光伏发电原理
- 格式:doc
- 大小:43.50 KB
- 文档页数:5
光伏电站是怎样发电的原理
光伏电站是利用太阳能将光能转化为电能的一种发电方式。
其原理分为以下几个步骤:
1. 光子吸收:光伏电站中的光伏电池板由许多薄片组成,这些薄片是由半导体材料制成。
当太阳光照射到薄片表面时,光子被吸收,激发了薄片中的电子。
2. 光生电子:激发后的电子会跃迁到半导体材料的导带中,形成自由电子。
这些自由电子的移动构成了电流。
3. 电子流动:自由电子沿着电池板内的金属电极流动,形成一个电流回路。
金属电极连接到电池板的正负极,正负极之间形成了一个电势差。
4. 直流电的转换:光伏电站中的逆变器将直流电转换为交流电,以便供应到电网中。
逆变器调整电流的频率和电压,使其与电网的频率和电压相匹配。
5. 连接到电网:逆变器将转换后的电能传输到电网中,供电给用户使用。
总体上,光伏电站利用太阳能的光能,通过光伏电池板将其转化为直流电,再通过逆变器将直流电转化为交流电,并连接到电网中,以供给电网和用户使用。
光伏的工作原理
光伏发电技术是一种可再生的清洁能源,它的工作原理是利用半导体材料吸收太阳光能,将其转化为电能。
下面我们来详细介绍光伏的工作原理。
1. 光伏材料
光伏材料是指具有半导体特性的材料,它们可以吸收太阳光并将其转化为电能。
常见的光伏材料有硅、镓、铜铟镓硫等。
2. 光伏效应
当光线照射到半导体上时,会使得半导体中的电子受到激发,从而跃迁到导带中。
这个过程被称为“内部光电效应”,也就是“外部光子激发内部电子”。
如果在半导体两侧加上外界电场,则会使得跃迁到导带中的电子向另一侧移动,并形成一个电流。
这个过程被称为“外部光电效应”,也就是“内部激发产生外部电流”。
3. 光伏组件
为了将太阳能转化为实用的电能,需要将多个单元组合在一起形成一
个完整的太阳能板。
这个板被称为“光伏组件”,也就是我们常说的“太阳能板”。
4. 光伏系统
光伏系统是指将光伏组件、电池、逆变器等设备组合在一起形成的一个完整的发电系统。
它可以将太阳能转化为交流电,供给家庭和企业使用。
总之,光伏发电技术是一种非常有前途的清洁能源,它不仅可以降低环境污染,还可以为社会带来经济效益。
随着科技的不断进步,相信光伏发电技术会越来越成熟,并被广泛应用于各个领域。
光伏发电重要知识点总结一、光伏发电原理光伏发电主要依靠光电效应来实现太阳能转换为电能。
光电效应是指在半导体材料中,当光线照射到材料表面时,光子与材料中的电子发生作用,使得电子从价带跃迁到导带,产生电荷载流,最终形成电流。
光伏电池是将光能直接转换为电能的装置,其工作原理主要有两种:一种是晶体管效应,一种是PN结效应。
1. 晶体管效应晶体管效应是指利用多晶硅、单晶硅等半导体材料制成太阳能电池,当太阳光照射到光伏电池表面时,光子与电池中的原子发生作用,使得电子跃迁到导带,形成电子空穴对(正电荷和负电荷)。
在电场的作用下,电子和空穴被分离,形成电压差,最终产生电流。
2. PN结效应PN结效应是指利用硅、镓、砷化镓等半导体材料制成太阳能电池,其结构类似于二极管。
当阳光照射到PN结表面时,光子与材料中的原子发生作用,使得电子从价带跃迁到导带,形成电子空穴对。
在PN结处存在电场,电子和空穴被分离,形成电压差,最终产生电流。
二、光伏组件种类光伏组件是光伏发电系统的核心部件,其主要包括多晶硅电池、单晶硅电池、非晶硅电池和薄膜太阳能电池等类型。
1. 多晶硅电池多晶硅电池是目前应用最广泛的一种光伏电池,其制备成本相对较低,效率较高。
多晶硅电池的外观呈蓝色,表面呈现出晶粒的纹理。
多晶硅电池的光电转换效率通常在15%~20%之间。
2. 单晶硅电池单晶硅电池是采用单晶硅片制成的光伏电池,其外观呈黑色,表面光滑均匀。
单晶硅电池的光电转换效率较高,通常在20%~25%之间。
由于制备工艺复杂,成本相对较高。
3. 非晶硅电池非晶硅电池是采用非晶硅材料制成的光伏电池,其外观呈黑色,表面光滑均匀。
非晶硅电池的制备工艺简单,成本较低,但光电转换效率相对较低,通常在10%~15%之间。
4. 薄膜太阳能电池薄膜太阳能电池是利用非晶硅、铜铟镓硒、氧化铟锡等薄膜材料制成的光伏电池,其外观呈灰色或棕色。
薄膜太阳能电池的制备工艺极其简单,成本较低,但光电转换效率较低,通常在5%~10%之间。
光伏发电系统工作原理
光伏发电系统是通过光伏效应将太阳光转化为电能的一种技术。
其工作原理如下:
1. 光伏电池:光伏发电系统的核心部件为光伏电池,也称为太阳能电池。
光伏电池由多个半导体材料层叠组成,常见的材料有硅、镓等。
当光线照射到光伏电池上时,会产生光伏效应,即光子撞击电子,使电子跃迁到导带或价带,从而形成电流。
2. 光电转换:当光线照射到光伏电池上时,光线中的光子会被电池吸收,光的能量被转化为电能。
在半导体材料中,电子会受光的激发而跃迁,从价带跃迁到导带,形成电流。
这个过程中,光子的能量必须大于材料的带隙能量才能产生可观的电流。
3. 直流发电:光伏电池产生的电流是直流电(DC)。
这是因
为光伏电池的工作原理是光子撞击并推动电子流动,而不是通过交变电场推动电子流动。
所以光伏发电系统输出的电流是直流电。
4. 电能存储与供应:光伏发电系统的直流电需要经过逆变器转换为交流电(AC),以方便在家庭或工业用电中使用。
逆变
器能将直流电转换成适合传输和使用的交流电,并将剩余的电能供应到电网中。
若发电量超出用电量,则多余的电能可以存储在电池中,以备不时之需。
5. 智能控制系统:光伏发电系统通常还配备了智能控制系统。
该系统能够实时监测光伏电池的发电效率、运行状态和输出功
率等参数,并进行自动调整和优化,以提高发电效率和系统的稳定性。
总之,光伏发电系统的工作原理是将太阳能转化为直流电,并经逆变器将直流电转换为交流电,并通过智能控制系统监测和调节系统运行,实现电能的存储、供应和应用。
光伏发电的原理是光生伏特效应,简称光伏效应。
光伏效应是指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。
具体来说,光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。
硅原子有4个外层电子,如果在纯硅中掺入有5个外层电子的原子如磷原子,就成为n型半导体;若在纯硅中掺入有3个外层电子的原子如硼原子,形成p型半导体。
当p型和n型结合在一起时,接触面就会形成电势差,成为太阳能电池。
当太阳光照射到p-n结后,电流便从p型一边流向n型一边,形成电流。
光伏发电是一种利用光能直接转换为电能的技术,其原理基于光电效应。
光电效应是指当光照射到某些材料表面时,会激发材料中的自由电子并引起电流流动的现象。
光伏发电的主要原理如下:
1.光照射:当太阳光照射到安装有光伏组件(太阳能电池板)的表面时,光束中的光子与
光伏组件中的半导体材料相互作用。
2.光吸收:光子被光伏组件中的半导体材料(通常为硅)吸收,传递给半导体材料的原子
或分子。
3.电子激发:光能使得半导体材料中的价带内的电子被激发,跃迁到导带中形成自由电子。
4.电荷分离:自由电子在半导体结构中移动,同时产生正电荷空穴。
5.电流流动:自由电子和正电荷空穴的分离导致在半导体中形成电势差,从而产生电流。
6.发电输出:通过连接电路,将产生的直流电转换为交流电,用于供应家庭、工业或商业
电力需求。
值得注意的是,光伏发电效率取决于光子与半导体材料的相互作用效果以及光伏组件的设计和制造质量。
随着技术的进步,光伏发电已成为一种可持续、环保且日益普及的清洁能源解决方案。
光伏发电的基本原理
光伏发电是一种利用太阳光能转换成可以直接放电的电流的可
再生能源。
它的基本原理十分简单:太阳光会在电池板上照亮一片半导体(通常是硅),从而产生一种称为光伏效应的电子现象,这一电
子现象就会产生一种叫做光伏电流的电流,太阳能就以此形式转换成可以使用的能源。
发电半导体的运作原理就是太阳光中存在的费米子粒子,当它们照射在半导体表面,会产生一些电子流动,而半导体中的封装双极子也能使电流流动,形成了一个电路,这样就可以从半导体中获取到电流,而这种电流可以通过电池给外界的终端设备提供动力。
此外,光伏发电还可以通过一个叫做太阳能电池片的器件进行发电,这种电池由多种半导体材料和其他电子元件组成,它们能够利用太阳能转化为电能,而当太阳光照射在这些半导体上,它们会将太阳能转化成电能,再由电池板输出到终端设备。
光伏发电有众多优点,比如无污染、可再生可再利用,它可以改变我们对能源的认知,它可以帮助我们减少燃烧石油、煤炭等化石能源的污染,而且它的维护成本也低,而且可以被社会用作风电、水电以及其他更加环保可再生的能源。
总而言之,光伏发电的基本原理就是利用太阳能将光转换成电能,由半导体产生的电子现象产生了一种叫做光伏电流的电流,这种电流可以通过电池板输出到终端设备,而太阳能电池片和其他光伏设备则可以帮助我们实现光伏发电,比如可以为家庭、建筑等提供可持续的
能源。
光伏发电流程原理
光伏发电是一种利用太阳能转化为电能的技术,它是一种清洁、可再生的能源。
光伏发电的工作原理是利用半导体材料吸收太阳辐射的能量,将其转换成电能,再通过电路输出到电网或储存设备中。
下面我们来详细了解一下光伏发电的流程原理。
1. 光伏组件吸收太阳能
光伏组件是光伏发电的核心部件,通常由多个太阳能电池片组成。
光线照射在太阳能电池片上,电池片吸收光子能量,释放出电子和空穴,形成电荷载流子。
这个过程称为“光电效应”,是光伏发电的基础。
2. 直流电转换为交流电
光伏组件输出的是直流电,而市电系统中使用的是交流电,因此需要将直流电转换为交流电。
这个过程通过逆变器实现,逆变器将直流电转换为适合市电系统使用的交流电。
3. 电能输出到电网或储存设备中
经过逆变器转换后的交流电可输出到电网中,供家庭和企业使用。
如果需要储存电能,还需要将电能储存到电池中,以备后续使用。
4. 控制和监测光伏发电系统
光伏发电系统需要进行控制和监测,以确保系统正常运行。
控制系统通过调节逆变器的输出电压和频率,保证光伏发电系统与市电系统的同步。
监测系统则可以实时监测光伏组件的工作状态和发电量,及时发现故障和问题。
总结
光伏发电的流程原理可以简单概括为太阳能电池片吸收太阳能,将其转换成直流电,再通过逆变器转换为交流电,输出到电网或储存设备中。
整个系统需要进行控制和监测,确保系统正常运行。
光伏发电是一种清洁、可再生的能源,具有广阔的应用前景。
怎样讲解光伏发电的原理
光伏发电的原理是利用光电效应将太阳光的能量直接转化为电能的过程。
以下是关于光伏发电原理的简单讲解:
1. 光电效应:光电效应是指当太阳光照射到光伏电池表面时,光子与光伏电池材料中的电子相互作用,使得电子获得足够的能量从而跃迁到导电带中,从而产生电流。
2. 光伏电池的结构:光伏电池通常由两层不同类型的半导体材料构成,即P型半导体和N型半导体。
这两种半导体的结合形成PN结,其中P型半导体中的杂质含有多余的正离子,而N型半导体中的杂质含有多余的负离子。
3. 光伏电池的工作原理:当太阳光照射到光伏电池上时,光子会激发光伏电池中的电子跃迁到导电带中,同时会留下一个空穴。
由于PN结的特殊性质,电子和空穴会被分离,电子在电场的作用下向N型半导体移动,而空穴则向P型半导体移动。
这样就在PN结上产生了电势差。
4. 电流的产生:由于PN结上的电势差,电子和空穴会沿着电路的方向流动,形成电流。
这是因为电子的流动方向是从负电极到正电极,而空穴的流动方向则相反。
这样,光伏电池就能够将光能转化为电能。
总结起来,光伏发电的原理可以简化为光子的能量转换为电子的能量,使得电流
在光伏电池中形成,从而实现光能到电能的转换。
这种方式具有可再生、环保、无噪音等特点,因此被广泛应用于太阳能发电领域。
光伏发电的原理是什么
光伏发电的原理是利用太阳辐射能将光能转化为电能的过程。
太阳是一个恒星,通过核聚变反应不断释放巨大的能量,其中一部分以太阳光的形式辐射到地球上。
光伏发电利用的是太阳光中的光子能量。
当光子射到光伏电池表面时,会与其内部的半导体材料相互作用。
电池中常用的半导体材料多为硅或砷化镓等。
这些材料的特点是,它们的原子结构可以形成带有能量电子移动的电场。
当光子射到半导体材料上时,会激发半导体内部的电子,使其跃迁到更高能级的位置,形成自由电子和空穴。
这个过程称为光电效应。
自由电子和空穴的出现导致半导体材料内部产生电势差,即产生电场。
通过在半导体材料内部布置一个PN结,可以更好地利用光电效应。
PN结是由掺杂了电子和空穴的P型和N型半导体组成的结构。
在PN结中,自由电子会从N区向P区流动,而空穴则从P区向N区流动,这就形成了电流。
光伏电池的关键是将光能转化为电能。
当光照射到光伏电池上时,光子的能量被吸收并激发了半导体材料中的电子,产生电场并导致电子流动。
这个电流可以通过连接到电路中的导线进行传输和利用。
需要注意的是,光伏发电的效率受到多种因素的影响,包括光的频率和强度、半导体材料的种类和质量、温度等。
科学家们
正在不断研究和改进光伏技术,以提高光伏发电的效率和可持续性。
光伏发电因其清洁、可再生的特点,在未来能源领域有着巨大的应用潜力。
光伏发电原理光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。
这种技术的关键元件是太阳能电池。
太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。
[1]光生伏特效应如果光线照射在太阳能电池上并且光在界面层被吸收,具有足够能量的光子能够在P 型硅和N型硅中将电子从共价键中激发,以致产生电子-空穴对。
界面层附近的电子和空穴在复合之前,将通过空间电荷的电场作用被相互分离。
电子向带正电的N区和空穴向带负电的P区运动。
通过界面层的电荷分离,将在P区和N区之间产生一个向外的可测试的电压。
此时可在硅片的两边加上电极并接入电压表。
对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。
通过光照在界面层产生的电子-空穴对越多,电流越大。
界面层吸收的光能越多,界面层即电池面积越大,在太阳能电池中形成的电流也越大。
[2]编辑本段原理太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。
这就是光电效应太阳能电池的工作原理。
一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。
(1)光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。
前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。
(2)光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。
太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。
当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。
太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。
[3]光伏发电优缺点与常用的发电系统相比,太阳能光伏发电的优点主要体现在:太阳能发电被称为最理想的新能源。
①无枯竭危险;②安全可靠,无噪声,无污染排放外,绝对干净(无公害);③不受资源分布地域的限制,可利用建筑屋面的优势;④无需消耗燃料和架设输电线路即可就地发电供电;⑤能源质量高;⑥使用者从感情上容易接受;⑦建设周期短,获取能源花费的时间短。
缺点:①照射的能量分布密度小,即要占用巨大面积;②获得的能源同四季、昼夜及阴晴等气象条件有关。
以目前的科学技术来讲,利用太阳能来发电,设备成本高,却太阳能利用率较低,不能广泛应用,目前主要用在一些特殊环境下,如卫星等。
[3]一、光伏逆变器简介逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。
根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正弦波逆变器和组合式三相逆变器。
对于用于并网系统的逆变器,根据有无变压器又可分为变压器型逆变器和无变压器型逆变器。
(1)并网光伏发电系统并网式光伏发电系统由光伏组件、并网逆变器、计量装置及配电系统组成。
光伏组件将太阳光能转换为直流电能,再由逆变器将直流电能转换为高品质的正弦波电流,直接馈入电网或者做为本地用电设备的电力来源。
(2)离网光伏发电系统离网式光伏发电系统由光伏组件、控制器、蓄电池、离网逆变器及配电系统组成,与并网式光伏发电系统的工作原理十分相似,唯一不同的是离网系统输出的电力被直接消耗使用而不输送到电网中。
离网式系统中配备有蓄电池,用于储存电能,可以满足阳光不足状态下的发电需求。
通过控制器可以实现对蓄电池的控制。
对于无法接入公共电网的偏远地区,离网式光伏发电系统是解决用电需求最完。
四、产品结构及工作原理逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。
一般由升压回路和逆变桥式回路构成。
升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。
逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。
当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。
一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。
然后让脉冲波通过简单的滤波器形成正弦波。
SVG无功补偿装置讲解说明一、SVG无功补偿装置的应用场合凡是安装有低压变压器地方及大型用电设备旁边都应该配备无功补偿装置(这是国家电力部门的规定),特别是那些功率因数较低的工矿、企业、居民区必须安装。
大型异步电机、变压器、电焊机、冲床、车床群、空压机、压力机、吊车、冶炼、轧钢、轧铝、大型交换机、电灌设备、电气机车等尤其需要。
居民区除白炽灯照明外,空调、冷冻机等也都是无功功率不可忽视的耗用对象。
农村用电状况比较恶劣,多数地区供电不足,电压波动很大,功率因数尤其低,加装补偿设备是改善供电状况、提高电能利用率的有效措施。
二、SVG无功补偿装置与目前国内其他产品相比的优势1、补偿方式:国内的无功补偿装置基本上是采用电容器进行无功补偿,补偿后的功率因素一般在0.8-0.9左右。
SVG采用的是电源模块进行无功补偿,补偿后的功率因素一般在0.98以上,这是目前国际上最先进的电力技术,国内掌握这项技术的目前就我们一家;2、补偿时间:国内的无功补偿装置完成一次补偿最快也要200毫秒的时间,SVG在5-20毫秒的时间就可以完成一次补偿。
无功补偿需要在瞬时完成,如果补偿的时间过长会造成该要无功的时候没有,不该要无功的时候反而来了的不良状况;3、有级无极:国内的无功补偿装置基本上采用的是3—10级的有级补偿,每增减一级就是几十千法,不能实现精确的补偿。
SVG可以从0.1千法开始进行无极补偿,完全实现了精确补偿;4、谐波滤除:国内的无功补偿装置因为采用的是电容式,电容本身会放大谐波,所以根本不能滤除谐波,SVG不产生谐波更不会放大谐波,并且可以滤除50%以上的谐波;5、使用寿命:国内的无功补偿装置一般采用接触器或可控硅控制,造成使用寿命较短,一般在三年左右,自身损耗大而且要经常进行维护。
SVG使用寿命在十年以上,自身损耗极小且基本上不要维护。
三、为什么要使用无功补偿装置无功补偿技术是一种很传统的电力技术,它代表了一个国家电力水平的高低,无功补偿通俗的讲就是将低压变压器传输过来的无用功转变为有用功。
这样:(1)减少线路损耗50%以上。
就全国讲,线路损耗约占据12%,其中主要是无功分量引起的损耗,若无功线损降低50%~60%,一年便可节电500亿度左右,相当于半个三峡工程的发电量。
这种不消耗一次能源,便可增大发电量的工程是绝好的绿色工程。
且投资极小,见效快。
(2)避免罚款。
我国电力部及物价局“关于颁发《功率因数调整电费办法》通知”中规定,功率因数0.94时,减少电费1.1%,功率因数0.6时增加电费15%······。
例如一个315KVA 的变压器,功率因数从0.6提高到0.94以上,年奖罚差3~4万元。
(3)不额外投资,便实现扩容。
进行无功补偿后,便可提高用电承载率,变压器可满负荷运行。
例如一台315KVA的变压器,功率因素COSф=0.6负荷的变压器只能提供优质服务189KW的有功功率,不能承受300KW左右的容量,需购买一台500KVA的变压器替换。
将功率因数由0.6提高到0.98,相当于扩大了63%,既有功由189KW提高到309KW可基本满足需要的容量,便节省了一台500KVA的变压器,经费约三四十万元。
(4)改善电能质量,延长了电器寿命,提高了产品质量。
四、SVG和国内其他产品的价格比较目前价格较低的采用的是接触器控制的无功补偿装置,这种产品(1)、使用寿命短(快了可能装上就会被烧毁);(2)补偿达不到要求;(3)冲击电流过大从而会降低用电设备的使用寿命,造成产品质量下降并且还会影响整个电网质量。
这种产品现在基本上已经被淘汰,或者即便装上了也干脆不用,因为会影响生产。
另一种就是采用可控硅控制的无功补偿装置,目前市场上较好的动态补偿装置采用的基本上是这种产品,其价格还比SVG高一些,但性能是不能和SVG相提并论的。
它只是用可控硅代替了接触器而已,本质上还是用的电容。
五、如何配备无功补偿装置现在一般采用的方式是:低压变压器的总容量×(15%—50%)=无功补偿置的大小6.8 直流防雷汇流箱设计直流防雷汇流箱的作用是根据逆变器输入的直流电压范围,把一定数量的规格相同的光伏组件串联组成1 个光伏组件串列,再将若干个串列接入光伏阵列防雷汇流箱进行汇流,通过防雷器与断路器后输出,便于逆变器的接入。
将每1个光伏组件串列的正负极分别与光伏专用直流保险丝相连,再通过汇流端子与断路器后输出,向逆变器提供直流电压输入。
雷电分为直击雷和感应雷。
直击雷是指雷电直接落到太阳能电池组件阵列、交直流配电线路、电气设备以及配线等处。
感应雷是指由静电感应或电磁感应形成的雷。
光伏发电系统的防雷分为防直击雷、防感应雷在太阳能光伏发电系统中,为了减少太阳能光伏电池阵列与逆变器之间的连线使用到汇流箱。
结合我们多年防雷系统设计经验,研制出了多种开号汇流箱。
用户可以将一定数量、规格相同的光伏电池串联起来,组成一个个光伏串列,然后再将若干个光伏串列并联接入光伏汇流防雷箱,在光伏防雷汇流箱内汇流后,通过控制器,直流配电柜,光伏逆变器,交流配电柜,配套使用从而构成完整的光伏发电系统,实现与市电并网。
为了提高系统的可靠性和实用性,在光伏防雷汇流箱里配置了光伏专用直流防雷模块、直流熔断器和断路器等,方便用户及时准确的掌握光伏电池的工作情况,保证太阳能光伏发电系统发挥最大功效。
光伏串列并联----防雷汇流箱---控制器----直流配电柜----光伏逆变器---交流配电柜防雷汇流箱:直流防雷模块,直流熔断器,断路器。
防雷汇流箱作用:汇流,防雷,失效报警,数据采集,无线数据传输。
无功补偿装置:并联电容器并联电抗器同期调相机静止性动态无功补偿装置无功容量:容性无功和感性无功容量无功电压控制系统:具有对光伏发电站内无功电源进行调节,保护,触发和检测功能的系统无功电源:无功补偿装置:在升压变压器低压侧配置无功补偿装置。