信息论-第1章单符号离散信源
- 格式:ppt
- 大小:665.00 KB
- 文档页数:68
《信息论与编码技术》复习提纲复习题纲第0章绪论题纲:I.什么是信息?II.什么是信息论?III.什么是信息的通信模型?IV.什么是信息的测度?V.自信息量的定义、含义、性质需掌握的问题:1.信息的定义是什么?(广义信息、狭义信息——Shannon信息、概率信息)2.Shannon信息论中信息的三要素是什么?3.通信系统模型图是什么?每一部分的作用的是什么?4.什么是信息测度?5.什么是样本空间、概率空间、先验概率、自信息、后验概率、互信息?6.自信息的大小如何计算?单位是什么?含义是什么(是对什么量的度量)?第1章信息论基础㈠《离散信源》题纲:I.信源的定义、分类II.离散信源的数学模型III.熵的定义、含义、性质,联合熵、条件熵IV.离散无记忆信源的特性、熵V.离散有记忆信源的熵、平均符号熵、极限熵VI.马尔科夫信源的定义、状态转移图VII.信源的相对信息率和冗余度需掌握的问题:1.信源的定义、分类是什么?2.离散信源的数学模型是什么?3.信息熵的表达式是什么?信息熵的单位是什么?信息熵的含义是什么?信息熵的性质是什么?4.单符号离散信源最大熵是多少?信源概率如何分布时能达到?5.信源的码率和信息率是什么,如何计算?6.什么是离散无记忆信源?什么是离散有记忆信源?7.离散无记忆信源的数学模型如何描述?信息熵、平均符号熵如何计算?8.离散有记忆多符号离散平稳信源的平均符号熵、极限熵、条件熵(N阶熵)的计算、关系和性质是什么?9.什么是马尔科夫信源?马尔科夫信源的数学模型是什么?马尔科夫信源满足的2个条件是什么?10.马尔科夫信源的状态、状态转移是什么?如何绘制马尔科夫信源状态转移图?11.马尔科夫信源的稳态概率、稳态符号概率、稳态信息熵如何计算?12.信源的相对信息率和冗余度是什么?如何计算?㈡《离散信道》题纲:I.信道的数学模型及分类II.典型离散信道的数学模型III.先验熵和后验熵IV.互信息的定义、性质V.平均互信息的定义、含义、性质、维拉图VI.信道容量的定义VII.特殊离散信道的信道容量需掌握的问题:1.信道的定义是什么?信道如何分类?信道的数学模型是什么?2.二元对称信道和二元删除信道的信道传输概率矩阵是什么?3.对称信道的信道传输概率矩阵有什么特点?4.根据信道的转移特性图,写出信道传输概率矩阵。
信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bitP a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(3666样本空间:2221111616==-=∴====-=∴===⨯==(3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴ (4)信源空间: bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率 bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知 bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论第一章概论1.信息、消息、信号的定义及关系。
定义信息:事物运动状态或存在方式的不确定性的描述。
消息:指包含有信息的语言、文字和图像等。
信号:表示消息的物理量,一般指随时间而变化的电压或电流称为电信号。
关系信息和消息信息不等于消息。
消息中包含信息,是信息的载体。
同一信息可以用不同形式的消息来载荷。
同一个消息可以含有不同的信息量。
信息和信号信号是消息的载体,消息则是信号的具体内容。
信号携带信息,但不是信息本身。
同一信息可用不同的信号来表示,同一信号也可表示不同的信息。
2. 通信系统模型,箭头上是什么?通信的目的及方法。
通信的目的:是为了提高通信的可靠性和有效性。
信源编码:提高信息传输的有效性。
(减小冗余度)信道编码:提高信息传输的可靠性。
(增大冗余度)第二章 信源及其信息量★信源发出的是消息。
信源分类1、信源按照发出的消息在时间上和幅度上的分布情况可将信源分成离散信源和连续信源。
2、根据各维随机变量的概率分布是否随时间的推移而变化将信源分为平稳信源和非平稳信源。
单符号离散信源离散无记忆信源 无记忆扩展信源 离散平稳信源离散有记忆信源 记忆长度无限记忆长度有限(马尔可夫信源)一、单符号离散信源单符号离散信源的数学模型为定义:一个随机事件发生某一结果后所带来的信息量为自信息量。
定义为其发生概率对数的负值。
以 奇才 单位:•对数以2为底,单位为比特 (bit ) (binary unit ) •对数以e 为底,单位为奈特 (nat ) (nature unit)•对数以10为底,单位为笛特(det) (decimal unit) 或哈特 (hart) 物理含义:在事件xi 发生以前,等于事件xi 发生的不确定性的大小;在事件xi 发生以后,表示事件xi 所含有或所能提供的信息量。
性质:①I(x i )是非负值.②当p(x i )=1时,I(x i )=0. ③当p(x i )=0时,I(x i )=∞.④I(x i ) 是p(x i )的单调递减函数.联合自信息量条件自信息量自信息量、条件自信息量和联合自信息量之间有如下关系式:I(x i y j )= I(x i )+ I(y j / x i ) = I(y j )+ I(x i / y j )⎭⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡)(,),(,),(),( ,, ,, , )( 2121n i n i x p x p x p x p x x x x X P X )(log )( i i x p x I -=)(log )( j i j i y x p y x I -=1)(,1)(01=≤≤∑=ni i i x p x p定义:各离散消息自信息量的数学期望,即信源的平均信息量.单位:比特/符号 物理含义: ① 信源熵H(X)表示信源输出后,离散消息所提供的平均信息量. ② 信源熵H(X)表示信源输出前,信源的平均不确定度. ③ 信源熵H(X)反映了变量X 的随机性.信源符号的概率分布越均匀,则平均信息量越大; 确定事件,不含有信息量。
信息论习题集第一章、判断题1、信息论主要研究目的是找到信息传输过程的共同规律,提高信息传输的可靠性、有效性、保密性和认证性,以达到信息传输系统的最优化。
(√)2、同一信息,可以采用不同的信号形式来载荷;同一信号形式可以表达不同形式的信息。
(√)3、通信中的可靠性是指使信源发出的消息准确不失真地在信道中传输;(√)4、有效性是指用尽量短的时间和尽量少的设备来传送一定量的信息。
(√)5、保密性是指隐蔽和保护通信系统中传送的消息,使它只能被授权接收者获取,而不能被未授权者接收和理解。
(√)6、认证性是指接收者能正确判断所接收的消息的正确性,验证消息的完整性,而不是伪造的和被窜改的。
(√)7、在香农信息的定义中,信息的大小与事件发生的概率成正比,概率越大事件所包含的信息量越大。
(×)第二章一、判断题1、通信中获得的信息量等于通信过程中不确定性的消除或者减少量。
(√)2、离散信道的信道容量与信源的概率分布有关,与信道的统计特性也有关。
(×)3、连续信道的信道容量与信道带宽成正比,带宽越宽,信道容量越大。
(×)4、信源熵是信号符号集合中,所有符号的自信息的算术平均值。
(×)5、信源熵具有极值性,是信源概率分布P 的下凸函数,当信源概率分布为等概率分布时取得最大值。
(×)6、离散无记忆信源的N 次扩展信源,其熵值为扩展前信源熵值的N 倍。
(√)7、互信息的统计平均为平均互信息量,都具有非负性。
(×)8、信源剩余度越大,通信效率越高,抗干扰能力越强。
(×)9、信道剩余度越大,信道利用率越低,信道的信息传输速率越低。
(×)10、信道输入与输出之间的平均互信息是输入概率分布的下凸函数。
(×)11、在信息处理过程中,熵是不会增加的。
(√)12、熵函数是严格上凸的。
(√)13、信道疑义度永远是非负的。
(√)14、对于离散平稳信源,其极限熵等于最小平均符号熵。