (2)=f (0),故⑤正确.综上所述,正确结论的序号是①②⑤.【答案】 ①②⑤15.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2,且f (x )在(0,+∞)上是增函数,求x 的取值范围.【解析】 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2),∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.(2)f (x )为偶函数.证明 令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0. 令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2, 由(2)知,f (x )是偶函数,∴f (x -1)<2⇔f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数. ∴0<|x -1|<16,解之得-15<x <17且x ≠1.∴x 的取值范围是{x |-15<x <17且x ≠1}.。
A组专项基础训练(时间:35分钟)1.(2017·山东实验中学第一次诊断性考试)“m=1”是“函数f(x)=x2-6mx+6在区间(-∞,3]上为减函数”的( )A.必要不充分条件B.充分不必要条件C.充要条件 D.既不充分也不必要条件函数f(x)=x2-6mx+6在区间(-∞,3]上为减函数的充要条件是3m≥3,即m∈上为减函数”的充分不必要条件.故选B.【答案】 B2.(2017·四川资阳模拟)已知函数f(x)=x2-2x+4在区间(m>0)上的最大值为4,最小值为3,则实数m的取值范围是( )A. B.(0,1]C.(0,2] D.(m>0)上的最大值为4,最小值为3.故选A.【答案】 A3.(2017·内蒙古呼伦贝尔二模)已知函数f(x)=x2+bx+c(b,c∈R),集合A={x|f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0∉A,则实数b的取值范围是( ) A.0≤b≤4 B.b≤0或b≥4C.0≤b<4 D.b<0或b≥4由题意可得,A是函数f(x)的零点构成的集合.由f(f(x))=0可得(x2+bx+c)2+b(x2+bx+c)+c=0,把x2+bx+c=0代入,解得c=0,∴f(x)=x2+bx.存在x0∈B,x0∉A,∴f(f(x0))=0.而f(x0)≠0,∴x0≠0,说明f(x)=0有非零实根.∴解f(x)=0,得x=0或x =-b,b≠0,∴A={0,-b}.f(f(x))=(x2+bx)2+b(x2+bx)=x(x+b)(x2+bx+b).∵存在x0∈B,x0∉A,∴方程x2+bx+b=0有解,∴Δ=b2-4b≥0.又b≠0,可解得b<0或b≥4,∴实数b的取值范围为{b|b<0或b≥4}.故选D.【答案】 D4.(2017·山东实验中学二诊)已知y =f (x )是奇函数,且满足f (x +2)+3f (-x )=0,当x ∈时,f (x )=x 2-2x ,则当x ∈时,f (x )的最小值为( )A .-1B .-13C .-19 D.19设x ∈,则x +4∈.∵y =f (x )是奇函数,∴由f (x +2)+3f (-x )=0,可得f (x +2)=-3f (-x )=3f (x ),∴f (x +4)=3f (x +2),故有f (x )=13f (x +2)=f (x +4)9.故f (x )=19f (x +4)=19=19=(x +3)2-19.∴当x =-3时,函数f (x )取得最小值为-19.故选C. 【答案】 C5.(2017·安徽江淮十校高三4月联考)二次函数f (x )的图象经过点⎝ ⎛⎭⎪⎫0,32,且f ′(x )=-x -1,则不等式f (10x)>0的解集为( )A .(-3,1)B .(-lg 3,0) C.⎝⎛⎭⎪⎫11 000,1 D .(-∞,0)由题意设f (x )=ax 2+bx +32(a ≠0),则f ′(x )=2ax +b ,∵f ′(x )=-x -1,∴⎩⎪⎨⎪⎧2a =-1,b =-1,∴⎩⎪⎨⎪⎧a =-12,b =-1,∴f (x )=-12x 2-x +32,令f (x )>0,得-3<x <1,∵10x>0,∴不等式f (10x )>0可化为0<10x<1,∴x <0,故选D. 【答案】 D6.(2017·湖南师大附中等四校联考)若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________.∵f (x )=x 2+a |x -2|,∴f (x )=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2,x 2-ax +2a ,x <2.又∵f (x )在(0,+∞)上单调递增,∴⎩⎪⎨⎪⎧-a2≤2,a2≤0,解得-4≤a ≤0,即实数a 的取值范围是. 【答案】7.(2017·上海外国语大学附属中学模拟)若函数f (x )=ax 2+b |x |+c (a ≠0)在定义域R 上有四个单调区间,则实数a ,b ,c 应满足的条件为________.∵f (x )为偶函数,∴x ≥0时,f (x )=ax 2+bx +c 有两个单调区间, ∴对称轴x =-b 2a >0,∴ba <0,∴a ,b ,c 应满足的条件为a ,b 异号.【答案】 a ,b 异号8.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为,求g (x )的定义域和值域. (1)因为f (x )在(0,+∞)单调递增,由幂函数的性质得-2m 2+m +3>0,解得-1<m <32. 因为m ∈Z ,所以m =0或m =1. 当m =0时,f (x )=x 3不是偶函数; 当m =1时,f (x )=x 2是偶函数, 所以m =1,f (x )=x 2.(2)由(1)知g (x )=log 2(-x 2-2x +3), 由-x 2-2x +3>0,得-3<x <1, 所以g (x )的定义域为(-3,1).设t =-x 2-2x +3,x ∈(-3,1),则t ∈(0,4], 此时g (x )的值域就是函数y =log 2t ,t ∈(0,4]的值域.又y =log 2t 在区间(0,4]上是增函数,所以y ∈(-∞,2],所以函数g (x )的值域为(-∞,2].10.(2015·浙江)已知函数f (x )=x 2+ax +b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间上的最大值.(1)证明:当|a |≥2时,M (a ,b )≥2;(2)当a ,b 满足M (a ,b )≤2时,求|a |+|b |的最大值.(1)证明 由f (x )=⎝ ⎛⎭⎪⎫x +a 22+b -a 24,得其图象的对称轴为直线x =-a 2.由|a |≥2,得⎪⎪⎪⎪⎪⎪-a 2≥1,故f (x )在上单调,所以M (a ,b )=max{|f (1)|,|f (-1)|}.当a ≥2时,由f (1)-f (-1)=2a ≥4, 得max{f (1),-f (-1)}≥2, 即M (a ,b )≥2.当a ≤-2时,由f (-1)-f (1)=-2a ≥4, 得max{f (-1),-f (1)}≥2, 即M (a ,b )≥2.综上,当|a |≥2时,M (a ,b )≥2. (2)由M (a ,b )≤2得|1+a +b |=|f (1)|≤2,|1-a +b |=|f (-1)|≤2, 故|a +b |≤3,|a -b |≤3,由|a |+|b |=⎩⎪⎨⎪⎧|a +b |,ab ≥0,|a -b |,ab <0得|a |+|b |≤3.当a =2,b =-1时,|a |+|b |=3,且|x 2+2x -1|在上的最大值为2,即M (2,-1)=2.所以|a |+|b |的最大值为3.B 组 专项能力提升 (时间:20分钟)11.已知函数f (x )=ax 2+2ax +4(0<a <3),x 1<x 2,x 1+x 2=1-a ,则( ) A .f (x 1)=f (x 2) B .f (x 1)<f (x 2) C .f (x 1)>f (x 2)D .f (x 1)与f (x 2)的大小不能确定 函数的对称轴为x =-1, 设x 0=x 1+x 22,由0<a <3得到-1<1-a 2<12. 又x 1<x 2,用单调性和离对称轴的远近作判断得f (x 1)<f (x 2). 【答案】 B12.(2017·江门、佛山模拟)已知幂函数f (x )=x α,当x >1时,恒有f (x )<x ,则α的取值范围是________.当x >1时,恒有f (x )<x ,即当x >1时,函数f (x )=x α的图象在y =x 的图象的下方,作出幂函数f (x )=x α在第一象限的图象,由图象可知α<1时满足题意.【答案】 (-∞,1)13.(2017·江苏五校联考)已知函数f (x )=mx 2+(2-m )x +n (m >0),当-1≤x ≤1时,|f (x )|≤1恒成立,则f ⎝ ⎛⎭⎪⎫23=________.由题意得:|f (0)|≤1⇒|n |≤1⇒-1≤n ≤1; |f (1)|≤1⇒|2+n |≤1⇒-3≤n ≤-1, 因此n =-1,∴f (0)=-1,f (1)=1.由f (x )的图象可知:要满足题意,则图象的对称轴为直线x =0,∴2-m =0,m =2, ∴f (x )=2x 2-1,∴f ⎝ ⎛⎭⎪⎫23=-19.【答案】 -1914.(2017·河北石家庄期中)设二次函数f (x )=ax 2-4x +c (x ∈R )的值域为上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.(1)设f (x )=ax 2+bx +c ,由f (0)=1得c =1,故f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x ,∴a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .即2ax +a +b =2x ,即有2a =2,a +b =0,解得a =1,b =-1,∴f (x )=x 2-x +1. (2)由题意得x 2-x +1>2x +m 在上恒成立,即x 2-3x +1-m >0在上恒成立. 设g (x )=x 2-3x +1-m ,其图象的对称轴为直线x =32.①当t >32时,g (x )在上单调递增,可得最小值为g (t )=t 2-3t +1-m >0,此时m <t2-3t +1.②当-12≤t ≤32时,g (x )最小值为g (1.5)=-m -54>0,此时m <-54.③当t <-12时,g (x )在上单调递减,可得最小值为g (t +2)=t 2+t -1-m >0,此时m<t 2+t -1.。