数字信号处理实验
- 格式:doc
- 大小:693.58 KB
- 文档页数:12
数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。
2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。
b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。
c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。
计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。
观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。
f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。
加深对采样定理的理解。
g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。
《数字信号处理》实验报告实验名称数字信号处理实验(民航无线电监测关键技术研究)实验时间一、实验目的:通过实验,理解和掌握民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术,培养学生对数字信号处理技术的兴趣,并提高学生基于数字信号处理技术的工程应用能力。
二、实验环境:Matlab三、实验原理、内容与分析(包括实验内容、MATLAB程序、实验结果与分析)实验总体框图如上图所示,主要实现民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术。
1.有限长单位脉冲(FIR)滤波器的设计FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:系统传递函数可表达为:N-1 为FIR 滤波器的阶数。
在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。
为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。
这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为:由上可见FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n)输出,因此,FIR 实际上是一种乘法累加运算。
而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。
2.AM 调制解调AM 调制解调过程如下:3.多采样率数字信号处理一般认为,在满足采样定理的前提下,首先将以采样率F1 采集的数字信号进行D/A 转换, 变成模拟信号,再按采样率F2 进行A/D 变换,从而实现从F1 到F2 的采样率转换。
但这样较麻烦,且易使信号受到损伤,所以实际上改变采样率是在数字域实现的。
实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。
其延拓周期为采样角频率(T /2π=Ω)。
只有满足采样定理时,才不会发生频率混叠失真。
在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。
公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。
为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。
实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
实验报告思考题要点提示数字信号处理实验一:信号、系统及系统响应1、简述线性卷积结果y (n)的非零区间与x (n )、h (n )非零区间的关系?激励x (n )延时时输出如何变化?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
2、 简述系统函数零极点分布与系统幅频特性间的对应关系。
(1) 位于原点处的零、极点对幅频特性没有影响,只影响相频特性。
(2) 极点位置主要影响幅频特性峰值的位置及尖锐程度,极点越靠近单位圆,所对应的峰值越尖锐。
(3) 零点位置主要影响幅频特性谷值的位置及形状,零点越靠近单位圆,谷值越小。
3、 y (n )=x (n )*h (n ),当输入x (n )有一时移时y (n )与)e (Y j ω有无变化,并说明为什么?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。
所以当输入x (n )有一时移时,y(n )也有同样的时移。
)()]([)()]([00ωωωj j e Y e n n y DTFT DTFT e Y n y DTFT n j -=-=的时移特性可知,由设,即时域位移,频域相移,所以幅频特性)e(Y j ω无变化。
数字信号处理实验二:信号的谱分析1、 描述随着DFT 变换点数N 的增加,X (k )的幅度谱的变化并解释原因。
随着DFT 变换点数N 的增加,X (k )的幅度谱序列间隔越来越密,其包络逐渐逼近x (n )的幅度谱)(ωj e X 。
这是因为M 点有限长序列x (n )的N 点DFT 是对有限长序列x (n )的频谱)(ωj e X 在频域0~2π区间内的N 点等间隔抽样。
即: k Nj e X n x DFT k X πωω2)()]([)(=== 因此变换点数越多,抽样间隔越小。
2、 用DFT 对连续非周期信号进行谱分析,试分析(1)采样点数足够多(即数据截断长度足够长)的情况下,采样频率对谱分析的影响;(2)采样频率足够高(即无明显的频域混叠现象)时,采样点数N (相应地时窗截断长度NT s )对谱分析的影响。
dsp实验报告DSP实验报告一、引言数字信号处理(Digital Signal Processing,DSP)是一种对数字信号进行处理和分析的技术。
它在许多领域中被广泛应用,如通信、音频处理、图像处理等。
本实验旨在通过实际操作,探索和理解DSP的基本原理和应用。
二、实验目的1. 理解数字信号处理的基本概念和原理;2. 掌握DSP实验平台的使用方法;3. 进行一系列DSP实验,加深对DSP技术的理解。
三、实验器材和软件1. DSP开发板;2. 电脑;3. DSP开发软件。
四、实验内容1. 实验一:信号采集与重构在此实验中,我们将通过DSP开发板采集模拟信号,并将其转换为数字信号进行处理。
首先,我们需要连接信号源和开发板,然后设置采样频率和采样时间。
接下来,我们将对采集到的信号进行重构,还原出原始模拟信号,并进行观察和分析。
2. 实验二:滤波器设计与实现滤波器是DSP中常用的模块,用于去除或增强信号中的特定频率成分。
在此实验中,我们将学习滤波器的设计和实现方法。
首先,我们将选择合适的滤波器类型和参数,然后使用DSP开发软件进行滤波器设计。
最后,我们将将设计好的滤波器加载到DSP开发板上,并进行实时滤波处理。
3. 实验三:频谱分析与频域处理频谱分析是DSP中常用的方法,用于分析信号的频率成分和能量分布。
在此实验中,我们将学习频谱分析的基本原理和方法,并进行实际操作。
我们将采集一个包含多个频率成分的信号,并使用FFT算法进行频谱分析。
然后,我们将对频谱进行处理,如频率选择、频率域滤波等,并观察处理后的效果。
4. 实验四:音频处理与效果实现音频处理是DSP中的重要应用之一。
在此实验中,我们将学习音频信号的处理方法,并实现一些常见的音频效果。
例如,均衡器、混响、合唱等。
我们将使用DSP开发软件进行算法设计,并将设计好的算法加载到DSP开发板上进行实时处理。
五、实验结果与分析通过以上实验,我们成功完成了信号采集与重构、滤波器设计与实现、频谱分析与频域处理以及音频处理与效果实现等一系列实验。
数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。
2.应用 DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。
2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。
通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
数字信号处理实验报告实验一 信号、系统及系统响应一.实验目的(1) 熟悉连续信号理想采样前后的频谱变化关系,加深对时域采样定理的理解; (2) 熟悉时域离散系统的时域特性;(3) 利用卷积方法观察分析系统的时域特性;(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。
二.实验原理与方法采样时连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对一个连续信号()a x t 进行理想采样的过程可用下式表示:ˆ()()()a a xt x t p t =其中ˆ()a xt 为()a x t 的理想采样,()p t 为周期脉冲,即()()m p t t nT δ∞=-∞=-∑ˆ()a xt 的傅里叶变换为10()()kk N jw jw nn X ex m e --==∑其中,102()()kk N jw jw n k n X ex m e w kM π--===∑ ,k=0,1, M-1时域离散线性非时变系统的输入输出关系为()()*()()()m y n x n h n x m h n m ∞=-∞==-∑卷积运算也可在频域实现()()()jw jw jw Y e X e H e =三.实验内容及步骤(1)分析采样序列的特性(2)时域离散系统响应分析N=103.卷积定理的验证四.思考题(1)如果输入信号为无限长序列,系统的单位脉冲响应是有限长序列,可否用线性卷积法求系统的响应?如何求?可以用分段线性卷积法求系统响应。
方法:对输入信号序列分段;求单位脉冲响应()h n 与各段的卷积;将各段卷积结果相加。
(2)如果信号经过低通滤波器,把信号的高频分量滤掉,时域信号会有何变化?信号的高频分量滤掉,时域信号的变化减缓,在有阶跃处附近产生过渡带,如果高频幅度较大,滤除后波形会明显发生变化。
(3)如果序列()x n 的长度为M ,希望得到其频谱()jw X e 在[0,2π]上的N 点等间隔采样,当N<M 时,如何用一次最少点数的DFT 得到该频谱采样? 对原序列()x n 以N 为周期进行周期延拓后取主值区序列,()()()N N i x n x n iN R n ∞=-∞⎡⎤=+⎢⎥⎣⎦∑;计算N 点的DFT 则得到N 点频域采样: []2()()(),0,1,2, (1)jw N N N w k Nx k DFT x n X e k N π====-实验二用FFT 作谱分析一.实验目的(1)进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法,所以FFT 的运算结果必然满足DFT 的基本性质)。
(2)熟悉FFT 算法原理和FFT 子程序的应用。
(3)学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。
二.实验原理在各种信号序列中,有限长序列占重要地位。
对有限长序列可以利用离散傅立叶变换(DFT)进行分析。
DFT 不但可以很好的反映序列的频谱特性,而且易于用快速算法(FFT)在计算机上进行分析。
有限长序列的DFT 是其z 变换在单位圆上的等距离采样,或者说是序列傅立叶的等距离采样,因此可以用于序列的谱分析。
FFT 是DFT 的一种快速算法,它是对变换式进行一次次分解,使其成为若干小数据点的组合,从而减少运算量。
如果给出的是连续信号()a x t ,则首先要根据其最高频率确定采样速率sf 以及由频率分辨率选择采样点数N ,然后对其进行软件采样(即计算()()a x n x nT =,0≤n ≤N-1),产生对应序列()x n 。
对信号()6x t ,频率分辨率的选择要以能分辨开其中的三个频率对应的谱线为准则。
对周期序列,最好截取周期的整数倍进行谱分析,否则有可能产生较大的分析误差。
三.实验内容及步骤对以下序列进行谱分析14()()x n R n =21,03()8,470,n n x n n n +≤≤⎧⎪=-≤≤⎨⎪⎩其它n34,03()3,470,n n x n n n -≤≤⎧⎪=-≤≤⎨⎪⎩其它n4()cos 4x n n π= 5()sin8x n n π=()6cos()sin 48nn x n ππ⎛⎫=+ ⎪⎝⎭ ()7cos()sin 48nn x n j ππ⎛⎫=+ ⎪⎝⎭()881620cos cos cos s s s n n n x n f f f πππ⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14()()x n R n = N=6434,03()3,470,n n x n n n -≤≤⎧⎪=-≤≤⎨⎪⎩其它n N=32四.思考题(1) 对于周期序列,如果周期不知道,如何用FFT 进行谱分析? 如果周期不知道,可先截取M 点进行DFT ,再截取长度扩大1倍截取,比较结果,如果二者的差别满足分析误差要求,则可以近似表示该信号的频谱,如果不满足误差要求就继续将截取长度加倍,重复比较,知道结果满足要求。
(2) 如何选择FFT 的变换区间?(包括非周期信号和周期信号) FFT 的变换区间N 直接和频谱分辨率D 有关。
因为FFT 能够实现的频谱分辨率是2/N π,因此要求2/N π≤D ,可根据此式选择FFT 的变换区间N 。
只有当N 较大时,离散谱的包络才能逼近与连续谱,因此N 要适当选择大一些。
(3) 在N=8时,2()x n 和3()x n 的幅频特性会相同吗?为什么?N=16呢? N=8是幅频特性一样,因为2()x n 和3()x n 都关于x=4对称,且对称轴两边,2()x n 和3()x n 互为翻转,由8点FFT 时域抽样法信号流程蝶形图可知它们由FFT 得到的幅频特性相同。
在N=16时幅频特性不一样。
实验三 用双线性变换法设计IIR 数字滤波器一.实验目的(1)熟悉用双线性变换法设计IIR 数字滤波器的原理和方法; (2)掌握IIR 数字滤波器的MA TLAB 实现方法;(3)通过观察滤波器输入、输出信号的时域波形及其频谱,建立数字滤波的概念。
二.实验原理双线性变换法S 平面与z 平面之间满足以下映射关系:s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。
双线性变换不存在混叠问题。
双线性变换法的基本设计过程:(1)将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;(2)设计过渡模拟滤波器;(3)将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。
三、实验内容及步骤 (1)心电图信号通带的截止频率是0.2π 阻带的频率区间[0.4,]ππ阻带内最小衰减大于35dB (2)正弦信号四.思考题(1)请阅读信号产生函数mstg ,确定三路调幅信号的载波频率和调制信号频率。
三路调幅信号的载波频率分别为250Hz,500Hz,1000Hz 。
带宽分别为50Hz ,100Hz ,200Hz 。
所以,分离混合信号st 中三路抑制载波单频调幅信号的三个滤波器(低通、带通、高通滤波器)的指标参数选取如下:1、对载波频率为250Hz 的调幅信号,可以用低通滤波器分离,通带截止频率pf =280HZ ,通带最大衰减pα=0.1dB ;阻带截止频率sf =450Hz ,阻带最小衰减s α=60dB ;2.、对载波频率为500Hz 的调幅信号,可以用带通滤波器分离,通带截止频率p f =440HZ ,puf =560Hz ,通带最大衰减pα=0.1dB ;阻带截止频率slf =275Hz ,suf =900Hz ,阻带最小衰减s α=60dB ;3、对载波频率为1000Hz 的调幅信号,可以用高通滤波器分离,通带截止频率p f =890HZ ,通带最大衰减pα=0.1dB ;阻带截止频率sf =550Hz ,阻带最小衰减s α=60dB(2)信号产生函数mstg 中采样点数N=1600,对st 进行N 点FFT 可以得到6根理想线谱。
如果取N=1800,可否得到6根理想线谱?为什么?N=2000呢? St 的每个频率成分都是25Hz 的整数倍。
采样频率sf =10kHz=25x400Hz ,即在25Hz的正弦波的一个周期中采样400点。
所以,当N 为400的整数倍时一定为st 的整数个周期。
因此,采样点数N=2000时,对st 进行N 点FFT 可以得到6根理想谱线。
如果取N=1800,不是400的整数倍,不能得到6根理想谱线。
实验四用窗函数法设计FIR数字滤波器一、实验目的(1)掌握用窗函数法设计FIR数字滤波器的原理和方法;(2)掌握用等纹最佳逼近法设计FIR数字滤波器的原理和方法;(3)学会用MA TLAB的函数设计与实现FIR滤波器。
(4)熟悉线性相位FIR滤波器的幅频特性和相频特性;了解各种不同窗函数对滤波器性能的影响。
二.实验原理线性相位实系数FIR滤波器按其N值奇偶和h(n)的奇偶对称性分为四种:1、h(n)为偶对称,N为奇数H(ejw)的幅值关于ω=0,π,2π成偶对称。
2、h(n)为偶对称,N为偶数H(ejω)的幅值关于ω=π成奇对称,不适合作高通。
3、h(n)为奇对称,N为奇数H(ejw)的幅值关于ω=0,π,2π成奇对称,不适合作高通和低通。
4、h(n)为奇对称,N为偶数H(ejw) ω=0、2π=0,不适合作低通。
Hamming 窗Blackman窗四.思考题(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?写出实验步骤。
1、根据所需要设计的数字滤波器类型,确定线性相位数字滤波器类型;2、选择合适的窗函数;3、确定理想低通数字滤波器的频率响应函数;4、计算理想低通数字滤波器的单位脉冲响应;5、加窗得到设计结果。
(2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl w 和pu w ,阻带上、下截止频率为sl w 和su w ,试求理想带通滤波器的截止频率cl w 和cu w 。
2sl plcl w w w += 2s u p u cu w ww +=(3)解释为什么对相同的技术指标,用等波纹最佳逼近法设计的滤波器阶数低。
用窗函数法设计的滤波器,如果在阻带截止频率附近刚好满足,则离开阻带截止频率越远,阻带衰减富裕量越大,即存在资源浪费;几种常用的典型窗函数的通带最大衰减和阻带最小衰减固定,且差别较大,又不能分别控制。
所以设计的滤波器的通带最大衰减和阻带最小衰减通常都存在较大富裕;用等波纹最佳逼近法设计的滤波器,其通带和阻带均为等波纹特性,且通带最大衰减和阻带最小衰减可以分别控制,所以其 指标均匀分布,没有资源浪费,阶数低得多。