四川省绵阳市高中2014-2015学年高二下学期期末教学质量测试数学文试题
- 格式:doc
- 大小:688.50 KB
- 文档页数:7
2014-2015学年四川省绵阳市南山中学高二(下)期初数学试卷(文科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共40.0分)1.若直线l1:2x+3y-1=0与直线l2:4x-my+2=0互相垂直,则m的值是()A.m=1B.m=2C.m=D.m=【答案】C【解析】解:∵直线l1:2x+3y-1=0与直线l2:4x-my+2=0互相垂直,∴2×4+3(-m)=0,解得m=故选:C由垂直关系易得2×4+3(-m)=0,解方程可得.本题考查直线的一般式方程与垂直关系,属基础题.2.在直角坐标系x O y中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,极坐标方程为ρ=3cosθ,θ∈[0,],表示的曲线为()A.圆B.直线C.半圆D.线段【答案】C【解析】解:∵曲线的极坐标方程为ρ=3cosθ,θ∈[0,],∴ρ2=3ρcosθ,θ∈[0,],∴x2+y2=3x,x≥0,y≥0,∴,x≥0,y≥0,故曲线表示的一个半圆,故选:C由已知中曲线的极坐标方程为ρ=3cosθ,θ∈[0,],化为普通方程,可判断曲线的形状.本题考查的知识点是简单曲线的极坐标方程,熟练掌握极坐标方程与普通方程的互化方法是解答的关键.3.如图所示是2014年某大学自主招生面试环节中,六位评委为某考生打出的面试分数的茎叶统计图,若该生笔试成绩90分,下列关于该同学成绩的说法正确的是()A.面试成绩的中位数为83B.面试成绩的平均分为84C.总成绩的众数为173D.总成绩的方差与面试成绩的方差都是19【答案】C【解析】解:由题意,根据茎叶图,得;6位评委为某考生打出的分数从小到大依次是78,83,83,85,90,91.面试分数的众数为83,所以总成绩的众数为173,故选:C.根据茎叶图,把数据按从小到大的顺序排列,找出众数即可.本题考查了茎叶图的应用问题,也考查了中位数与众数的应用问题,是基础题.4.曲线=1与曲线=1(k<9)的()A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等【答案】D【解析】解:曲线=1表示焦点在x轴上,长轴长为10,短轴长为6,离心率为,焦距为8.曲线=1(k<9)表示焦点在x轴上,长轴长为2,短轴长为2,离心率为,焦距为8.对照选项,则D正确.故选D.分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.本题考查椭圆的方程和性质,考查运算能力,属于基础题.5.已知20名学生某次数学考试成绩(单位:分)的频率分布直方图如下图所示.则成绩落在[50,60)与[60,70)中的学生人数分别为()A.2,3B.2,4C.3,2 D.4,2【答案】A【解析】解:根据频率分布直方图,得;(2a+3a+7a+6a+2a)×10=1,解得a=0.005;∴成绩落在[50,60)内的频率为2a×10=0.1,所求的学生人数为20×0.1=2;成绩落在[60,70)内的频率为3a×10=0.15,所求的学生人数为20×0.15=3.故选:A.根据频率和为1,求出a的值,再利用频率=频数,计算所求的学生人数即可.样本容量本题考查了频率分布直方图的应用问题,也考查了频率、频数与样本容量的应用问题,是基础题目.6.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是()A.3个都是正品B.至少有1个是次品C.3个都是次品D.至少有1个是正品【答案】D【解析】解:任意抽取3个一定会发生的事:最少含有一个正品,故选D任意抽取3个一定会发生的事:最少含有一个正品,根据题目条件选出正确结论,分清各种不同的事件是解决本题的关键.我们学过的事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件.7.直线y=kx+1与圆x2+y2-2y=0的位置关系是()A.相交B.相切C.相离D.取决于k的值【答案】A【解析】解:圆x2+y2-2y=0即x2+(y-1)2=1,表示以(0,1)为圆心,半径等于1的圆.圆心到直线y=kx+1的距离为=0,故圆心(0,1)在直线上,故直线和圆相交,故选A.根据圆的方程,先求出圆的圆心和半径,求出圆心到直线y=kx+1的距离,再和半径作比较,可得直线与圆的位置关系.本题主要考查求圆的标准方程的特征,直线和圆的位置关系,点到直线的距离公式,属于中档题.8.执行如图所示的程序框图,如果输入的N=10,那么输出的S=()A.45B.50C.55D.66【答案】C【解析】解:∵输入N的值为10,第一次执行循环体后:S=1,k=2,不满足退出循环的条件;再次执行循环体后:S=3,k=3,不满足退出循环的条件;再次执行循环体后:S=6,k=4,不满足退出循环的条件;再次执行循环体后:S=10,k=5,不满足退出循环的条件;再次执行循环体后:S=15,k=6,不满足退出循环的条件;再次执行循环体后:S=21,k=7,不满足退出循环的条件;再次执行循环体后:S=28,k=8,不满足退出循环的条件;再次执行循环体后:S=36,k=9,不满足退出循环的条件;再次执行循环体后:S=45,k=10,不满足退出循环的条件;再次执行循环体后:S=55,k=11,满足退出循环的条件;故输出的S值为:55,故选:C由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.9.与直线x+2y+4=0垂直的抛物线y=x2的切线方程是()A.2x-y+3=0B.2x-y-3=0C.2x-y+1=0D.2x-y-1=0【答案】D【解析】解:设切点为(m,n),y=x2的导数为y′=2x,则切线的斜率为k=2m,由于切线与直线x+2y+4=0垂直,则k=2m=2,解得m=1,n=1,k=2,即有切线的方程为y-1=2(x-1),即为2x-y-1=0,故选:D.设切点为(m,n),求出导数,求得切线的斜率,再由两直线垂直的条件可得切线的斜率,解得m=1,n=1,k=2,由点斜式方程即可得到切线方程.本题考查导数的运用:求切线方程,主要考查导数的几何意义和两直线垂直的条件,正确求出导数和设出切点是解题的关键,属于基础题.10.椭圆mx2+ny2=1与直线x+y=1交于M,N两点,MN的中点为P,且OP的斜率为,则的值为()A. B. C. D.【答案】A【解析】解:设M(x1,y1),N(x2,y2),P(x0,y0),∴①,②,由题意M,N在椭圆上,可得,两式相减可得m(x1-x2)(x1+x2)+n(y1-y2)(y1+y2)=0③,把①②代入③整理可得,故选:A.设M(x1,y1),N(x2,y2),P(x0,y0)由①,②及M,N在椭圆上,可得利用点差法进行求解本题主要考查了直线与椭圆相交的位置关系,在涉及到与弦的斜率及中点有关时的常用方法有两个:①联立直线与椭圆,根据方程求解②利用“点差法”,而第二种方法可以简化运算,注意应用.二、填空题(本大题共5小题,共20.0分)11.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为______ .【答案】【解析】解:利用几何概型,其测度为线段的长度.∵|x|≤1得-1≤x≤1,∴|x|≤1的概率为:P(|x|≤1)=.故答案为:.本题利用几何概型求概率.先解绝对值不等式,再利用解得的区间长度与区间[-1,2]的长度求比值即得.本题主要考查了几何概型,简单地说,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.12.在空间直角坐标系中,点(-2,1,4)关于x轴的对称点的坐标是______ .【答案】(-2,-1,-4)【解析】解:∵在空间直角坐标系中,点(x,y,z)关于x轴的对称点的坐标为:(x,-y,-z),∴点(-2,1,4)关于x轴的对称点的坐标为:(-2,-1,-4).故答案为:(-2,-1,-4).先根据空间直角坐标系对称点的特征,点(x,y,z)关于x轴的对称点的坐标为只须将横坐标、竖坐标变成原来的相反数即可,即可得对称点的坐标.本小题主要考查空间直角坐标系、空间直角坐标系中点的坐标特征等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.13.根据如图的程序语句,当输入X的值为2时,输出结果为______【答案】6【解析】解:本程序语句对应的功能是求函数y=,,>,则当x=2时,y=2×(2+1)=2×3=6,故答案为:6根据程序语句,结合条件结果进行求解即可.本题主要考查程序框图的识别和应用,根据条件结果进行求解是解决本题的关键.14.直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2= ______ .【答案】2【解析】解:由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,∴==cos45°=,∴a2+b2=2,故答案为:2.由题意可得,圆心(0,0)到两条直线的距离相等,且每段弧长都是圆周的,即==cos45°,由此求得a2+b2的值.本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,得到==cos45°是解题的关键,属于基础题.15.已知动圆M与圆O1:x2+y2+6x+5=0外切,同时与圆O2:x2+y2-6x-91=0内切,曲线C为动圆圆心M的轨迹;则下列命题中:(1)动圆圆心M的轨迹方程是+=1;(2)若∠O1MO2=60°,则S=27;(3)以坐标原点为圆心半径为6的圆与曲线C没有公共点;(4)动点M(x,y),(y≠0)分别与两定点(-6,0),(6,0)连线的斜率之积为-,其中正确命题的序号是:______ .【答案】(1)(4)【解析】解:对于(1)圆O1:x2+y2+6x+5=0,即(x+3)2+y2=4的圆心为(-3,0),半径为2;圆O2:x2+y2-6x-91=0,即(x-3)2+y2=4的圆心为(3,0),半径为10;设动圆圆心为M(x,y),半径为r;则|M01|=2+r,|MO2|=10-r;于是|M01|+|MO2|=12>|O1O2|=6所以,动圆圆心M的轨迹是以O1(-3,0),O2(3,0)为焦点,长轴长为12的椭圆.a=6,c=3,b2=a2-c2=27;所以M的轨迹方程为+=1.故(1)正确;对于(2)∵|M01|=2+r,|MO2|=10-r,|O1O2|=6,由余弦定理得,|O1O2|2=|M01|2+|MO2|2-2|M01|•|MO2|cos60°,∴36=(2+r)2+(10-r)2-2(2+r)(10-r)cos60°,解得r=4,∴|M01|=6,|MO2|=6,∴S=|M01|•|MO2|•sin60=9,故(2)不正确;对于(3)∵M的轨迹方程为+=1,b<6,a=6,∴以坐标原点为圆心半径为6的圆与曲线C有两个公共点,分别为(-6,0),(6,0),故(3)不正确;对于(4)动点M(x,y),(y≠0)分别与两定点(-6,0),(6,0)连线的斜率之积,为•===-=-,故(4)正确.故答案是:(1)(4)对于(1)求出两个圆的圆心与半径,设出动圆的圆心与半径,判断动圆的圆心轨迹,推出结果即可.对于(2),利用余弦定理,求出r,再根据三角形的面积公式计算即可,对于(3),根据b<6,a=6,得到以坐标原点为圆心半径为6的圆与曲线C有两个公共点,对于(4),根据斜率公式,代入计算即可.本题主要圆和圆的位置关系,以及椭圆的定义和性质,余弦定理和正弦定理,属于中档题.三、解答题(本大题共4小题,共40.0分)16.已知直线l经过直线l1:2x+y-5=0与l2:x-2y=0的交点A,(1)当直线l在两坐标轴上的截距相等时,求直线l的方程;(2)当点B(5,0)到l的距离最大值时,求直线l的方程.【答案】解:(1)由得A(2,1)…(1分)设直线:,则∴a=3,∴l:x+y-3=0…(4分)当a=0时,l:x-2y=0…(6分)∴l:x+y-3=0或x-2y=0(2)由题意:当l⊥AB时,B到l的距离最大∵…(8分)∴直线l的方程y=3x-5…(10分)【解析】(1)首先求出A的坐标,因为直线在坐标轴的截距相等,所以分别设截距为0和相等但是不为0解答;(2)由题意,得到AB⊥直线l,求出l的斜率,利用点斜式求方程.本题考查了直线方程的求法;采用了待定系数法求参数;属于基础题.现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(Ⅰ)用表中字母列举出所有可能的结果;(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.【答案】解:(Ⅰ)用表中字母列举出所有可能的结果有:(A,B)、(A,C)、(A,X)、(A,Y)、(A,Z)、(B,C)、(B,X)、(B,Y)、(B,Z)、(C,X)、(C,Y)、(C,Z)、(X,Y)、(X,Z )、(Y,Z),共计15个结果.(Ⅱ)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,则事件M包含的结果有:(A,Y)、(A,Z)、(B,X)、(B,Z)、(C,X)、(C,Y),共计6个结果,故事件M发生的概率为=.【解析】(Ⅰ)用表中字母一一列举出所有可能的结果,共15个.(Ⅱ)用列举法求出事件M包含的结果有6个,而所有的结果共15个,由此求得事件M发生的概率.本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.18.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.【答案】解:(1)由圆C:x2+y2-8y=0,得x2+(y-4)2=16,∴圆C的圆心坐标为(0,4),半径为4.设M(x,y),则,,,.由题意可得:.即x(2-x)+(y-4)(2-y)=0.整理得:(x-1)2+(y-3)2=2.∴M的轨迹方程是(x-1)2+(y-3)2=2.(2)由(1)知M的轨迹是以点N(1,3)为圆心,为半径的圆,由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.∵k ON=3,∴直线l的斜率为-.∴直线PM的方程为,即x+3y-8=0.则O到直线l的距离为.又N到l的距离为,∴|PM|==.∴.【解析】(1)由圆C的方程求出圆心坐标和半径,设出M坐标,由与数量积等于0列式得M的轨迹方程;(2)设M的轨迹的圆心为N,由|OP|=|OM|得到ON⊥PM.求出ON所在直线的斜率,由直线方程的点斜式得到PM所在直线方程,由点到直线的距离公式求出O到l的距离,再由弦心距、圆的半径及弦长间的关系求出PM的长度,代入三角形面积公式得答案.本题考查圆的轨迹方程的求法,训练了利用向量数量积判断两个向量的垂直关系,训练了点到直线的距离公式的应用,是中档题.19.已知椭圆C的左、右焦点分别为F1,F2,椭圆的离心率为,且椭圆经过点,.(1)求椭圆C的标准方程;(2)线段PQ是椭圆过点F2的弦,且,求△PF1Q内切圆面积最大时实数λ的值.【答案】解:(1)设椭圆的标准方程为(a>b>0),则∵椭圆的离心率为,且椭圆经过点,,∴,,又a2=b2+c2,∴a2=4,b2=3,∴…(4分)(2)显然直线PQ不与x轴重合当直线PQ与x轴垂直时,|PQ|=3,|F1F2|=2,;…(5分)当直线PQ不与x轴垂直时,设直线PQ:x=ky+1,k≠0代入椭圆C的标准方程,整理,得(3+4k2)y2+6ky-9=0,…(7分)令t=3+4k2,∴>,,∵<<,由上,得,∴当直线PQ与x轴垂直时最大,且最大面积为3…(10分)设△PF1Q内切圆半径r,则S=4r≤3,即,此时直线PQ与x轴垂直,△PF1Q内切圆面积最大∴,…(12分)【解析】(1)设椭圆的标准方程,利用椭圆的离心率为,且椭圆经过点,,结合a2=b2+c2,求出a2=4,b2=3,从而可求椭圆C的标准方程;(2)分类讨论,确定当直线PQ与x轴垂直时最大,进而可求△PF1Q内切圆面积最大时实数λ的值.本题考查椭圆的标准方程与几何性质,考查分类讨论的数学思想,考查三角形面积的计算,属于中档题.高中数学试卷第11页,共11页。
高中2013级第二学年末教学质量测试思想政治参考答案和评分标准第Ⅰ卷(选择题,共48分)一、选择题(每小题3分,共48分)1—5 CBABC 6—10 DBBCA 11—15 BDBCA16—20 CABAA 21—24DCCD第Ⅱ卷(非选择题,共52分)25.(1)①实践是认识的来源和动力。
党基于经济社会发展的实际情况,提出并推动依法治国理论发展和完善;(4分)②认识具有反复性和无限性,在实践中认识和发现真理,在实践中检验和发展真理。
法治理论随着实践深入,不断向前发展;(3分)③真理是具体的有条件的。
随着客观实际的变化,法治理论不断深化,达到主观与客观具体的历史的统一。
(3分)(2)①矛盾即对立统一,斗争性和同一性是矛盾的基本属性。
法治与德治是既对立又统一的关系。
(2分)②矛盾具有斗争性,矛盾双方相互排斥、相互对立。
法治与德治二者的特点和功能存在差异。
(2分)③矛盾具有同一性,矛盾双方相互依赖、相互贯通。
法治与德治二者相辅相成,相互促进。
(2分)④建设社会主义法治国家,必须坚持依法治国和以德治国相结合,既重视发挥法律的规范和约束作用,又重视发挥道德的感化和教育作用。
(2分)(3)①善于抓住重点,集中力量解决主要矛盾。
推行权力清单制度,对重点部门进行重点清理和优化。
(3分)②运用系统优化的方法,着眼于事物的整体性、有序性和优化趋向。
全面细化规范司法各个环节、标准和程序。
(3分)③坚持辩证否定观,树立创新意识。
创新采用网格化管理、“法律七进”、网络理政等载体。
(3分)④坚持矛盾普遍性和矛盾特殊性的统一。
做到借鉴与自身特色的结合。
(3分)26.(1)①联系具有多样性,要求我们注意分析和把握四川在“一带一路”新机遇中存在和发展的各种条件,一切以时间、地点和条件为转移;(3分)②既要利用有利条件,又要克服不利条件,建设“一带一路”要牢牢把握机遇,沉着应对挑战;(3分)③既要把握事物的内部条件,也要关注事物的外部条件,建设“一带一路”要全面地审视和分析当今世界格局和国内条件的深刻变化;(2分)④既要注重客观条件,又要恰当运用自身的主观条件,从国内国际的实际情况出发,实现利益共赢的经济增长格局。
XXX2014-2015学年下学期高二年级期末考试语文试卷后有答案XXX2014-2015学年下学期高二年级期末考试语文试卷后有答案本试卷满分为150分,考试时间150分钟。
第I卷50分一、基础与阅读(17分)材料一古人云“冒之以衣服,旌之以章旗,所以重其威也”,通过服饰表明贵贱在夏商时期当已形成。
我们通过《孝经》对服饰的论述片段,便能了解到古代“不僭上逼下”的着装要求。
穿错颜色,不但会受到惩罚,甚至还会招来杀身之祸。
清朝XXX 赐死年羹尧时,列举的罪状有几条就跟着装用色有关——用鹅黄色的荷包。
用黄布包裹衣服。
中国历代的服饰色彩与五行思想有着密切的关系。
从历代的服饰色彩演变中不难发现,古代服饰色彩始终以正色为尊,注重衣色之纯,五种正色白、青、黑、赤、黄源于五行金、木、水、火、土。
而历代所崇尚的颜色各异,《檀弓》有云“夏后氏尚黑,XXX尚白,XXX”,《史记·殷本纪》也记述XXX“易服色。
尚白”。
《礼记·王藻》云:“衣杂色,裳间色,非列采不入公门。
”个中的“列采”就是杂色服饰,也就是说,没有穿着杂色衣服是不能进入公门的。
作为封建社会初步的秦朝尚水德,于是黑色便成为打扮的首要颜色,“郊祀之服皆以袀玄”。
皇帝也经常是“玄衣绛裳”,即黑色上衣和深红色下衣,同样是以黑色为主调。
普通百姓单调的服色与礼制限制有关,“散民不敢服杂彩”(《春秋繁露·服制》)的描述正反映了这一现实。
《汉书·五行志》也曾记录,XXX微服私行,为了不引起人们的注意.遂穿着“白衣”。
封建社会中期当前,关于打扮颜色和等级的划定越发明确具体。
XXX虽然划定“贵贱异等,杂用五色”,但没有特别划定皇帝常服的服色。
而到了唐初,以黄袍衫等为皇帝常服,厥后逐渐用赤黄,“遂禁XXX不得以XXX为衣服杂饰”。
今后当前,黄色就成为了皇帝御用的颜色,成为皇帝王权的象征。
据《清史稿》记录:“龙袍,色用明黄。
领、袖俱石青,片金缘。
保密 ★ 启用前【考试时间: 7月3日上午10:10-11:50】绵阳市第二学年末教学质量测试数学试题(文科)本试卷分为试题卷和答题卷两部分,其中试题卷由第I 卷(选择题)和第Ⅱ卷组成,共4页;答题卷共4页.满分100分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共48分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上.1.若空间两个角α 与β 的两边对应平行,当 α = 60︒ 时,则 β 等于A .30︒B .30︒ 或120︒C .60︒D .60︒ 或120︒2.某化工厂有职工320人,其中工人240人,管理人员48人,其余为后勤人员.在一次职工工作情况抽样调查中,如果用分层抽样的方法,抽得工人的人数是30人,那么这次抽样调查中样本的容量是A .30B .40C .48D .2403.若空间任意一点O 和不共线的三点A ,B ,C ,满足z y x ++=(x ,y ,z ∈R ),则x + y + z = 1是四点P ,A ,B ,C 共面的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件4.若A ( 2, -4, -1 ),B (-1,5,1),C (3,-4,1),令a =,b =,则a + b 对应的坐标为A .(-5,9,-2)B .(-5,-9,-2)C .(-5,-9,2)D .(5,-9,-2)5.在两个信封内装有6张分别写有数字0,1,2,3,4,5的卡片,现从每个信封中各任取1张卡片,则这两张卡片上的数字之和等于7的概率为 A .31B .61 C .81 D .916.已知(x 2 + 1)(2x -1)9 = a 0 + a 1x + … + a 11x 11,则a 1 + a 2 + … + a 11 的值为A .3B .2C .1D .-1 7.平行六面体A 1B 1C 1D 1-ABCD 中,与1AC 相等的是A .111CC AD AB ++ B .112-C .1CAD .11++8.已知四棱锥P -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC = 60°,PA ⊥底面ABCD ,PA = 1,则异面直线AB 与PD 所成的角的余弦值为 ABC .46 D9.若样本x 1,x 2,…,x n 的平均数为6,方差为2,则对于样本2x 1 + 1,2x 2 + 1,…,2x n + 1,下列结论正确的是A .平均数为12,方差为4B .平均数为12,方差为8C .平均数为13,方差为4D .平均数为13,方差为810.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,若正四面体EFGH的表面积为T ,则ST等于 A .94 B .91 C .41 D .3111.已知球O 的表面积为4π,A 、B 、C 为球面上三点,面OAB ⊥面ABC ,A 、C 两点的球面距离为2π,B 、C 两点的球面距离为3π,则A 、B 两点的球面距离为 A .3π B .2πC .23πD .34π12.如图,△ADE 为正三角形,四边形ABCD 为正方形,平面ADE ⊥平面ABCD .点P 为平面ABCD 内的一个动点, 且满足PE = PC ,则点P 在正方形ABCD 内的轨迹为A .B .C .D .第Ⅱ卷(非选择题,共52分)注意事项:1.用钢笔或圆珠笔将答案直接写在答题卷上.2.答卷前将答题卷的密封线内项目填写清楚.二、填空题:本大题共4小题,每小题3分,共12分.把答案填在答题卷题中横线上.13.统计某校高二800名学生的数学会考成绩, 得到样本频率分布直方图如右.规定不低于 60分为及格,不低于80分为优秀,则可估ABDCDABC计该校的及格率是 ,优秀人数 为 .14.甲、乙、丙三名大学生同时到一个用人单位应聘,他们能被选聘中的概率分别为52,43,31,且各自能否被选聘中是无关的,则恰好有两人被选聘中的概率为 . 15.正四棱柱A 1B 1C 1D 1-ABCD 中,已知AA 1 = 2,AB = AC = 1,则此正四棱柱的外接球的体积等于 .16.在平面几何中,△ABC 的内角平分线CE 分AB所成线段的比为BCAC EB AE ,把这个结论类比到空间:在三棱锥A -BCD 中(如图),平面DEC 平分二面角A -CD -B 且与AB 相交于E ,则得到的类比的结论是 .三、解答题:本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)某单位按性别比例在男女职工中抽取70人进行体重调查,其中男职工40(1)从体重在(75,85]的男职工中任取两名,求至少有一名男职工体重在(80,85]间的概率;(2)若男职工体重超过75千克,女职工体重超过60千克,则称为“体重偏胖”,计算该单位“体重偏胖”的职工比例;(3)若该单位再次随机组织100人进行体重测试,发现这100人中恰有5人上次已经做过体重测试,试估计该单位共有男、女职工各多少人?18.(本题满分10分)网络工程师是通过学习和训练,掌握网络技术的理论知识和操作技能的网络技术人员,他能够从事计算机信息系统的设计、建设、运行和维护工作.要获得网络工程师资格证书必须依次通过理论和操作两项考试,只有理论成绩合格时,才可继续参加操作的考试.已知理论和操作各只允许有一次补考机会,两项成绩均合格方可获得证书.现某人参加网络工程师证书考试,根据以往模拟情况,理论考试成绩每次合格的概率均为32,操作考试成绩每次合格的概率均为21,假设各次考试成绩合格与否均互不影响.(1)求他不需要补考就可获得网络工程师证书的概率;(2)求他恰好补考一次就获得网络工程师证书的概率.EA19.(本题满分10分)如图,把棱长为1的正方体A1B1C1D1ABCD放在空间直角坐标系D-xyz中,P为线段AD1上一点,1PDλ=(λ>0).(1)当λ= 1时,求证:PD⊥平面ABC1D1;(2)求异面直线PC1与CB1所成的角;(3)求三棱锥D-PBC1的体积.20.(本题满分10分)如图,在正四棱柱ABCD-A1B1C1D1AA1 =2,AB = 1,E是DD1的中点.(1)求直线B1D和平面A1ADD1所成角的大小;(2)求证:B1D⊥AE;(3)求二面角C-AE-D的大小.数学(第II卷)答题卷(文科)注意事项:答卷前将答题卷密封线内的项目填写清楚.二、填空题:本大题共4小题,每小题3分,共12分.把答案填在题中横线上.13.,.14..15..16..三、解答题:本大题共4小题,共40分.解答应写出文字说明、证明过程或演算17.(本题满分10分)P18.(本题满分10分)19.(本题满分10分)20.(本题满分10分)第二学年末教学质量测试数学答案(文科)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.DBCA DABA DBCA二、填空题:本大题共4小题,每小题3分,共12分.把答案填在题中横线上.13.80%,160人14.602315.π616.BCDACDSSEBAE∆∆=三、解答题:本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.17.(1)P =2426315CC-=.……………………4分(2)该单位“体重偏胖”的职工比例为(4 + 2 + 3 + 1)÷ 70 =17.…………7分(3)共有职工70 ÷5100= 1400人,其中男职工1400 ×47= 800人,女职工600人.……………………10分18.设“理论第一次考试合格”为事件A1,“理论补考合格”为事件A2;“操作第一次考试合格”为事件B1,“操作补考合格”为事件B2.……………………2分(1)不需要补考就获得证书的事件为A1 ·B1,注意到A1与B1相互独立,则P(A1 ·B1)= P(A1)·P(B1)=32×21=31.答:该同志不需要补考就获得网络工程师证书的概率为31.……………………6分(2)恰好补考一次的事件是211121BBABAA+,则P(211121BBABAA+)= P(121BAA)+ P(211BBA)=31×32×21+32×21×21=185.答:该同志恰好补考一次就获得网络工程师证书的概率为185.……………………10分19.(1)当λ= 1时,点P为线段AD1的中点,有PD⊥AD1,P(0,21,21),而B(1,1,0),∴ PD =(0,-21,-21),PB =(1,21,-21). 则 PD · PB = 0×1 +(-21×21)+(-21)×(-21)= 0,因而 PD ⊥PB ,∴ PD ⊥平面ABC 1D 1. …………………… 4分 (2)∵1λ=(λ>0),∴ P (0,λ+11,λλ+1), 又 C 1(1,0,1),C (1,0,0),B 1(1,1,1), ∴ PC 1 =(1,-λλ+1,1-λλ+1)=(1,-λ+11,λ+11CB 1 =(0,1,1). ∵ PC 1 · CB 1 = 0×1 + 1×(-λ+11)+ 1×λ+11= 0, ∴PC 1⊥CB 1,即异面直线PC 1与CB 1所成的角为90︒. …………………… 7分 (3)∵ AD 1∥CB 1,P 为线段AD 1上的点, ∴ 三角形PBC 1的面积为221221=⋅⋅=S . 又 ∵ CD ∥平面ABC 1D 1,∴ 点D 到平面PBC 1的距离为22=h , 因此三棱锥D -PBC 1的体积为6122223131=⋅⋅=⋅⋅=h S V .……………… 10分20.(1)连结A 1D .∵ ABCD -A 1B 1C 1D 1是正四棱柱,∴ A 1B 1⊥平面A 1ADD 1, ∴ A 1D 是B 1D 在平面A 1ADD 1上的射影, ∴ ∠A 1DB 1是直线B 1D 和平面A 1ADD 1所成的角. 在RtΔB 1A 1D 中,tan ∠A 1DB 1 =3331111==D A B A , ∴∠A 1DB 1 = 30°,即直线B 1D 和平面A 1ADD 1,所成的角30°. …………… 4分 (2)在Rt △A 1AD 和Rt △ADE 中, ∵21==DEADAD A A ,∴△A 1AD ∽△ADE ,于是 ∠A 1DA =∠AED . ∴ ∠A 1DA +∠EAD =∠AED +∠EAD = 90°,因此 A 1D ⊥AE .由(1)知,A 1D 是B 1D 在平面A 1ADD 1上的射影,根据三垂线定理,得 B 1D ⊥AE .…………………… 7分(3)设A 1D ∩AE = F ,连结CF .因为CD ⊥平面A 1ADD 1,且AE ⊥DF ,所以根据三垂线定理,得 AE ⊥CF , 于是∠DFC 是二面角C -AE -D 的平面角. 在Rt △ADE 中,由 AD · DE = AE · DF ⇒ 31=⋅=AE DE AD DF . 在Rt △FDC 中,tan ∠DFC =3=DFCD, ∴ ∠DFC = 60°,即二面角C -AE -D 的大小是60°. …………………… 10分另法 ∵ ABCD -A 1B 1C 1D 1是正四棱柱, ∴ DA 、DC 、DD 1两两互相垂直.如图,以D 为原点,直线DA ,DC ,DD 1分别为x 轴,y 轴,z 轴,建立空间直角坐标系. 则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),B 1(1,1,2).…………………… 2分(1)连结A 1D ,则 A 1B 1⊥平面A 1ADD 1, ∴ A 1D 是B 1D 在平面A 1ADD 1上的射影,因此∠A 1DB 1是直线B 1D 和平面A 1ADD 1所成的角. ∵ A 1(1,0,2),∴ 1=(1,0,2),1=(1,1,2), ∴ cos 23||||,111111=⋅<DB DA DB DA ,从而 ∠A 1DB 1 = 30°,即直线B 1D 和平面A 1ADD 1所成角的大小是30°.…………………… 5分(2)∵ E 是DD 1的中点,∴ E ⎪⎪⎭⎫ ⎝⎛22,0,0,∴ ,22,0,1⎪⎪⎭⎫ ⎝⎛-=AE ∵ DB ·1=-1 + 0 + 1 = 0,∴ B 1D ⊥AE .…………………… 7分(3)设A1D∩AE = F,连结CF.∵CD⊥平面A1ADD1,且AE⊥DF,则由三垂线定理得AE⊥CF,∴∠DFC是二面角C-AE-D的平面角.根据平面几何知识,可求得F ,32,0,31⎪⎪⎭⎫⎝⎛∴.32,1,31,32,0,31⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫⎝⎛--=∴21||||,cos=⋅>=<FCFD,∴二面角C-AE-D的大小是60°.……………………10分资料来源:回澜阁教育免费下载天天更新。
2014-2015学年高二12月月考 数学文试题第I 卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个备选项中,只有一项是符合题目要求的。
1、若直线024:0132:21=+-=-+my x l y x l 与直线互相垂直,则m 的值是( ) ()A 1=m ()B 2=m ()C 38=m ()D 43=m 2、某大学数学系共有学生5 000人,其中一、二、三、四年级的人数比为4∶3∶2∶1,要用分层抽样的方法从数学系所有学生中抽取一个容量为200的样本,则应抽取三年级的学生人数为 ( ) (A) 80 (B) 40 (C) 60 (D) 20 3、在圆06222=--+y x y x 内,过点E(0,1)的最短弦AC 的长度为( )(A )25 (B)52 (C) 5 (D)2204、 阅读程序框图,运行相应的程序,当输入x 的值为25-时, 输出x 为 ( )(A) 1 (B) 2 (C) 3 (D) 45、过点(0,1)与抛物线22(0)y px p =>只有一个公共点的直线的条数是( )()A 0 ()B 1 ()C 2 ()D 3 6、对任意实数[),,2+∞∈a ,点)2,(a a P -与圆04:22=-+y y x C 的位置关系是(A )点P 在圆上 (B)点P 在圆外(C ) 点P 在圆内 或圆上 (D )点P 在圆外或圆上7、设线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动, 且|AB|=4,点是线段AB 的中点,则点M 的轨迹方程是(A )14922=+y x (B). 422=+y x (C). 422=-y x ( D)192522=+x y8、设关于x 的函数b ax x x f -+=2)(,从集合{}30≤≤=x x A 中任取一个元素为a ,从集合{}20≤≤=x x B 中任取一个元素为b ,则使1)1(≥f 的概率为 ( ). (A )32 (B)31 (C) 41 (D)529、已知F 1、F 2是椭圆的两个焦点,满足21MF MF ⊥的点M 总在椭圆内,则椭圆离心率的取值范围是(A) (12,1) (B) (0,12] (C) (0,22) (D) [22,1)10、已知直线)0)(2(>+=k x k y 与抛物线C x y 82=相交A 、B 两点,F 为C 的焦点。
四川省绵阳市高中2014-2015学年高二上学期期末教学质量测试高中2013级第三学期末教学质量测试语文参考答案及评分标准一、(8分)1.C (A.畏葸.xǐ B.请帖.tiě假模.假式mo D.惬.意qiè)2.A (B.嗔.怪首.饰C.鞭笞.D.嬉闹阴谋诡.计)3.B (A.原形:原来形状,本来面目,含贬义。
原型:原始的模型;特指文学艺术作品中塑造人物形象所依据的现实生活中的人。
B.命根子:比喻最受人重视的晚辈或最重要或最受重视的事物。
C.不赞一词:原指文章写得好,别人不能再添一句话。
现在也指一言不发。
D.甚嚣尘上:形容消息盛传,议论纷纷。
现常形容谣传或谬论十分嚣张。
)4.C (A.否定不当,去掉“不要”;B.主语残缺,将“哈文”提到句首;D.并列不当,“文学、书法、艺术”有包含关系)四、(23分)10.(6分)(1)为何后来竟依仗满人,狐假虎威,对外称替明朝复仇,暗地里却作了清朝的帮凶?(3分。
画线处各1分) (2)千年以后,史书会有记载,(天下人)将认为你是怎样的人呢?(3分。
画线处各1分)11.(3分)①明朝昔日对吴三桂的恩宠;②永历皇帝自己的艰难处境;③吴三桂将来背负的历史名分;④清朝对吴三桂行为的看法(吴三桂在满清的前途)(3分。
一点1分,答对三点得满分)12.(3分)读书以为学,缵言以为文,非以夸多而斗靡也;盖学所以为道,文所以为理耳。
苟行事得其宜,出言适其要,虽不吾面,吾将信其富于文学也。
(韩愈《送陈秀才彤序》)(3分。
对两处1分)13.(5分)(1)用“故人何处”设问,表达了词人不知故人在哪里的惆怅,(2分)“一夜溪亭雨”的回答,加重了这种情感。
(1分)(2)暑去秋来,燕子长大,(1分)词人不禁生发时光易逝,光阴难留的悲叹。
(1分)14.(6分)(1)所守或匪亲(2)君子生非异也(3)唯见江心秋月白(4)白帝城高急暮砧(5)赢粮而景从(6)涂有饿莩而不知发(6分。
每小题1分,有错别字该小题不得分)五、(14分)15.(2分)C、E(C.“挣了足够多的钱回家”有误;E.小说基本上用记叙、描写的方式完成,情节比较舒缓)(2分。
四川省绵阳市高中2014-2015学年高一上学期期末教学质量测试高中2014级第一学期末教学质量测试语文参考答案及评分标准一、(14分,每小题2分)1.B(A.è yǐ/yí zì B.ào/niù pō/pōu lîng/nîng C.bî/bi hàn nì D. lìn/nínggù yìn)2.C(A.涛—滔 B.合-和奋—愤 D.瞋—嗔陨—殒)3.A(偶然:事理上不一定要发生而发生的事;偶尔:间或,有时候。
延宕:拖延;延续;指照原来样子继续下去,延长下去。
庄重:严肃稳重;凝重:沉重。
)4.D(“长歌当哭”指以放声歌咏代替哭泣,多指用诗文抒发胸中的悲愤。
此处使用“长歌当哭”犯了望文生义的错误。
)5.C(A.配搭不当,“规模”不可以说“加快” 。
B.残缺,“并”后加“表示”。
D.关联词位置不当,“不但”应放在“学校”后面。
)6.A7.B二、(4分,每小题2分,)8. D(谢罪、道歉)9.C(连词,表顺接。
A.动词,用 / 连词,因为; B.才 / 竟然;D.动词,到 / 助词,宾语前置的标志。
)三、(23分)10.(6分)(13分,划线处、大意各1分)(23分,划线处各1分)11.(3分)①宽厚容人。
(不杀秦王子婴)②废除严苛的秦法,为百姓除害。
③善于纳谏用人。
④勇于向对手示弱(见谢项羽)(答对三点即得满分)12.(3译文:有益的喜好有三种,有害的喜好有三种。
以礼乐调节自己为喜好,以称道别人的好处为喜好,以有许多贤德之友为喜好,这是有益的。
喜好骄傲,喜欢闲游,喜欢大吃大喝,这就是有害的。
13. (5分)(1)春天,绿草如丝,葱葱茸茸,蔓延大地,一派绿的世界;各种各样的树上,红花竞放,绚丽夺目。
绿的氛围,红的点染,一派生机勃勃的景象。
(3分,划线处每处1分)(2)表达主人公对春光易逝,红颜难留的慨叹,(1分)惜春、惜时的急切心情。
2015-2016学年四川省绵阳市高二(下)期末数学试卷(文科)一、选择题(共12小题,每小题4分,满分48分)1.已知命题p:∀x∈R,lgx=2,则¬p是()A.∀x∉R,lgx=2 B.∃x0∈R,lgx0≠2 C.∀x∈R,lgx≠2 D.∃x0∈R,lgx0=22.下列不等式中成立的是()A.若a>b,则ac2>bc2B.若a>b,则a2>b2C.若a<b<0,则a2<ab<b2D.若a<b<0,则>3.已知i是虚数单位,若复数z满足i•z=1+i,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i4.函数y=x+在(1,+∞)上取得最小值时x的取值为()A.B.C.2 D.35.设a=lge,b=(lge)2,c=lg,其中e为自然对数的底数,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a6.下列说法正确的是()A.“a+5是无理数”是“a是无理数”的充分不必要条件B.“|a|>|b|”是“a2>b2”的必要不充分条件C.命题“若a∈M,则b∉M”的否命题是“若a∉M,则b∈M”D.命题“若a、b都是奇数,则a+b是偶数”的逆否命题是“若a+b不是偶数,则a、b都不是奇数”7.已知函数y=f(x)(x∈R)的图象如图所示,f′(x)是f(x)的导函数,则不等式(x﹣1)f′(x)<0的解集为()A.(﹣∞,)∪(1,2)B.(﹣1,1)∪(1,3)C.(﹣1,)∪(3,+∞)D.(﹣∞,﹣1)∪(3,+∞)8.关于x的一元二次方程ax2+2x﹣1=0有两个不相等正根的充要条件是()A.a<﹣1 B.﹣1<a<0 C.a<0 D.0<a<19.设变量x,y满足约束条件,则目标函数z=3x﹣y的取值范围是()A.B.C.[﹣1,6] D.10.已知xy>0,若+>m2+3m恒成立,则实数m的取值范围是()A.m≥﹣1或m≤﹣4 B.m≥4或m≤﹣1 C.﹣4<m<1 D.﹣1<m<411.已知函数f(x)=在[1,+∞)上为增函数,则实数a的取值范围是()A.0<a≤B.a C.<a≤D.a≥12.函数f(x)=a x﹣x3(a>0,且a≠1)恰好有两个不同的零点,则实数a的取值范围是()A.1<a<e B.1<a<eC.0<a<e D.e<a<e二、填空题(共4小题,每小题3分,满分12分)13.已知函数f(x)=13﹣8x+x2,且f′(x0)=4,则x0的值为.14.若复数z=(m2﹣m)+mi是纯虚数,则实数m的值为.15.某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是0.8πr2分,其中r是瓶子的半径,单位是厘米.已知每出售1mL饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6cm,则瓶子半径为cm时,每瓶饮料的利润最小.16.设x>0,y>0,且+=2,则2x+y的最小值为.三、解答题(共3小题,满分30分)17.设p:对任意的x∈R,不等式x2﹣ax+a>0恒成立,q:关于x的不等式组的解集非空,如果“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.18.已知函数f(x)=﹣x4+ax3+bx2的单调递减区间为(0,),(1,+∞).(1)求实数a,b的值;(2)试求当x∈[0,2]时,函数f(x)的最大值.19.已知f(x)=﹣x2﹣lnx,设曲线y=f(x)在x=t(0<t<2)处的切线为l.(1)判断函数f(x)的单调性;(2)求切线l的倾斜角θ的取值范围;(3)证明:当x∈(0,2)时,曲线y=f(x)与l有且仅有一个公共点.以下是选做题,考生只需在第20、21、22题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号。
高中2014级第二学年末教学质量测试数学(文科)参考答案及评分意见一、选择题(每小题4分,共48分)1~5 BDACB 6~10 CABDC 11~12 AA12.解析:原题意等价于方程a x =x 3恰有两个不同的解.当0<a <1时,y =a x 与y =x 3的图象只有一个交点,不符合题意.当a >1时,y =a x 与y =x 3的图象在x ∈(-∞,0)上没有交点,所以只考虑x >0,于是可两边同取自然对数,得x ln a =3ln x ,即ln a =xxln 3,令g (x )=x x ln 3,则2ln 33)(x xx g -=',于是当x ∈(0,e )时,g (x )单增,且当x <1时,当g (x )<0,x ∈(e ,+∞)时,g (x )单减且g (x )>0.∴要有两个交点,0<ln a < g (e )=e3,即1<a <e e 3.二、填空题(每小题3分,共12分)13.2314.115.2 16.3三、解答题(每小题10分,共40分)17.解:由已知有要使p 正确,则必有Δ=(-a )2-4a <0,解得0<a <4.…………………2分由23-+x x ≥0,可得x ≤-3,或x >2, ∴ 要使q 正确,则a >2.………………………………………………………………4分 由“p ∧q ”为假命题,“p ∨q ”为真命题可知,p 和q 有且只有一个正确.………5分 若p 真q 假,则0<a ≤2;………………………………………………………………7分 若p 假q 真,则a ≥4. …………………………………………………………………9分 ∴ 所求a 的取值范围为)4[]20(∞+⋃,,. ………………………………………10分 18.解:(1))(x f '=-4x 3+3ax 2+bx =-x (4x 2-3ax -b ),………………………………………2分∵ 函数f (x )的单调递减区间为(0,21),(1,+∞), ∴ 方程-x (4x 2-3ax -b )=0的根为x 1=0,x 2=21,x 3=1,………………………………3分 即4x 2-3ax -b =0的根为x 2=21,x 3=1, 于是43a =21+1,-4b =21,解得a =2,b =-2,…………………………………………5分(2)由(1)知,f (x )=-x 4-2x 3+x 2,)(x f '=-2x (2x -1)(x -1),分∴ f (x )在[0,21]上单调递减,在[21,1]上单调递增,在[1,2]上单调递减, 又∵ f (0)=0,f (1)=0,∴ f (x )在[0,2]有最大值0.…………………………………………………………10分 19.解:(1)f (x )的定义域为(0,+∞),由f (x )=281x --ln x ,得)(x f '=-41x -x 1,……………………………………………1分∴ )(x f '<0,于是f (x )在(0,+∞)上是减函数;……………………………………3分 (2)由(1)知,切线l 的斜率为tt t f 141)(--=',t >0, ∴ t t t f 141)(--='≤-2t t 141⋅=-1,(当且仅当tt 141=,即t =2时取“=”) ∵ 0<t <2,∴ )(t f '<-1,即切线的斜率范围为(-∞,-1), ∴ l 的倾斜角θ的取值范围为(2π,43π).…………………………………………6分(3)曲线y = f (x )在x =t 处的切线方程为)())((t f t x t f y +-'=. 设=)(x g f (x )-[)())((t f t x t f +-'],则)()()(t f x f x g '-'=', 于是g (t )=0,0)(='t g . 设h (x )=)(141)(t f x x x g '---=',则当x ∈(0,2)时,2141)(xx h +-='>0, ∴ )(x g '在(0,2)上是增函数,且0)(='t g ,∴ 当x ∈(0,t )时,)(x g '<0,g (x )在(0,t )上是减函数; 当x ∈(t ,2)时,)(x g '>0,g (x )在(t ,2)上是增函数, 故当x ∈(0,t )或x ∈(t ,2),g (x )>g (t )=0, ∴ 当且仅当x =t 时,f (x )=)())((t f t x t f +-',即当x ∈(0,2)时,曲线y =f (x )与l 有且仅有一个公共点.………………………10分以下是选做题,考生只需在第20、21、22题中任选一题作答,如果多做,则按所做的第一题计分.20.(1)证明:∵ CD //AP ,∴ ∠APE =∠ECD , ∵ ∠EDF =∠ECD , ∴ ∠APE =∠EDF . 又∵ ∠DEF =∠AEP ,∴ △DEF ∽△PEA .……………………………………………………………………5分 (2)解:∵ ∠EDF =∠ECD ,∠CED =∠FED , ∴ △DEF ∽△CED ,∴ DE ∶EC =EF ∶DE ,即DE 2=EF •EC , ∵ DE =6,EF =4,于是EC =9.∵ 弦AD 、BC 相交于点E ,∴ DE •EA =CE •EB . …………………………………7分 又由(1)知EF •EP =DE •EA ,故CE •EB =EF •EP ,即9×6=4×EP , ∴ EP =227. …………………………………………………………………………8分 ∴ PB =PE -BE =215,PC =PE +EC =245, 由切割线定理得:PA 2=PB •PC ,即PA 2=215×245,进而PA =2315.……………10分21.解:(1)由已知ρsin 2θ=4cos θ有ρ2sin 2θ=4ρcos θ,∴ y 2=4x ,即曲线C 的直角坐标方程为y 2=4x .………………………………………3分 (2)设点M 对应的参数为t 1,点N 对应的参数为t 2,则把⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 23211,代入y 2=4x 得3t 2-8t -16=0,……………………………………………6分 ∴ t 1+t 2=38,t 1t 2=316-, ………………………………………………………………7分 ∴ NA MA 11+=2111t t -=14)(21212212121=-+=-t t t t t t t t t t .…………………………10分 22.解:(1)当x ≤1时,f (x )=1-x +2-x =3-2x ,于是f (x )≥3变为3-2x ≥3,解得x ≤0,即此时不等式f (x )≥3的解为x ≤0; 当1<x <2时,f (x )=x -1+2-x =1,显然f (x )≥3不成立; 当x ≥2时,f (x )=x -1+x -2=2x -3,于是f (x )≥3变为2x -3≥3,解得x ≥3,即此时不等式f (x )≥3的解为x ≥3.∴ 综上不等式f (x )≥3的解集为{x | x ≤0,或x ≥3}. ………………………………5分 (2)由不等式|a +b |+|a -b |≥af (x )得aba b a -++≥f (x ),又∵a b a b a -++≥aba b a -++=2,∴ 2≥f (x ),即2≥|x -1|+|x -2|, 同(1)解此不等式得21≤x ≤25, 即实数x 的范围为21≤x ≤25.………………………………………………………10分。
绵阳市高中2014届第二次诊断性考试数 学(文科)第Ⅰ卷(选择题,共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合S ={1,2},集合T ={x |(x -1)(x -3)=0},那么S ∪T = A .∅B .{1}C .{1,2}D .{1,2,3}2.复数(1+i)2(1-i)= A .-2-2iB .2+2iC .-2+2iD .2-2i 3.执行右图的程序,若输入的实数x =4,则输出结果为A .4B .3C .2D .144.下列函数中定义域为R ,且是奇函数的是 A .()f x =x 2+x B .()f x =tan x C .()f x =x +sin xD .()f x =1lg1xx-+ 5.已知l ,m ,n 是三条不同的直线,α,β是不同的平面,则下列条件中能推出α⊥β的是 A .l ⊂α,m ⊂β,且l ⊥mB .l ⊂α,m ⊂β,n ⊂β,且l ⊥m ,l ⊥nC .m ⊂α,n ⊂β,m //n ,且l ⊥mD .l ⊂α,l //m ,且m ⊥β6.抛物线28x y =的焦点到双曲线2213y x -=的渐近线的距离是 A .1 B .2 CD .7.一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为 A .8+3πB .8+23πC .8+83πD .8+163π俯视图正视图侧视图8.已知O 是坐标原点,点(11)A -,,若点()M x y ,为平面区域220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,,上的一个动点,则|AM |的最小值是 ABCD9.已知△ABC 的外接圆的圆心为O ,半径为1,若345OA OB OC ++=0,则△AOC 的面积为 A .25B . 12C .310D .6510.若存在x 使不等式x x me-m 的取值范围为 A .1()e-∞-, B .1()e e-,C .(0)-∞,D .(0)+∞,第Ⅱ卷(非选择题,共100分)二.填空题:本大题共5小题,每小题5分,共25分. 11.tan300º=______.12.若直线l 1:x +(1+k )y =2-k 与l 2:kx +2y +8=0平行,则k 的值是_____. 13.右图的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为 . 14.已知A 是抛物线y 2=4x 上一点,F 是抛物线的焦点,直线F A 交抛物线的准线于点B (点B 在x 轴上方),若|AB |=2|AF |,则点A 的坐标为________.15.P 是以F 1,F 2为焦点的椭圆22221(0)x y a b a b+=>>上的任意一点,若∠PF 1F 2=α,∠PF 2F 1=β,且cos αsin(α+β)=35,则此椭圆的离心率为 . 三.解答题:本大题共6小题,共75分.解答应写出文字说明.证明过程或演算步骤. 16.(本题满分12分)已知向量a =(sin 2cos )x x ,,b =(2sin sin )x x ,,设函数()f x =a ⋅b . (Ⅰ)求()f x 的单调递增区间; (Ⅱ)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间7[]1212ππ,上的最大值和最小值. 17.(本题满分12分)已知首项为12的等比数列{a n }是递减数列,其前n 项和为S n ,且S 1+a 1,S 2+a 2,S 3+a 3成等差数列. (Ⅰ)求数列{a n }的通项公式;甲 乙 8 85 39 9 21 ● 5(Ⅱ)已知2log n n n b a a =⋅,求数列{b n }的前n 项和n T . 18.(本题满分12分)据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查(若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”),就“是否取消英语听力”的问题,调查统计的结果如下表:(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人?(Ⅱ)已知y ≥657,z ≥55,求本次调查“失效”的概率. 19.(本题满分12分)如图,四边形ABCD 为矩形,四边形ADEF 为梯形,AD //FE ,∠AFE =60º,且平面ABCD ⊥平面ADEF ,AF =FE =AB =12AD =2,点G 为AC 的中点.(Ⅰ)求证:EG //平面ABF ; (Ⅱ)求三棱锥B -AEG 的体积;(Ⅲ)试判断平面BAE 与平面DCE 是否垂直?若垂直,请证明;若不垂直,请说明理由. 20.(本题满分13分)已知圆心为C 的圆,满足下列条件:圆心C 位于x 轴正半轴上,与直线3x -4y +7=0相切,且被y 轴截得的弦长为,圆C 的面积小于13. (Ⅰ)求圆C 的标准方程;(Ⅱ)设过点M (0,3)的直线l 与圆C 交于不同的两点A ,B ,以OA ,OB 为邻边作平行四边形OADB .是否存在这样的直线l ,使得直线OD 与MC 恰好平行?如果存在,求出l 的方程;如果不存在,请说明理由. 21.(本题满分14分)设函数2()2(4)ln f x ax a x x =+++.(Ⅰ)若()f x 在x =41处的切线与直线4x +y =0平行,求a 的值; (Ⅱ)讨论函数()f x 的单调区间;(Ⅲ)若函数()y f x =的图象与x 轴交于A ,B 两点,线段AB 中点的横坐标为0x ,证明0()0f x '<.绵阳市高2011级第二次诊断性考试数学(文)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.DBCCD AABAC二、填空题:本大题共5小题,每小题5分,共25分.11.12.113.0.314.(3-,或(31,332)15三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.解:(Ⅰ) f (x )=a •b =2sin 2x +2sin x cos x =22cos 12x-⨯+sin2xx -4π)+1, ……………………………… 3分由-2π+2k π≤2x -4π≤2π+2k π,k ∈Z ,得-8π+k π≤x ≤83π+k π,k ∈Z , ∴ f (x )的单调递增区间是[-8π+k π,83π+k π]( k ∈Z ). …………………… 6分(II )由题意g (x x +6π)-4πx+12π)+1,………… 9分由12π≤x ≤127π得4π≤2x+12π≤45π,∴ 0≤g (x ),即 g (x ),g (x )的最小值为0. … 12分 17.解:(I )设等比数列{a n }的公比为q ,由题知a 1= 12,又∵ S 1+a 1,S 2+a 2,S 3+a 3成等差数列, ∴ 2(S 2+a 2)=S 1+a 1+S 3+a 3,变形得S 2-S 1+2a 2=a 1+S 3-S 2+a 3,即得3a 2=a 1+2a 3,∴ 32 q =12 +q 2,解得q =1或q=12 , …………………………………………4分 又由{a n }为递减数列,于是q=12,∴ a n =a 11-n q =( 12 )n . …………………………………………………………6分(Ⅱ)由于b n =a n log 2a n =-n ∙( 12)n ,∴ ()211111[1+2++1]2222n nn T n n -=-⋅⋅-⋅+⋅()()(),于是()211111[1++1]2222n n n T n n +=-⋅-⋅+⋅()()(),两式相减得:2111111[()++()]22222n n n T n +=--⋅+()111[1()]122=1212n n n +⋅--+⋅-(), 整理得222n nn T +=-. ………………………………………………………12分 18.解:(I )∵ 抽到持“应该保留”态度的人的概率为0.05,∴3600120x+=0.05,解得x =60. ………………………………………………2分 ∴ 持“无所谓”态度的人数共有3600-2100-120-600-60=720. ……… 4分∴ 应在“无所谓”态度抽取720×3603600 =72人. ………………………… 6分(Ⅱ)∵ y +z =720,y ≥657,z ≥55,故满足条件的(y ,z )有:(657,63),(658,62),(659,61),(660,60),(661,59),(662,58),(663,57),(664,56),(665,55)共9种. …………………………… 8分 记本次调查“失效”为事件A ,若调查失效,则2100+120+y <3600×0.8,解得y <660.∴ 事件A 包含:(657,63),(658,62),(659,61)共3种.∴ P (A )= 39 =13 . …………………………………………………………… 12分19.(I )证明:取AB 中点M ,连FM ,GM .∵ G 为对角线AC 的中点,∴ GM ∥AD ,且GM =12 AD ,又∵ FE ∥12 AD ,∴ GM ∥FE 且GM =FE .∴四边形GMFE 为平行四边形,即EG ∥FM . 又∵ EG ⊄平面ABF ,FM ⊂平面ABF ,∴ EG ∥平面ABF .…………………………………………………………… 4分 (Ⅱ)解:作EN ⊥AD ,垂足为N ,由平面ABCD ⊥平面AFED ,面ABCD ∩面AFED =AD , 得EN ⊥平面ABCD ,即EN 为三棱锥E -ABG 的高. ∵ 在△AEF 中,AF =FE ,∠AFE =60º, ∴ △AEF 是正三角形. ∴ ∠AEF =60º,由EF //AD 知∠EAD =60º, ∴ EN =AE ∙sin60º∴三棱锥B-AEG的体积为11122332B AEG E ABG ABGV V S EN--∆==⋅=⨯⨯⨯=.……………………8分(Ⅲ)解:平面BAE⊥平面DCE.证明如下:∵四边形ABCD为矩形,且平面ABCD⊥平面AFED,∴CD⊥平面AFED,∴CD⊥AE.∵四边形AFED为梯形,FE∥AD,且60AFE∠=°,∴=120FAD∠°.又在△AED中,EA=2,AD=4,60EAD∠=°,由余弦定理,得ED=.∴EA2+ED2=AD2,∴ED⊥AE.又∵ED∩CD=D,∴AE⊥平面DCE,又AE⊂面BAE,∴平面BAE⊥平面DCE.…………………………………………………12分20.解:(I)设圆C:(x-a)2+y2=R2(a>0),由题意知RR=⎩,,解得a=1 或a=138,………………………………………3分又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x-1)2+y2=4.……………………………………6分(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立223(1)4y kxx y=+⎧⎨-+=⎩,,消去y得:(1+k2)x2+(6k-2)x+6=0,…………………9分∴Δ=(6k-2)2-24(1+k2)=36k2-6k-5>0,解得1k<或1k>.x1+x2=2621kk--+,y1+ y2=k(x1+x2)+6=2261kk++,121211()()22OD OA OB x x y y=+=++,,(13)MC=-,,假设OD∥MC,则12123()x x y y-+=+,∴ 226226311k k k k -+⨯=++,解得3(1(1)4k =∉-∞⋃++∞,,假设不成立. ∴ 不存在这样的直线l . ……………………………………………………13分 21.解:(I )由题知f (x )=2ax 2+(a +4)x +ln x 的定义域为(0,+∞),且x x a ax x f 1)4(4)(2+++='.又∵ f (x )的图象在x =14处的切线与直线4x +y =0平行,∴ 1()44f '=-,解得 a =-6.…………………………………………………………………… 4分(Ⅱ)xax x x x a ax x f )1)(14(1)4(4)(2++=+++=',由x >0,知xx 14+>0. ①当a ≥0时,对任意x >0,)(x f '>0, ∴ 此时函数f (x )的单调递增区间为(0,+∞).②当a <0时,令)(x f '=0,解得1x a=-,当10x a <<-时,)(x f '>0,当1x a>-时,)(x f '<0,此时,函数f (x )的单调递增区间为(0,a 1-),单调递减区间为(a1-,+∞).………………………………………………………………9分 (Ⅲ)不妨设A (1x ,0),B (2x ,0),且120x x <<,由(Ⅱ)知 0a <, 于是要证)(x f '<0成立,只需证:01x a >-即1212x x a+>-. ∵()21111()24ln 0f x ax a x x =+++=, ①()22222()24ln 0f x ax a x x =+++=, ②①-②得2212111222()()2(4)ln 2(4)ln 0f x f x ax a x x ax a x x -=+++--+-=, 即2212121212(22)4()ln ln 0a x x x x x x x x -+-+-+-=,∴ 22112211222214ln 4ln x x x x a x x x x +---=+--,故只需证2212112211222224ln 4ln x x x x x x x x x x ++-->+--,即证明()()221212121122()[4ln ln ]4242x x x x x x x x x x +-+-<+--,即证明12121222ln ln x x x x x x --<+,变形为11212222ln 1x xx x x x ⋅-<+,设12x t x =(01)t <<,令22()ln 1t g t t t -=-+, 则214()(1)g t t t '=-+22(1)(1)t t t -=+, 显然当t >0时,)(t g '≥0,当且仅当t =1时,)(t g '=0, ∴ g (t )在(0,+∞)上是增函数. 又∵ g (1)=0,∴ 当t ∈(0,1)时,g (t )<0总成立,命题得证.……………………………14分。
四川省绵阳市高中2014-2015学年高二第二学期期末考试试题数学(文科)第I 卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数1z ,2z 互为共轭复数,若112z i =-,则12z z -=( )A .4i -B .4iC .0D .22.()f x '是定义在R 上的函数()f x 的导函数,0R x ∈,设命题P :()00f x '=;命题Q :0x x =是函数()f x 的极值点,则P 是Q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 3.不等式1101x ->-的解集是( ) A .()2,+∞ B .(),1-∞ C .()1,2 D .()(),12,-∞+∞ 4.设x ,R y ∈,若0x y ->,则下列不等式中正确的是( ) A .11x y< B .11x y > C .22x y < D .22x y >5.以下命题正确的个数是( )①命题“R x ∀∈,sin 0x >”的否定是“R x ∃∈,sin 0x ≤”.②命题“若2120x x +-=,则4x =”的逆否命题为“若4x ≠,则2120x x +-≠”.③若p q ∧为假命题,则p 、q 均为假命题.A .0个B .1个C .2个D .3个 6.设曲线12xy e ax =+在点()0,1处的切线与直线210x y +-=垂直,则实数a =( ) A .3 B .2 C .1 D .07.已知函数()32f x ax bx c =++,其导函数()f x '的图象如图,则函数()f x 的极小值为( )A .cB .a b c ++C .84a b c ++D .32a b +8.若实数x ,y 满足22002x y x y -+<⎧⎪>⎨⎪<⎩,则1y x -的取值范围为( )A .()(),12,-∞-+∞B .()(),10,2-∞-C .()()1,00,2-D .()1,2- 9.设0a >,1b >,若2a b +=,且不等式24181m m a b +>+-恒成立,则m 的取值范围是( )A .9m >或1m <-B .1m >或9m <-C .91m -<<D .19m -<< 10.若函数()cos f x kx x x =+在区间0,2π⎛⎫⎪⎝⎭上单调递增,则k 的最小值是( ) A .1 B .1- C .2π-D .2π第II 卷(非选择题,共60分)二、填空题(本大题共5小题,每小题4分,共20分.)11.已知R b ∈,若()()12bi i +-为纯虚数,则1bi += .12.若曲线ln y ax x =-在()1,a 处的切线平行于x 轴,则实数a = .13.若点()2,3A 与点()01,y B 位于直线:l 250x y -+=的两侧,则0y 的取值范围是 .14.函数()24f x x x =++-的最小值为 . 15.函数()3123fx x x =-+,()3xg x m =-,若对[]11,5x ∀∈-,[]20,2x ∃∈,()()12f x g x ≥,则实数m 的最小值是 .三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分10分)已知命题:p对于a ⎡∈-⎣,不等式1m -≤命题:q 不等式20x mx m ++<有解,若p q ∨为真,且p q ∧为假,求实数m 的取值范围.17.(本小题满分10分)已知某公司生产一种零件的年固定成本是3万元,每生产1千件,须另投入2万元,设该公司年内共生产该零件x千件并全部销售完,每1千件的销售收入为()R x 万元,且()()()225.601030R133125010xxxxx x⎧-<≤⎪⎪=⎨⎪->⎪⎩.()1写出年利润()W x(万元)关于年产量x(千件)的函数解析式;()2当年产量为多少千件时,该公司在这种零件的生产中所获利润最大?(注:年利润=年销售收入-年总成本)18.(本小题满分10分)设函数()321262af x ax x⎛⎫=+-⎪⎝⎭,()lng x m x=,其中0a≠.()1若函数()y g x=的图象恒过定点P,且点P在函数()y f x=的图象上,求函数()y f x=在点P处的切线方程;()2当4m=时,设()()()F x f x g x'=-(其中()f x'是()f x的导函数),试讨论()F x的单调性.19.(本小题满分10分)已知()lnf x mx x=-(0x e<≤),()ln xg xx=,其中e是自然对数的底数,Rm∈.()1当1m=时,求函数()f x的单调区间和极值;()2求证:当1m=时,()()11f xg xe>+-;()3是否存在实数m,使()f x的最小值是2?若存在,求出m的值;若不存在,请说明理由.绵阳市高2013级第二学年末考试数学(文科)参考答案及评分意见一、选择题:每小题4分,共40分.1.A 2.B 3.D 4.D 5.C 6.B 7.C 8.A 9.C 10.D 二、填空题:每小题4分,共20分.11.512.113.(3,+∞)14.615.14三、解答题:共40分. 16.解:∵[2a ∈-, ∴∈[2,3].∵对于[2a ∈-,不等式|1|m -恒成立,可得|1|m -≤2,∴ p :-1≤m ≤3. ……………………………………………………………………2分 又命题q :x 2+mx +m <0有解,∴ Δ=m 2-4m >0,解得 m <0或m >4. ………………………………………………4分 ∵ p ∨q 为真,且p ∧q 为假,∴ p 与q 必有一真一假. ……………………………………………………………5分当p 真q 假时,有⎩⎨⎧≤≤≤≤-,,4031m m 即0≤m ≤3;…………………………………………7分当p 假q 真时,有1340m m m m <->⎧⎨><⎩或,或,即m <-1或m >4.………………………………9分综上,实数m 的取值范围是(1)-∞-,∪[0,3] ∪(4)+∞,.……………………10分 17.解:(1)当0<x ≤10时,W (x )=xR (x )-(3+2x )=3306.33--x x . 当x >10时,W (x )= xR (x )-(3+2x )=x x21250130--, ∴ 33.63(010)30()12501302(10)x x x W x x x x ⎧--<≤⎪⎪=⎨⎪-->⎪⎩,.…………………………………………………3分(2)①当0<x ≤10时,由()W x '=23.610x -=0,得x =6,又当x ∈(6,10)时,()W x '<0,即W (x )在(6,10)上是减函数, 当x ∈(0,6)时,()W x '>0,即W (x )在(0,6)上是增函数,∴ 当x =6时,W (x )max = W (6) =4.11330666.33=--⨯. ②当x >10,W =)21250(130********x xx x +-=--≤130-2x x21250⨯=30, 当且仅当x x21250=时,即x =25时,W (x )max =30, 由①②知,当x =25千件时,W 取最大值30万元.………………………………10分 18.解:(1)P 点为(1,0),又点P 在y =f (x )的图象上,所以0=2261-+aa ,解得a =3, ∴ 232121)(x x x f -=. 于是x x x f -='223)(, ∴ y =f (x )在点P 处的切线的斜率为k =21)1(='f . ∴ y =f (x )在点P 处的切线方程为210x y --=. …………………………………4分(2)当m =4时,x x a ax x x f x F ln 4)4(21ln 4)()(2--+=-'=,(x >0), ∴ 24(4)4(1)(4)()(4)ax a x x ax F x ax a x x x+--+-'=+--==.当a <0时,因为x >0,所以0)(<'x F ,所以F (x )在(0,+∞)上为减函数; 当a >0时,由0)(>'x F 得a x 4>,由0)(<'x F 得ax 40<<, ∴ F (x )在(0,a 4)上为减函数,在(a4,+∞)上为增函数. 综上,当a <0时,F (x )在(0,+∞)上为减函数;当a >0时,F (x )在(0,a4)上为减函数,在(a4,+∞)上为增函数.……………………………………………………………10分 19.解:(1)∵ f (x )=x -ln x ,∴xx x x f 111)(-=-=',(0)x e <≤ 由()0f x '>得1<x <e ,由0)(<'x f 得0<x <1∴ ()f x 的单调递减区间为(01),,单调递增区间为(1,e ); ∴ ()f x 的极小值为(1)1f =.…………………………………………………………3分 (2)由(1)知()f x 的极小值为1,也就是()f x 在]0(e ,上的最小值为1, 令h (x )=1()1g x e +-=ln 11x x e +-,21ln ()xh x x -'=, 当0<x <e 时,0)(>'x h ,所以h (x )在]0(e ,上单调递增,∴ h (x )max = h (e )=1111e e+-=. ∵ max ()()1h x h e ==与min ()(1)1f x f ==不同时取到,∴ ()()f x h x > 即1()()1f x g x e>+-.………………………………………………6分 (3)假设存在实数m ,使f (x )=mx -ln x (x ∈]0(e ,)有最小值2,11()mx f x m x x-'=-=. ①当m ≤0时,f (x )在]0(e ,上单调递减, ()f x min =f (e )=me -1=2,解得m =30e>,舍去.②当0<1m <e 时,因为f (x )在(0,1m)上单调递减,在1(]e m ,上单调递增,所以()f x min =f (1m)=1+ln m =2,解得m =e ,满足条件. ③当1m≥e 时,因为f (x )在]0(e ,上单调递减, 所以()f x min =f (e )=me -1=2,解得m =3e,不满足1m ≥e ,舍去. 综上,存在实数m =e ,使得当x ∈]0(e ,时f (x )有最小值2.……………………10分。