Doc1绝对值不等式
- 格式:doc
- 大小:110.50 KB
- 文档页数:2
有关绝对值的不等式一、绝对值的定义我们知道,绝对值的定义为数与零的距离,即:- 当一个实数x大于或等于0时,|x|=x;- 当一个实数x小于0时,|x|=-x。
二、绝对值的性质绝对值有以下几个性质:1. 非负性:|x|≥0,即绝对值是非负数;2. 正反性:若x≥0,则|x|=x;若x<0,则|x|=-x;3. 三角不等式:|a+b|≤|a|+|b|,即两数之和的绝对值不大于它们绝对值的和;4. 乘法性:|ab|=|a|×|b|,即两数之积的绝对值等于它们绝对值的积;5. 倒数性:若a≠0,则|1/a|=1/|a|。
三、绝对值的应用绝对值在数学中有着广泛的应用,特别是在不等式中的应用更为常见。
下面介绍几个绝对值不等式的例子。
例1:|x-a|<b的解集为(a-b,a+b)。
解析:首先,我们假设a≥0(a<0同理可证),那么由于|x-a|≥0,所以|x-a|<b等价于-a<x-a<a。
解不等式得到 x<a+b 且 x>a-b,即x∈(a-b,a+b)。
例2:|x|<a的解集为(-a,a)。
解析:当a>0时,由|x|≥0,得出|x|<a等价于-x<a且x<a,即解不等式得到x∈(-a,a)。
例3:|x-2|-|x+2|≤0的解集为[-2,2]。
解析:当x≤-2或x≥2时,|x-2|-|x+2|≤0显然成立,因为两个绝对值的差值不大于0。
当-2<x<2时,不等式可化为(x-2)-(x+2)≤0,即-4≤0,也是成立的。
所以,综合起来,解集为[-2,2]。
总结:以上是一些关于绝对值不等式的例子,通过这些例子可以体会到绝对值在不等式中的应用和威力,希望对大家学习数学有所帮助。
绝对值不等式(一) 绝对值不等式c b x a x c b x a x ≤-+-≥-+-绝对值的几何意义:a 的几何意义是:数轴上表示数轴上点a 到原点的距离;b a -的几何意义是:数轴上表示数轴上,a b 两点的距离。
b a +的几何意义是:数轴上表示数轴上,a b -的两点的距离。
x a x b -+-的几何意义是:数轴上表示点x 到,a b 的两点的距离和,故b a b x a x -≥-+- 利用图像和几何意义解c b x a x ≤-+-或c b x a x ≥-+-的解集。
分区间讨论:()()()⎪⎩⎪⎨⎧>--≤≤-<++-=-+-b x b a x b x a a b a x b a x b x a x 22c b ax ≤-的解法:I.当0>c 时,不等式解集为:c b ax c ≤+≤- II.当0<c 时,不等式解集为:空集 c b ax ≥+的解法:I.当0>c 时,不等式解集为:c b ax c b ax -≤+≥+或 II.当0<c 时,不等式解集为:全体实数解:由于|x +1|+|x -2|≥|(1-(-2)|=3,所以只需a ≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a ≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a ≤3.例2:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。
绝对值的不等式绝对值的不等式是数学中的一种重要概念,它在日常生活中也有着广泛的应用。
在不等式中,绝对值表示一个数与0的距离,因此它的结果始终为正数。
绝对值的不等式可以用来描述两个数之间的关系,掌握它的原理和应用对于我们做好数学和生活中的问题都非常有帮助。
首先,我们要了解绝对值的符号,用两条竖线括起来,例如|3|表示3的绝对值,也就是3与0的距离,即3。
如果一个数的绝对值大于另一个数的绝对值,那么这个数的大小也一定更大。
然后,要理解绝对值的不等式。
绝对值不等式的一般形式为|a|<b或|a|>b,其中a和b均为实数。
这意味着,如果|a|<b,那么a必须是一个离0足够近的实数,距离0小于b。
如果|a|>b,那么距离0更远,a的值越大或越小,a绝对值的结果越大。
接着,我们来看绝对值的不等式的应用。
在数学中,绝对值的不等式通常可用于解决不等式问题,如|x+2|<5,就可以用对称的形式把不等式拆分成两个绝对值不等式:-(x+2)<5和x+2<5。
这样,我们就可以得到-x<7和x<3两个解,取它们的交集,就得到了最终的解:-7<x<3。
在生活中,绝对值的不等式也有着广泛的应用。
例如,在购买商品时,我们需要对价格进行比较,绝对值的不等式可以帮助我们快速地比较两个价格的大小。
又如,在交通中,车速的不等式就是一种绝对值不等式,我们需要根据车速限制和实际行驶速度来调整车速,以保证自己和他人的安全。
总之,绝对值的不等式是数学中一个非常重要的概念,它在日常生活中也有着广泛的应用。
通过掌握绝对值的符号、原理和应用,我们可以更好地理解和解决数学问题,也可以更好地应对生活中的各种挑战,成为一个更加全面发展的人。
第1课时绝对值不等式1.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c.②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想.②利用“零点分段法”求解,体现了分类讨论的思想.③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则||a|-|b||≤|a±b|≤|a|+|b|.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.第1课时 绝对值不等式1.绝对值不等式的解法(1)含绝对值的不等式|x|<a 与|x|>a 的解集(2)|ax +b|≤c(c>0)和|ax +b|≥c(c >0)型不等式的解法①|ax+b|≤c⇔-c≤ax+b≤c.②|ax+b|≥c⇔ax+b≥c 或ax +b≤-c.(3)|x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想.②利用“零点分段法”求解,体现了分类讨论的思想.③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.2.含有绝对值的不等式的性质(1)如果a,b是实数,则||a|-|b||≤|a±b|≤|a|+|b|.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.。
绝对值不等式步骤嘿,朋友们!今天咱就来好好唠唠绝对值不等式步骤这个事儿。
咱就说,绝对值不等式啊,就像是一个有点调皮的小精灵,你得好好捉摸它才能搞定它。
比如说,就像你要抓住一只调皮的小猫,得有耐心,有方法。
先看看最简单的情况,当绝对值里面的式子大于等于 0 的时候,那就直接去掉绝对值符号就行啦,就像脱掉一件外套那么简单。
可要是里面的式子小于 0 呢,嘿,那就得给它变个样,把符号反过来。
这就好比那小猫突然转过身,你得赶紧调整策略。
再来说说解不等式的时候。
有时候啊,就像走迷宫,得一步一步试探着来。
把不等式两边同时进行一些操作,看看能不能找到出路。
这过程中可不能马虎,得像侦探找线索一样仔细。
举个例子吧,假如有个不等式 |x-3|>5。
那咱就得分情况讨论啦。
当 x-3≥0 时,也就是x≥3,那直接就是 x-3>5,解得 x>8。
可要是 x-3<0 呢,这时候就得变成 -(x-3)>5,解出来 x<-2。
你看,这不就把这个小精灵给抓住啦!咱学习绝对值不等式步骤啊,可不能怕麻烦。
就像盖房子,一砖一瓦都得垒好。
每一步都得走稳了,不然房子可盖不结实。
你想想,要是没搞清楚这些步骤,那解题的时候不就像无头苍蝇一样乱撞啦?那多闹心啊!所以啊,咱得把这些步骤牢记在心,随时都能拿出来用。
而且啊,这绝对值不等式在好多地方都有用呢!数学里好多难题都得靠它来解决。
学会了它,就像有了一把万能钥匙,能打开好多知识的大门。
总之呢,绝对值不等式步骤虽然有点小复杂,但咱别怕,只要用心去学,就一定能掌握好。
就像那句话说的,世上无难事,只怕有心人嘛!大家加油哦,相信自己一定能行!。
不等式选作第1讲 绝对值不等式 1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立. 2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集:(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ;②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .考点一__含绝对值不等式的解法________________解不等式|x -1|+|x +2|≥5.[解] 法一:如图,设数轴上与-2,1对应的点分别是A ,B ,则不等式的解就是数轴上到A 、B 两点的距离之和不少于5的点所对应的实数.显然,区间[-2,1]不是不等式的解集.把A 向左移动一个单位到点A 1,此时|A 1A |+|A 1B |=1+4=5.把点B 向右移动一个单位到点B 1,此时|B 1A |+|B 1B |=5,故原不等式的解集为(-∞,-3]∪[2,+∞).法二:原不等式|x -1|+|x +2|≥5⇔⎩⎪⎨⎪⎧x ≤-2,-(x -1)-(x +2)≥5或⎩⎪⎨⎪⎧-2<x <1,-(x -1)+x +2≥5或⎩⎪⎨⎪⎧x ≥1,x -1+x +2≥5, 解得x ≥2或x ≤-3,∴原不等式的解集为(-∞,-3]∪[2,+∞).[规律方法] 形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)几何法:利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.1.解不等式|x +3|-|2x -1|<x2+1.解:①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x 2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.考点二__绝对值不等式性质的应用______________确定“|x -a |<m 且|y -a |<m ”是“|x -y |<2m (x ,y ,a ,m ∈R )”的什么条件.[解] ∵|x -y |=|(x -a )-(y -a )|≤|x -a |+|y -a |<m +m =2m , ∴|x -a |<m 且|y -a |<m 是|x -y |<2m 的充分条件.取x =3,y =1,a =-2,m =2.5,则有|x -y |=2<5=2m ,但|x -a |=5,不满足|x -a |<m =2.5, 故|x -a |<m 且|y -a |<m 不是|x -y |<2m 的必要条件.故为充分不必要条件. [规律方法] 两数和与差的绝对值不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |. (1)对绝对值三角不等式定理|a |-|b |≤|a ±b |≤|a |+|b |中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.(2)该定理可强化为||a |-|b ||≤|a ±b |≤|a |+|b |,它经常用于证明含绝对值的不等式.2.若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,求a 的取值范围.解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a ≤3即可.故a 的取值范围为(-∞,3]. 考点三__绝对值不等式的综合应用______________(2013·高考辽宁卷)已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值. [解] (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|,得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|,得2x -6≥4,解得x ≥5. 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}. (2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎨⎧a -12=1,a +12=2,于是a =3.[规律方法] 1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.3.(2015·唐山市第一次模拟)已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围.解:f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时等号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).1.求不等式|x +3|-|x -2|≥3的解集.解:原不等式等价于⎩⎪⎨⎪⎧x ≤-3,-x -3+x -2≥3或⎩⎪⎨⎪⎧-3<x <2,x +3+x -2≥3或⎩⎪⎨⎪⎧x ≥2,x +3-x +2≥3,解得1≤x <2或x ≥2,故原不等式的解集为{x |x ≥1}. 2.在实数范围内,解不等式||x -2|-1|≤1.解:依题意得-1≤|x -2|-1≤1,即|x -2|≤2,解得0≤x ≤4.故x 的取值范围是[0,4]. 3.(2015·山西省忻州市联考)已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1,解得1≤x ≤2,∴m =1,n =2,m +n =3. (2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1. 4.(2014·高考课标全国卷Ⅱ)设函数f (x )=|1|ax ++|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围. 解:(1)证明:由a >0,有f (x )=|1|a x ++|x -a |≥|)(1|a x ax --+=1a +a ≥2.所以f (x )≥2. (2)f (3)=|13|a++|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5,得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5,得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.5.(2015·大连市模拟)设不等式|x -2|+|3-x |<a (a ∈N *)的解集为A ,且2∈A ,32∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.解:(1)由题可得⎩⎪⎨⎪⎧a >1a ≤2所以1<a ≤2,因为a ∈N *所以a =2.(2)因为|x +2|+|x -2|≥|(x +2)-(x -2)|=4,所以f (x )的最小值是4. 6.(2015·新乡许昌平顶山调研)已知函数f (x )=|x -1|+|x -a |.若a >1,∀x ∈R ,f (x )+|x -1|≥1,求实数a 的取值范围.解:令F (x )=f (x )+|x -1|,则F (x )=⎩⎪⎨⎪⎧-3x +2+a ,x <1x -2+a ,1≤x <a ,3x -2-a ,x ≥a所以当x =1时,F (x )有最小值F (1)=a -1,只需a -1≥1,解得a ≥2,所以实数a 的取值范围为[2,+∞).1.(2015·辽宁五校协作体联考)已知函数f (x )=|2x -a |+a . (1)若不等式f (x )≤6的解集为{x |-2≤x ≤3},求实数a 的值;(2)在(1)的条件下,若存在实数t ,使f )(2t≤m -f (-t )成立,求实数m 的取值范围.解:(1)由|2x -a |+a ≤6,得|2x -a |≤6-a ,∴a -6≤2x -a ≤6-a ,即a -3≤x ≤3,∴a -3=-2, ∴a =1.(2)∵f )(2t ≤m -f (-t ),∴|t -1|+|2t +1|+2≤m ,令y =|t -1|+|2t +1|+2,则y =⎩⎪⎨⎪⎧-3t +2,t ≤-12,t +4,-12<t <1,3t +2,t ≥1.∴y min =72,∴m ≥72.2.(2013·高考课标全国卷Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈[-a 2,12)时,f (x )≤g (x ),求a 的取值范围.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集是{x |0<x <2}.(2)当x ∈[-a 2,12)时,f (x )=1+a ,不等式f (x )≤g (x )化为1+a ≤x +3,所以x ≥a -2对x ∈[-a 2,12)都成立,故-a 2≥a -2,即a ≤43.从而a 的取值范围是(-1,43].3.(2015·云南省统考)已知a 、b 都是实数,a ≠0,f (x )=|x -1|+|x -2|.(1)若f (x )>2,求实数x 的取值范围;(2)若|a +b |+|a -b |≥|a |f (x )对满足条件的所有a 、b 都成立,求实数x 的取值范围. 解:(1)f (x )=⎩⎪⎨⎪⎧3-2x ,x ≤11,1<x ≤2.2x -3,x >2由f (x )>2得⎩⎪⎨⎪⎧x ≤13-2x >2或⎩⎪⎨⎪⎧x >22x -3>2,解得x <12或x >52.∴所求实数x 的取值范围为(-∞,12)∪(52,+∞).(2)由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又∵|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,∴f (x )≤2.∵f (x )>2的解集为{x |x <12或x >52},∴f (x )≤2的解集为{x |12≤x ≤52},∴所求实数x 的取值范围为[12,52].4.已知函数f (x )=|x -4|+|x -a |(a <3)的最小值为2.(1)解关于x 的方程f (x )=a ;(2)若存在x ∈R ,使f (x )-mx ≤1成立,求实数m 的取值范围.解:(1)由f (x )=|x -4|+|x -a |≥|x -4-(x -a )|=|a -4|(当(x -4)(x -a )≤0时取等号),知|a -4|=2,解得a =6(舍去)或a =2.方程f (x )=a 即|x -4|+|x -2|=2,由绝对值的几何意义可知2≤x ≤4.(2)不等式f (x )-mx ≤1即f (x )≤mx +1,由题意知y =f (x )的图象至少有一部分不在直线y =mx +1的上方,作出对应的图象观察可知,m ∈(-∞,-2)∪[14,+∞).。
绝对值不等式公式有哪些该如何解
绝对值不等式是数学中一个重要的知识点,同时也是考试中时常出现的考点。
下面是由编辑为大家整理的“绝对值不等式公式有哪些该如何解”,仅供参考,欢迎大家阅读本文。
绝对值不等式公式
||a|−|b||≤|a±b|≤|a|+|b|;
|ab|=|a||b|,|a/b|=|a|/|b|(b≠0);
|a|<|b| 可推出|b|>|a|;
3、∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立;
4、|a−b|≤|a|+|−b|=|a|+|−1|∗|b|=|a|+|b|
怎样解绝对值不等式
解绝对值不等式的基本方法是去掉绝对值符号
1、平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了;
2、讨论,即x≥0时,|x|=x;x<0时,|x|=-x,绝对值符号也没有了,令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。
【学习课题】:1.2 绝对值不等式【教学目标】:1、理解绝对值的几何意义,并能用绝对值不等式的几何意义证明绝对值三角不等式。
2、应用绝对值三角不等式解决相关问题。
【教学重点】:绝对值三角不等式【教学难点】:绝对值三角不等式的应用【教学方法】:学生在复习回顾初中学习过的绝对值的定义及几何意义的基础之上,借助于数轴,探究并发现|a|、|b|、|a+b|之间的关系,进一步再利用向量的知识进行验证,从而得到绝对值三角不等式。
并能应用绝对值三角不等式证明简单的含绝对值的不等式,求含有绝对值的一类函数的最值。
【教学过程】:一、自问引思:(回顾思考,引出新知)我们知道,实数a的绝对值|a|可以表示一个非负数,那么实数a的绝对值|a|的几何意义是什么?对于两个实数a、b,|a-b|的几何意义又是什么呢?二、互问明思:(探索合作,明确新知)1、利用绝对值的几何意义,用恰当的方法在数轴上把|a|、|b|、|a+b|表示出来,你能发现它们之间有什么关系?2、如果把上述问题中的a、b分别换为向量a、b,能得出什么结果?你能解释它的几何意义吗?当向量a、b共线时,有怎样的结论?3、能否从代数角度证明定理1:|a+b|≤|a|+|b|呢?三、追问深思:(质疑展示,评价分析)1、你能根据定理1的研究思路,探究一下|a|、|b|、|a+b|、|a-b|等之间的其他关系吗?比如|a|-|b|与|a+b|, |a|+|b|与|a-b|,|a|-|b|与|a-b|等之间的关系。
2、试证明定理2: |a-c|≤|a-b|+|b-c|.并探求等号成立的条件。
3、你能给出定理2的几何解释吗?4、已知ε>0,|x-a|<ε,|y-b|<ε,求证:|2x+3y-2a-3b|<5ε5、两个施工队分别被安排在公路沿线的两个地点施工,这两个地点分别位于公路路碑的第10千米和第20千米处,现要在公路沿线建两个施工队的共同临时生活区,每个施工队每天在生活区和施工地点之间往返一次,要使两个施工队每天往返的路程之和最小,生活区应该建于何处?四、切问成思:(深入探究,形成思想)1、本节课你学到了那些知识?运用了那些数学方法?2、本节课学习之后还有那些困惑?作业:教材第19页习题1、2、3、4。
【最新整理,下载后即可编辑】解绝对值不等式1、解不等式2|55|1x x -+<. [思路]利用|f(x)|<a(a>0) ⇔-a<f(x)<a 去掉绝对值后转化为我们熟悉的一元二次不等。
变形一右边的常数变代数式2、解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x[思路]利用|f(x)|<g(x) ⇔-g(x)<f(x)<g(x)和|f(x)|>g(x) ⇔f(x)>g(x)或f(x)<-g(x)去掉绝对值3、解不等式(1)|x-x 2-2|>x 2-3x-4;(2)234xx -≤1变形二 含两个绝对值的不等式 4、解不等式(1)|x -1|<|x +a |;(2)|x-2|+|x+3|>5. [思路](1)题由于两边均为非负数,因此可以利用|f(x)|〈|g(x)|⇒f 2(x)〈g 2(x)两边平方去掉绝对值符号。
(2)题可采用零点分段法去绝对值求解。
5、 解关于x 的不等式|log (1)||log (1)|a a x x ->+(a >0且a ≠1)6.不等式|x+3|-|2x-1|<2x +1的解集为 。
7.求不等式1331log log 13x x+≥-的解集.变形三 解含参绝对值不等式8、解关于x 的不等式 34422+>+-m m mx x[思路]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大。
若化简成3|2|+>-m m x ,则解题过程更简单。
在解题过程中需根据绝对值定义对3m +的正负进行讨论。
2)形如|()f x |<a ,|()f x |>a (a R ∈)型不等式此类不等式的简捷解法是等价命题法,即:① 当a >0时,|()f x |<a ⇔-a <()f x <a ;|()f x |>a ⇔()f x >a 或()f x <-a ; ② 当a =0时,|()f x |<a 无解,|()f x |>a ⇔()f x ≠0③ 当a <0时,|()f x |<a 无解,|()f x |>a ⇔()f x 有意义。
含绝对值不等式的解法
知识情景:
1.绝对值的定义:对于任意的R a ∈,⎪⎩
⎪⎨⎧<=>=000a a a a 2. 绝对值的几何意义:
①. 实数a 的绝对值a ,表示数轴上坐标为a 的点A
②. 对于任意的两个实数b a ,,它们在数轴上对应的点分别为B A ,,那么b a -的几何意义是 .
3.绝对值三角不等式:
①0>⋅b a 时, 如下图, 易得:b a b
a ++.
②0<⋅b a 时, 如下图, 易得:b a b
a ++.
③0=⋅b a 时,显然有:b a b
a ++. 综上,得 定理1 如果R
b a ∈,, 那么b a b
a ++. 当且仅当 时,等号成立. 定理2 如果R c
b a ∈,,, 那么
c b b a c
a -+--. 当且仅当 时,等号成立. 定理3 如果R c
b a ∈,,, 那么b a b a b
a +±- . ☻建构新知:含绝对值不等式的解法
1.设a 为正数, 根据绝对值的意义,不等式a x <的解集是
它的几何意义就是数轴上 的点的集合是开区间 ,如图所示.
2.设a 为正数, 根据绝对值的意义,不等式a x >的解集是
它的几何意义就是数轴上 的点的集合是开区间 ,如图所示
3.设a 为正数, 则①.⇔<a x f )( ;
②.⇔>a x f )( ;
③. ⇔>)()(x g x f ;
④. ⇔<)()(x g x f
.
☆案例学习:
例1解不等式
(1)5>x ; (2)6<x ; (3)5≥x ; (4)6≤x ;
(5)532>-x ; (6)432<-x ; (7)94≥+x ; (8)273≤+x ;
(9).1122>-x (10)01314<--x ;(11) 7324<-<x ;
(12)12+<-x x ;
例2解不等式
(1)423+≤-x x ; (2)x x -≥+21;
(3)213+<-x x
(4)x x ->-213 (5)1422<--x x ;
(6)212+>-x x ;。