2.菱形的判定
- 格式:doc
- 大小:97.00 KB
- 文档页数:5
判断菱形的条件菱形是一种特殊的四边形,它具有以下特点:1. 所有边的长度相等:菱形的四条边长度相等,这是判断菱形的基本条件之一。
如果四边长度不相等,则不是菱形。
2. 对角线相等:菱形的两条对角线长度相等,这也是判断菱形的重要条件。
如果两条对角线长度不相等,则不是菱形。
3. 对角线互相垂直:菱形的两条对角线互相垂直,即两条对角线的交点是菱形的顶点。
如果两条对角线不垂直,则不是菱形。
4. 内角等于120度:菱形的内角度数都是120度,这是菱形的特征之一。
如果内角度数不等于120度,则不是菱形。
5. 有一对平行边:菱形有一对平行的边,这是判断菱形的重要条件之一。
如果没有一对平行边,则不是菱形。
除了以上几个条件,菱形还有一些其他特点:1. 菱形是正方形的一种特殊情况:正方形是一种特殊的菱形,它具有所有菱形的特点,但是它的角度是90度,边长相等。
2. 菱形的中线相等:菱形的两条中线长相等,而且与菱形的边垂直相交。
3. 菱形的面积计算公式:菱形的面积可以通过对角线的长度来计算,公式为:面积=对角线1×对角线2/2。
4. 菱形的周长计算公式:菱形的周长可以通过边长来计算,公式为:周长=4×边长。
通过以上的条件和特点,我们可以准确地判断一个图形是否为菱形。
首先,我们需要测量图形的四条边是否相等,如果不相等,则不是菱形。
然后,我们需要测量图形的两条对角线是否相等,如果不相等,则不是菱形。
接下来,我们需要判断对角线是否互相垂直,如果不垂直,则不是菱形。
最后,我们需要测量图形的内角度数是否等于120度,如果不等于120度,则不是菱形。
只有当所有条件都满足时,我们才能确定一个图形是菱形。
在日常生活中,菱形是一个常见的几何图形,它可以用于设计装饰、制作标志等。
通过了解菱形的判断条件,我们可以更加准确地认识和应用菱形这个几何形状。
同时,我们也可以通过判断一个图形是否为菱形来提升我们的几何图形判断能力,培养我们的观察力和逻辑思维能力。
人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 菱形课时2菱形的判定教案【教学目标】知识与技能目标1.理解并运用菱形的定义和两个判定定理进行有关的推理论证和计算.2.了解菱形的现实应用和常用判别条件.过程与方法目标1.从菱形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会菱形的性质与判定的区别与联系.2.让学生经历探索菱形判定定理的过程,理解并掌握菱形的判定方法,积累几何学习的经验,培养学生的观察能力、动手能力,发展合情推理和演绎推理能力.情感、态度与价值观目标1.让学生在探究过程中加深对菱形的理解,养成主动探索的学习习惯.2.通过菱形与矩形判定方法的类比,进一步体会类比的思想方法的作用. 【教学重点】菱形的定义和判定定理的运用.【教学难点】探究菱形的判定条件并合理利用它进行论证和计算.【教学过程设计】一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线互相垂直平分;2.四条边都相等;3.每条对角线平分一组对角.这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究知识点一:菱形的判定【类型一】利用“有一组邻边相等的平行四边形是菱形”判定四边形是菱形例 1如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.解析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.证明:∵BE=2DE,EF=BE,∴EF=2DE.∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC,∴EF=BC.又∵EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.【类型二】利用“对角线互相垂直的平行四边形是菱形”判定四边形是菱形例 2如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:(1)AC⊥BD;(2)四边形ABCD是菱形.解析:(1)证得△BAC是等腰三角形后利用“三线合一”的性质得到AC⊥BD 即可;(2)首先证得四边形ABCD是平行四边形,然后根据“对角线互相垂直”得到平行四边形是菱形.证明:(1)∵AE∥BF,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形.∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB.∵BD平分∠ABC,∴∠CBD=∠ABD.∵AE∥BF,∴∠CBD=∠BDA,∴∠ABD=∠BDA,∴AB=AD,∴DA =CB.∵BC∥DA,∴四边形ABCD是平行四边形.∵AC⊥BD,∴四边形ABCD 是菱形.方法总结:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.【类型三】 利用“四条边相等的四边形是菱形”判定四边形是菱形例 3 如图,已知△ABC ,按如下步骤作图:①分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于P ,Q 两点;②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ;③过C 作CF ∥AB 交PQ 于点F ,连接AF .(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.解析:(1)由作图知PQ 为线段AC 的垂直平分线,从而得到AE =CE ,AD =CD .然后根据CF ∥AB 得到∠EAC =∠FCA ,∠CFD =∠AED ,利用“AAS ”证得两三角形全等即可;(2)根据(1)中全等得到AE =CF .然后根据EF 为线段AC 的垂直平分线,得到EC =EA ,FC =F A .从而得到EC =EA =FC =F A ,利用“四边相等的四边形是菱形”判定四边形AECF 为菱形.证明:(1)由作图知PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD .∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED .在△AED 与△CFD 中,⎩⎨⎧∠EAC =∠FCA ,∠AED =∠CFD ,AD =CD ,∴△AED ≌△CFD (AAS);(2)∵△AED ≌△CFD ,∴AE =CF .∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =F A ,∴EC =EA =FC =F A ,∴四边形AECF 为菱形.方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.知识点二:菱形的判定的应用【类型一】 菱形判定中的开放性问题例 4如图,平行四边形ABCD 中,AF 、CE 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).解析:∵AD ∥BC ,∴∠F AD =∠AFB .∵AF 是∠BAD 的平分线,∴∠BAF =∠F AD ,∴∠BAF =∠AFB ,∴AB =BF .同理ED =CD .∵AD =BC ,AB =CD ,∴AE =CF .又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC ⊥EF .方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.【类型二】 菱形的性质和判定的综合应用例 5 如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于F ,连接DF .(1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,使得∠EFD =∠BCD ,并说明理由. 解析:(1)首先利用“SSS ”证明△ABC ≌△ADC ,可得∠BAC =∠DAC .再证明△ABF ≌△ADF ,可得∠AFD =∠AFB ,进而得到∠AFD =∠CFE ;(2)首先证明∠CAD =∠ACD ,再根据“等角对等边”,可得AD =CD .再由条件AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF 和△ADF 中,⎩⎨⎧AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF .在△BCF 和△DCF 中,⎩⎨⎧BC =CD ,∠BCF =∠DCF ,CF =CF , ∴△BCF ≌△DCF (SAS),∴∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°, ∴∠EFD =∠BCD .方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.三、教学小结本节课你有哪些收获?学生归纳小结菱形的判定方法:(1)菱形的定义:有一组邻边相等的平行四边形是菱形.(2)菱形的判定定理:对角线互相垂直的平行四边形是菱形.(3)菱形的判定定理:四条边相等的四边形是菱形四、学习检测1.下列说法正确的是( )A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形解析:根据菱形的定义与判定定理直接辨别各选项正确与否.由菱形的定义,可知一组邻边相等的平行四边形叫做菱形,因此,选项B正确.故选B.2.已知平行四边形ABCD,下列条件:①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.其中能使平行四边形ABCD是菱形的有( )A.①③B.②③C.③④D.①②③解析:对角线互相垂直的平行四边形是菱形,一组邻边相等的平行四边形是菱形,因此①③都可以判定平行四边形ABCD是菱形.故选A.3.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形解析:根据菱形的判定定理(四条边相等的四边形是菱形)即可判定,由题中图的作法可知AD=AB=DC=BC,∴四边形ABCD是菱形.故选B.4.一个平行四边形的一条边长是3,两条对角线的长分别是4和2,这是一个特殊的平行四边形吗?为什么?求出它的面积解析:先根据题意画出相应的图形,如图.根据平行四边形的对角线互相平分,可求出OB及OA的长,由勾股定理的逆定理可得∠BOA为直角,进而得AC⊥BD.根据“对角线互相垂直的平行四边形是菱形”可得平行四边形ABCD为菱形.根据菱形的面积等于对角线乘积的一半可求得菱形ABCD的面积.解:这是一个菱形.理由如下:如图,▱ABCD中,AC=4,BD=2,AB=3,∴OA=AC=2,OB=BD=.∵OA2+OB2=22+()2=9,而AB2=32=9,∴OA2+OB2=AB2.∴△AOB是直角三角形,∠AOB=90°.∴AC⊥BD.∴▱ABCD是菱形(对角线互相垂直的平行四边形是菱形).S菱形ABCD=AC·BD=×4×2=4.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时1 矩形的性质1.菱形的判定有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形.2.菱形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时1矩形的性质学案【学习目标】1.理解矩形的概念,知道矩形与平行四边形的区别与联系;2.会证明矩形的性质,会用矩形的性质解决简单的问题;3.掌握直角三角形斜边中线的性质,并会简单的运用.【学习重点】理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用.【学习难点】会会用这些菱形的判定方法进行有关的证明和计算.【自主学习】一、知识回顾1.菱形的定义是什么?性质有哪些?2.根据菱形的定义,可得菱形的第一个判定方法是什么?用数学语言如何表示?有一组邻边_____的______________是菱形.数学语言:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形二、自主探究知识点1:对角线互相垂直的平行四边形是菱形想一想前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?猜想:对角线互相_________的平行四边形是菱形.证一证已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,AC ⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形.∴OA____OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA______BC.∴四边形ABCD是________.要点归纳:菱形的判定定理:对角线互相_______的____________是菱形.几何语言描述:∵在□ABCD中,AC⊥BD,∴□ABCD是菱形.【典例探究】例1如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.【跟踪练习】在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CD知识点2:四条边相等的四边形是菱形活动1已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?AC的长为半径作弧,小刚:分别以A、C为圆心,以大于12两条弧分别相交于点B , D,依次连接A、B、C、D四点.想一想根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?猜想:四条边__________的四边形是菱形.证一证已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证明:∵AB=BC=CD=AD;∴AB=CD , BC=AD.∴四边形ABCD是___________.又∵AB=BC,∴四边形ABCD是__________.要点归纳:菱形的判定定理:四条边都______的四边形是菱形.几何语言描述:∵在四边形ABCD中,AB=BC=CD=AD,∴四边形 ABCD是________.【典例探究】例2如图,在△ABC中, AD是角平分线,点E,F分别在AB,AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形.例3 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.方法总结:四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.例4如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH 是菱形.【跟踪练习】1.如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?2.如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?3.如上图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?4.在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?探究点3:菱形的性质与判定的综合运用【典例探究】例4如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.【跟踪练习】如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.三、知识梳理内容菱形的判定定义法:有一组邻边相等的平行四边形是菱形.判定定理:对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形.运用定理进行计算和证明四、学习过程中我产生的疑惑【学习检测】1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.2.一边长为5cm平行四边形的两条对角线的长分别为24cm和26cm,那么平行四边形的面积是_____________.3.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BCC.∠B=60°D.∠ACB=60°4.下列图形中,不一定为菱形的是()A.四条边相等的四边形B.用两个能完全重合的等边三角形拼成的四边形C.一组邻边相等的平行四边形D.有一个角为60度的平行四边形D(解析:根据菱形的判定定理作答即可.)3.如图所示,△ABC中,E,F,D分别是AB,AC,BC上的点,且DE∥AC,DF∥AB.要使AEDF是一个菱形,在不改变图形的前提下,你需添加的一个条件是.AE=AF(解析:(答案不唯一)添加AE=AF或DE=DF或AD是∠BAC的平分线或AE=ED,AF=FD等都可以.)4.木工师傅在做菱形的窗格时,总是保证四条边框一样长,你能说出其中的道理吗?解:四条边相等的四边形是菱形.5.已知菱形的周长为24,一条对角线长为8,求菱形的面积.解:由题意知菱形的边长为6,故另一条对角线长为4,故菱形的面积为×8×4=16.4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE ∥BD.求证:四边形O CED是菱形.6.如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD 于点G.求证四边形ACGF是菱形.证明:∵AF∥CD,FG∥AC,∴四边形ACGF为平行四边形,∵CE是△ABC外角∠ACD的平分线,∴∠ACF=∠FCG,∵AF∥CG,∴∠AFC=∠FCG,∴∠ACF=∠AFC,∴AF=AC,∴▱ACGF为菱形.5. 如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE ∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.8.如图所示,在△ABC中,∠BAC=90°,AD⊥BC,BE,AF分别是∠ABC,∠DAC的平分线,BE和AD交于G,试说明四边形AGFE的形状.解:四边形AGFE是菱形.理由如下:由∠BAC=90°,AD⊥BC,易得∠BAD=∠C,∵∠AGE=∠ABG+∠BAG,∠AEB=∠EBD+∠C,又∵∠ABG=∠EBC,∴∠AGE=∠AEG.∴AE=AG.由AF是∠DAC的平分线,易知AF⊥GE且AF平分GE.同理可得BE⊥AF且BE平分AF.∴AF与GE垂直且互相平分,从而可知四边形AGFE是菱形.6.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E,连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.9.如图(1),在△ABC和△EDC中,AC=CE=CB=DC,∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC分别交于M,H.(1)求证CF=CH;(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形,并证明你的结论.(1)证明:∵△ABC和△EDC都是等腰直角三角形,且AC=CE=CB=CD,∴∠A=∠D=45°.∵∠ACB=∠DCE=90°,∴∠ACB-∠ECB=∠DCE-∠ECH,即∠ACF=∠DCH,在△AFC 和△DHC 中, ⎪⎩⎪⎨⎧∠=∠=∠=∠,,,DCH ACF DC AC D A ∴△AFC ≌△DHC (ASA),∴CF =CH. (2)解:菱形,证明如下:∵∠BCE =45°,∴∠ACF =∠BCE =∠DCH =45°,即∠ACD =135°, 又∠A =∠D =45°,∴在四边形ACDM 中,∠AMD =360°-∠ACD ∠A -∠D =135°, ∴∠ACD =∠AMD ,∴四边形ACDM 是平行四边形.又AC =CD ,∴四边形ACDM 是菱形.。
人教版数学八年级下册18.2.2第2课时《菱形的判定》说课稿一. 教材分析《菱形的判定》是人教版数学八年级下册18.2.2第2课时的一节内容。
本节课的主要内容是让学生掌握菱形的判定方法,并能够运用这些方法解决实际问题。
教材通过引入平行四边形和矩形的性质,引导学生探究菱形的性质,从而得出菱形的判定方法。
教材还通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。
二. 学情分析学生在学习本节课之前,已经学习了平行四边形和矩形的性质,对这两种图形的性质有一定的了解。
但是,学生对菱形的性质和判定方法可能比较陌生,需要通过课堂学习和练习来掌握。
此外,学生可能对数学证明的方法和技巧还不够熟练,需要在课堂上进行引导和培养。
三. 说教学目标1.知识与技能目标:学生能够掌握菱形的判定方法,并能够运用这些方法解决实际问题。
2.过程与方法目标:学生通过观察、操作、探究等活动,培养自己的观察能力、动手能力和思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂学习,增强对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够掌握菱形的判定方法,并能够运用这些方法解决实际问题。
2.教学难点:学生对菱形判定方法的灵活运用,以及对数学证明的方法和技巧的掌握。
五. 说教学方法与手段1.教学方法:本节课采用问题驱动法、合作交流法和引导发现法进行教学。
2.教学手段:利用多媒体课件进行辅助教学,通过展示图片、动画等形式,帮助学生直观地理解菱形的性质和判定方法。
六. 说教学过程1.导入:通过展示一些生活中的菱形图形,如钻石、骰子等,引导学生对菱形产生兴趣,激发学生的学习动机。
2.探究菱形的性质:学生通过观察、操作等活动,发现菱形的性质,教师引导学生总结出菱形的判定方法。
3.讲解与练习:教师通过讲解例题,引导学生运用菱形的判定方法解决问题,然后布置一些练习题,帮助学生巩固所学知识。
4.课堂小结:教师引导学生总结本节课的主要内容和知识点,帮助学生形成知识体系。
第2时菱形的判定教学目标1、掌握菱形的判定定理并解决实际问题,会根据条件画出菱形2、能够运用综合法证明菱形的判定定理及其推论。
3、经历探索菱形判定的过程,培养学生的动手能力、观察能力及推理能力。
重点:严格证明菱形判定定理及其推论。
难点:运用综合法解决菱形的相关题型。
知识链接:平行四边形的性质与判定【学习过程】一、课前自主学习菱形的对边。
菱形的四边。
菱形的性质:菱形的对角线。
菱形是对称图形,又是对称图形。
菱形的面积= 或菱形的面积=二、课内探索新知。
菱形的判定方法:方法一:〔定义〕有一组邻边相等的平行四边形是菱形方法二:用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?通过探究,得到:对角线的平行四边形是菱形。
证明上述结论:菱形的一条对角线你会做菱形吗?试一试方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。
通过探究,得到:的四边形是菱形。
证明上述结论:三、例题稳固课本6页例2四、课堂检测1、以下判别错误的选项是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形.D.邻边相等的平行四边形是菱形.2、以下条件中,可以判定一个四边形是菱形的是〔〕3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形第1课时代入法【知识与技能】使学生学会用代入法解二元一次方程组.【过程与方法】理解代入消元法的根本思想表达的化未知为的化归思想方法.【情感态度】逐步渗透矛盾转化的唯物主义思想.【教学重点】用代入法解二元一次方程组.【教学难点】代入消元法的根本思想.一、创设情境,导入新课对于上一节课提出的问题:老牛和小马到底各驮了几个包裹呢?方程组2121①()②x yx y-=+=-⎧⎨⎩你会解吗?.老师引导:由①得y=x-2③,由于方程组中相同的字母代表同一对象,所以方程②中的y也为x-2,可以用x-2代替方程②中的y,这样得到:x+1=2〔x-2-1〕.④解一元二次方程④得到x=7.再把x=7代入③2121()x yx y-=+=-⎧⎨⎩的解为75xy.=⎧⎨=⎩注:把求出的未知数的值代入原方程组,可以知道求得的解对不对.【教学说明】针对上一节熟悉的问题如何解答,增强了学生探求知识的欲望,使学生对所学知识产生亲切感.二、思考探究,获取新知用代入法解二元一次方程组.下面我们根据上面的解题思路解方程组.例1 解方程组:32143,x yx y.+==+⎧⎨⎩〔1〕在这个方程组中,哪一个方程最简单?〔2〕怎样将两个未知数的方程变为只含有一个未知数的一元一次方程呢?【教学说明】重视知识发生的过程,让学生了解代入消元法解二元一次方程组的过程及依据,体会未知向,陌生向熟悉转化这一重要思想——化归思想.例2 解方程组:2316413,x yx y.+=+=⎧⎨⎩【教学说明】老师可以引导学生采用例1的方法,尝试看解答,确实有困难的同学之间相互讨论,教师适当点拨.讨论:上面解方程组的根本思路是什么?主要步骤有哪些?【教学说明】经过几个解方程组的学习,让学生总结归纳掌握代入法的根本方法和步骤.着重让学生体会解二元一次方程组的技巧,主要表现在如何选择一个方程,如何用含一个未知数的式子去表示另一个未知数,转“二元〞为“一元〞.【归纳结论】①解方程的根本思路是“消元〞—把“二元〞变为“一元〞.②主要步骤是:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法.三、运用新知,深化理解1.在二次一元方程2x-y=5中,用含x的式子表示y为.25436①②x y ,x y ,+=-=⎧⎨⎩先把方程 变为 ,再代入 ,求得 的值,然后再求 的值.121ax y x by -=-=-⎧⎨⎩ 的解为33x y ,==⎧⎨⎩ 那么a= ,b= . 4.用代入法解方程组:〔1〕6326①②a b a b +=+=⎧⎨⎩ 〔2〕56137181①②x y x y +=+=-⎧⎨⎩ 【教学说明】教师让学生独立做,确实有困难的学生教师及时指导,加深他们对知识的理解,特别是用代入法解二元一次方程组的方法的掌握.【答案】1.y=2x-5; 2. ①, y=5-2x; ②, x,y; 3.4/3,7/3;4.〔1〕解:由①得a=6-b ③,把③代入②得3〔6-b 〕+2b=6,解得b=12,把b=12代入③得a=-6,所以这个方程的解为612a b .=-=⎧⎨⎩ 〔2〕解:由①得6y=13-5x ③,把③代入②得:7x+3〔13-5x 〕=-1,解得x=5.把x=5代入③得y=-2,所以这个方程组的解为52x y .==-⎧⎨⎩ 四、师生互动,课堂小结通过这节课的学习,你认为代入法的根本思路是什么?主要步骤有哪些?还有哪些困难需要解决的呢?【教学说明】及时梳理知识,形成模式化,同时起到了小结归纳的作用,使学生认识到同代入法解二元一次方程组的一般步骤和根本方法.1.布置作业:习题5.2的第1题.2.完成练习册中本课时相应练习.对于系数较简单的方程学生掌握得很好,但复杂一点的很容易出错.代数的学习往往比拟枯燥,要想调动学生的积极性必须在形式上下工夫,在练习过程中可以考虑采取多种多样的手段,激发学生的学习热情,活泼课堂气氛,培养他们的学习兴趣.。
1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等.③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线. 以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中 位线,再用中位线的性质.中点中点中点平行定理:三角形的中位线平行第三边且长度等于第三边的一半.板块一、菱形的性质【例1】 菱形的两条对角线将菱形分成全等三角形的对数为【例2】 在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【例3】 如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.菱形的性质及判定图21CBA【例4】 如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD的边长是______.【例5】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分.P HFE DCBA【例6】 如图1所示,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .图1HO DC BA【例7】 如图,已知菱形ABCD 的对角线8cm 4cm AC BD DE BC ==⊥,,于点E ,则DE 的长为【例8】 菱形周长为52cm ,一条对角线长为10cm ,则其面积为 .【例9】 菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为E FDBCA【例10】 如图2,在菱形ABCD 中,6AC =,8BD =,则菱形的边长为( )A .5B .10C .6D .8图2DCBA【例11】 如图3,在菱形ABCD 中,110A ∠=︒,E 、F 分别是边AB 和BC 的中点,EP CD ⊥于点P ,则FPC ∠=( )A .35︒B .45︒C .50︒D .55︒图3E DP CF BA【例12】 如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒的菱形,剪口与折痕所成的角α的度数应为( )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒【例13】 菱形ABCD 中,E 、F 分别是BC 、CD 的中点,且AE BC ⊥,AF CD ⊥,那么EAF ∠等于 .【例14】 已知菱形的一个内角为60︒,一条对角线的长为,则另一条对角线的长为________.【例15】 如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cm图1DCBA【例16】已知菱形ABCD的两条对角线AC BD,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是【例17】如图,菱形花坛ABCD的周长为20m,60ABC∠=︒,•沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积.图2【例18】如图,在菱形ABCD中,4AB a E=,在BC上,2120BE a BAD P=∠=︒,,点在BD上,则PE PC+的最小值为DB【例19】已知,菱形ABCD中,E、F分别是BC、CD上的点,若AE AF EF AB===,求C∠的度数.FEDCBA【例20】已知,菱形ABCD中,E、F分别是BC、CD上的点,且60B EAF∠=∠=︒,18BAE∠=︒.求:CEF∠的度数.FEDCBA板块二、菱形的判定【例21】 如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .DCAB【例22】 如图,在ABC ∆中,BD 平分ABC ∠,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形FEDCBA【例23】 如图,在ABC ∆中,AB AC =,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.EDCB A【例24】 已知:如图,平行四边形ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别相交于E 、F .求证:四边形AFCE 是菱形.ODEFCAB【例25】 如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.C'DCB A E【例26】 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分AB CDEF P PF EDC B A【例27】 已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.GF E DCBA【例28】 如图,在ABC ∆中,AB AC =,M 是BC 的中点.分别作MD AB ⊥于D ,ME AC ⊥于E ,DF AC ⊥于F ,EG AB ⊥于G .DF EG 、相交于点P .求证:四边形DMEP 是菱形.PMF E DG CBA【例29】 如图,ABC ∆中,90ACB ∠=︒,AD 是BAC ∠的平分线,交BC 于D ,CH 是AB 边上的高,交AD于F ,DE AB ⊥于E ,求证:四边形CDEF 是菱形.H F DECBA【例30】 如图,M 是矩形ABCD 内的任意一点,将MAB ∆沿AD 方向平移,使AB 与DC 重合,点M 移动到点'M 的位置⑴画出平移后的三角形; ⑵连结'MD MC MM ,,,试说明四边形'MDM C 的对角线互相垂直,且长度分别等于AB AD ,的长;⑶当M 在矩形内的什么位置时,在上述变换下,四边形'MDM C 是菱形?为什么?M'MDC BA【例31】 如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.FEDCBA三、与菱形相关的几何综合题【例32】 已知等腰ABC △中,AB AC =,AD 平分BAC ∠交BC 于D 点,在线段AD 上任取一点P (A 点除外),过P 点作EF AB ∥,分别交AC 、BC 于E 、F 点,作PM AC ∥,交AB 于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?MPFABCDE【例33】 问题:如图1,在菱形ABCD 和菱形BEFG 中,点A B E ,,在同一条直线上,P 是线段DF 的中点,连结PG PC ,.若60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PGPC的值. 小聪同学的思路是:延长GP 交DC 于点H ,构造全等三角形,经过推理使问题得到解决. 请你参考小聪同学的思路,探究并解决下列问题:⑴ 写出上面问题中线段PG 与PC 的位置关系及PGPC的值;⑵ 将图1中的菱形BEFG 绕点B 顺时针旋转,使菱形BEFG 的对角线BF 恰好与菱形ABCD 的边AB 在同一条直线上,原问题中的其他条件不变(如图2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以证明.⑶ 若图1中()2090ABC BEF αα∠=∠=︒<<︒,将菱形BEFG 绕点B 顺时针旋转任意角度,原问题中的其他条件不变,求PGPC的值(用含α的式子表示). 图2AB CDEFG P四、中位线与平行四边形【例34】 顺次连结面积为20的矩形四边中点得到一个四边形,再顺次连结新四边形四边中点得到一个 ,其面积为 .【例35】 如图,在四边形ABCD 中,AB CD ≠,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还满足的一个条件是 ,并说明理由.HGFE D CBA【例36】 在四边形ABCD 中,AB CD =,P ,Q 分别是AD 、BC 的中点,M ,N 分别是对角线AC ,BD中点,证明:PQ 与MN 互相垂直.Q PMNB D A【例37】 四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD上从C 向D 移动而点R 不动时,那么下列结论成立的是 ( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减小 C .线段EF 的长不变D .线段EF 的长与点P 的位置有关P FREDCBA【例38】 如图,ABC ∆中,AD 是BAC ∠的平分线,CE AD ⊥于E ,M 为BC 的中点,14cm AB =,10cm AC =,则ME 的长为 .M EDCBA【例39】 如图,四边形ABCD 中,AB CD =,E F ,分别是BC AD ,的中点,连结EF 并延长,分别交BA CD,的延长线于点G H ,,求证:BGE CHE ∠=∠ABH G FEDC BA【例40】 如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA【例41】 如图,四边形ABCD 中,E F ,分别是边AB CD ,的中点,则AD BC ,和EF 的关系是( )A .2AD BC EF +>B .2AD BC EF +≥ C .2AD BC EF +< D .2AD BC EF +≤ADFEDCBA【例42】 已知如图所示,E 、F 、G 、H 分别是四边形ABCD 的四边的中点,求证:四边形EFGH 是平行四边形.HGFDC BA【例43】 如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.QEP NMDCBA【例44】 如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH,相互垂直平分ABGHGFEDCBA【例45】 ABC ∆的三条中线分别为AD 、BE 、CF ,H 为BC 边外一点,且BHCF 为平行四边形,求证:AD EH ∥.ABCDE FH【例46】 在平行四边形ABCD 的对角线BD 上取一点E ,使13BE DE =,连接AE 并延长与DC 的延长线交于F ,则2CF AB =.图1CAEDBF【例47】 如图,ABC ∆中,E 、F 分别是AB 、BC 的中点,G 、H 是AC 的三等分点,连结并延长EG 、FH 交于点D .求证:四边形ABCD 是平行四边形.HGFEDCBA【例48】 如图,在四边形ABCD 中,M 、N 分别为AD 、BC 的中点,BD AC =,BD 和AC 相交于点O ,MN 分别与AC 、BD 相交于E 、F ,求证:OE OF =.FE ONM D CBA【例49】 如图,线段AB CD ,相交于点O ,且AB CD =,连结AD BC ,,E F ,分别是AD BC ,的中点,EF分别交AB CD ,于M N ,,求证:OM ON =A CFEO N M DCBA【例50】 如图,梯形ABCD 中,AD BC AB CD =∥,,对角线AC BD ,相交于点O ,60AOD ∠=︒,E F G,,分别是OA OB CD ,,的中点,求证:EFG ∆是等边三角形A BEFO G FE DC BA【例51】 如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线共点.OE FLHNMDCB A【例52】 如图,O 是平行四边形ABCD 内任意一点,E F G H ,,,分别是OA OB OC OD ,,,的中点.若DE ,CF 交于P ,DG ,AF 交于Q ,AH ,BG 交于R ,BE ,CH 交于S ,求证:PQ SR =.SR QPH GOEFDCB A。
菱形的判定6种方法
菱形是一种常见的几何形状,它有许多应用,比如在数学中用于判定某些条件是否成立。
下面我们来介绍一下菱形的判定方法。
1. 对角线相等法:如果一个四边形的对角线相等,那么它就是一个菱形。
这是最基本的判定方法。
2. 边长相等法:如果一个四边形的四条边相等,那么它就是一个菱形。
这个方法比较容易理解,但是实际应用中不太常见。
3. 顶角相等法:如果一个四边形的相邻两个顶角相等,那么它就是一个菱形。
这个方法也比较容易理解,但是需要注意的是,只有相邻的两个顶角相等才行。
4. 垂直平分线相等法:如果一个四边形的对角线互相垂直,并且它们的交点处的两条垂直平分线相等,那么它就是一个菱形。
这个方法比较复杂,需要一定的几何知识。
5. 对角线平分线相等法:如果一个四边形的对角线互相平分,并且它们的交点处的两条对角线平分线相等,那么它就是一个菱形。
这个方法也比较复杂,需要一定的几何知识。
6. 内角相等法:如果一个四边形的内角都相等,那么它就是一个菱形。
这个方法比较特殊,只有在某些特殊情况下才能使用。
以上就是菱形的六种判定方法,它们各有优缺点,可以根据实际情况选择合适的方法。
在实际应用中,我们通常会结合多种方法来判定一个四边形是否为菱形,以提高判定的准确性。
菱形的判定知识点总结一、菱形的定义菱形是一种四边形,具有以下特征:1. 四条边长相等:菱形的四条边的长度都相等。
2. 对角线相等:菱形的两条对角线的长度相等。
3. 相对角相等:菱形的相对角也相等。
根据菱形的定义,我们可以使用这些特征来判定一个四边形是否为菱形。
二、菱形的判定方法1. 根据边长判定:如果一个四边形的四条边长都相等,那么它就是一个菱形。
例如,如果一个四边形的四条边的长度分别为a,a,a,a,则可以判定为菱形。
2. 根据对角线判定:如果一个四边形的对角线长度相等,那么它就是一个菱形。
例如,如果一个四边形的对角线的长度分别为d,d,则可以判定为菱形。
3. 根据边长和对角线判定:如果一个四边形的四条边长相等且对角线长度相等,那么它就是一个菱形。
例如,如果一个四边形的四条边的长度分别为a,a,a,a,且对角线的长度分别为d,d,则可以判定为菱形。
除了以上方法外,学生还需要掌握菱形的性质以及相关的定理。
以下是菱形的一些性质和定理:1. 菱形的对角线互相垂直:菱形的对角线互相垂直,并且将菱形分成四个全等的直角三角形。
这个性质对于理解菱形的形状和结构非常重要。
2. 菱形的对边平行:菱形的对边是平行的。
这个性质可以帮助我们证明菱形的性质和定理,以及解决相关的几何问题。
3. 菱形的对角线角平分:菱形的对角线将菱形的内角平分。
这个性质可以帮助我们证明菱形的内角之间的关系,并且解决相关的角平分问题。
4. 菱形的内角和为360度:菱形的四个内角的和为360度。
这个定理可以帮助我们计算菱形的内角之和,并且解决相关的角度问题。
通过掌握菱形的定义、判定方法、性质和定理,学生可以更好地理解和掌握菱形的知识,并且能够运用这些知识解决相关的几何问题。
因此,学生在学习菱形的过程中,应该注重理解和掌握菱形的定义和特征,练习菱形的判定方法,掌握菱形的性质和定理,以及解决相关的几何问题。
通过不断地练习和应用,学生可以更好地掌握菱形的知识,并且在考试中取得更好的成绩。
菱形的判定专题练习菱形的判定定理:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.例1.如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC的中点,AD=BC。
求证:四边形EFGH是菱形。
例2.如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC。
(1)求证:∠1=∠2;(2)连接BE、DE,判断四边形BCDE的形状,并说明理由。
例3.如图,在△ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB,AC于点E,F,连接DE,DF。
求证:四边形AEDF是菱形。
专题小练1.如图,四边形ABCD中,AD∥BC,AB⊥AC,点E是BC的中点,AE与BD交于点F,且F 是AE的中点.(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC=4,AB=5,求四边形ABCD的面积.2.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.3.如图,在RT△ABC中,∠ACB=90°,D是AB的中点,AE∥CD,CE∥AB,判断四边形ADCE 的形状,并证明你的结论.4.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE 的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.5.如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB 交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.6.如图,在平行四边形ABCD中,E、F分别为边AB,CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.7.如图,在△ABC中,△ABC=90°,BD为AC的中线,过点C作CE△BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.。
2.菱形的判定
【知识与技能】
1.理解并掌握菱形的定义及两个判定方法.
2.会用菱形的两个判定方法进行有关的论证和计算.
【过程与方法】
经历探索菱形判定思想的过程,领会菱形的概念以及应用方法,发展学生主动探究的思想和说理的能力.
【情感态度】
培养良好的思维意识以及合情推理的能力,感悟其应用价值及培养学生的观察能力、动手能力及逻辑思维能力.
【教学重点】
菱形的两个判定方法.
【教学难点】
判定方法的证明方法及运用.
一、情境导入,初步认识
回顾:
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质:性质1菱形的四条边都相等;
性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)
【教学说明】通过对菱形的性质复习回顾,让学生养成勤复习的习惯.温故而知新.
二、思考探究,获取新知
1.试一试.
如图作一个四条边都相等的四边形.
步骤:
(1)画两条相等的线段AB、AD;
(2)分别以点B和点D为圆心,AB长为半径画弧,两条相交于点C;
(3)连结BC、CD,即得一个四条边都相等的四边形ABCD.
观察你所画的图形,它是菱形吗?
你能证明你的结论吗?
【归纳结论】菱形判定方法1:对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.
【教学说明】首先教师活动让学生观察,而后让学生自己动手亲自体验活动,从而猜想出结论来.
已知:在□ABCD中,AC⊥BD
求证:□ABCD是菱形
数学语言:
∵四边形ABCD是平行四边形,AC⊥BD;
∴□ABCD是菱形.
2.画一画
如图,作一个两条对角线互相垂直的平行四边形.
步骤:
(1)作两条互相垂直的直线m,n,记交点为点O;
(2)以点O为圆心、适当长为半径画弧,在直线m上截取相等的两条线段OA、OC;
(3)以点O为圆心,另一适当长为半径画弧,在直线上截取相等的两条线段OB、OD;
(4)连结A,B,C,D四点,即得到一个对角线互相垂直且平分的四边形ABCD,显然,它是一个对角线互相垂直的平行四边形.
和你的同伴交流一下,看看它是否也是一个菱形.
思考:四边形ABCD是什么四边形?你能证明吗?
【归纳结论】菱形的判定方法2:四条边相等的四边形是菱形.
数学语言:
∵在四边形ABCD中,
AB=BC=CD=DA
∴四边形ABCD是菱形.
【教学说明】让学生自己动手亲自体验活动,从而猜想出结论来并进行证明.从而加深印象.
三、运用新知,深化理解
1.如图,在菱形ABCD中,E、F、G、H分别是菱形四边的中点,连结EG 与FH交于点O,则图中的菱形共有(B)
A.4个B.5个
C.6个D.7个
2.下列说法正确的是(B)
A.对角线互相垂直且相等的四边形是菱形
B.对角线互相垂直的平行四边形是菱形
C.对角线互相平分且相等的四边形是菱形
D.对角线相等的四边形是菱形
3.已知:如图□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、
F.
求证:四边形AFCE是菱形.
证明:∵四边形ABCD是平行四边形,
∴AE∥FC.
∴∠1=∠2.
又∠AOE=∠COF,AO=CO,
∴△AOE≌△COF.
∴EO=FO.
∴四边形AFCE是平行四边形.又EF⊥AC,
∴□AFCE是菱形(对角线互相垂直的平行四边形是菱形).
4.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形;
证明:∵CE平分∠ACB,EA⊥CA,EF⊥BC,∴AE=FE,
∵∠1=∠2,
∴△AEC≌△FEC,
∴AC=FC,
∵CG=CG,
∴△ACG≌△FCG,
∴∠5=∠7=∠B,
∴GF∥AE,
∵AD⊥BC,EF⊥BC,
∴AG∥EF,
∵AG=GF(或AE=EF),
∴四边形AGFE是菱形(一组邻边相等的平行四边形是菱形)
【教学说明】让学生先独立完成,而后将不会的问题各小组交流讨论得出结
果.让学生养成从题目中找解题信息,从图形中找解决问题的突破口.
四、师生互动,课堂小结
1.师生回顾判定一个四边形是菱形的方法:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.
2.通过本节课的学习,你还有哪些疑惑?请与同伴交流.
1.布置作业:教材“习题19.2”中第2、3、4题.
2.完成本课时对应练习.
本节课让学生动手操作,不仅可以调动学生的积极性,而且通过动手做一做,然后再说一说的过程,巩固了菱形的判定.只有这样,才能使学生在今后的学习中有更严密的思维,使他们的抽象概括能力有更好的提升.。