铸造及其熔炼
- 格式:docx
- 大小:19.00 KB
- 文档页数:4
有色金属熔炼与铸锭有色金属是指除了铁之外的金属,包括铜、铝、镁、锌、铅等。
这些金属在工业和日常生活中都有广泛的应用,因此其熔炼和铸造技术也非常重要。
本文将介绍有色金属熔炼和铸锭的基本原理和流程。
一、有色金属熔炼有色金属熔炼是将固态金属加热至液态并进行加工的过程。
有色金属熔炼通常采用电炉、燃气炉或高频感应炉等加热设备。
在熔炼过程中,有色金属会发生氧化、蒸发和挥发等反应,因此需要加入熔剂和保护气体来控制反应的发生。
1. 熔剂熔剂是一种能够与金属氧化物反应生成氧化还原剂的物质。
在熔炼过程中,熔剂可以吸收金属表面的氧化物,并将其还原为金属。
熔剂的选择要根据金属的特性和熔剂的成分来确定。
以铝为例,铝的氧化物(Al2O3)在高温下很难还原为金属铝。
因此,需要加入熔剂(如纯碳或氟化铝钠等)来将氧化物还原为铝。
另外,熔剂还可以调节熔炼温度、改善金属的流动性和减少金属表面的氧化。
2. 保护气体保护气体是一种用于保护金属表面不受氧化的气体。
在熔炼过程中,金属表面会受到空气中的氧化物的影响,导致氧化和污染。
因此,需要加入保护气体,如氮气、氩气、氢气等,来隔绝金属和空气的接触。
以铜为例,铜熔点较低,容易氧化,因此需要使用保护气体来防止氧化。
常用的保护气体是氢气,因为氢气可以还原铜表面的氧化物,并且不会对铜产生污染。
二、有色金属铸造有色金属铸造是将熔化的金属倒入模具中,使其冷却固化成型的过程。
有色金属铸造通常采用砂型铸造、永久模铸造、压铸和注射成型等方法。
1. 砂型铸造砂型铸造是将熔化的金属倒入沙子制成的模具中,使其冷却固化成型的方法。
砂型铸造可以制造大型和复杂的零件,但是生产周期较长,成本较高。
2. 永久模铸造永久模铸造是将熔化的金属倒入金属模具中,使其冷却固化成型的方法。
永久模铸造可以制造高精度、高表面质量和高产量的零件,但是模具成本较高。
3. 压铸压铸是将熔化的金属注入压铸机中,经过高压快速冷却成型的方法。
压铸可以制造高精度、高表面质量和高产量的零件,但是一般只适用于小型和中型零件。
铸造合金及其熔炼1. 合金流动性及其影响因素?改善流动性措施?液态合金的流动能力,影响流动性的主要因素:――合金成分及结晶特点:层状凝固好、糊状凝固差,中间凝固介于二者之间。
结晶温度范围宽,流动性差。
纯金属/共晶合金/金属间化合物流动性好,随成分偏离这几点,流动性变差,但有例外。
——合金液的物理性质粘度越小流动性越好;表面张力越小流动性越好;结晶潜热越大,流动性越好。
――合金液纯净度(气体、夹杂物含量)气体、夹杂物越多,流动性越差,需精炼处理改善措施:正确选择合金成分:结晶温度范围小,如接近共晶成分合理的熔炼工艺:减少杂质含量一一原材料预处理、高温熔炼、净化/精炼处理变质/孕育细化组织:减小枝晶尺寸、提高临界固相量2. 铸件常见缺陷机理及预防措施:1、缩孔、缩松原因:糊状凝固特性、凝固温度范围宽、较大的共晶膨胀使型腔尺寸增大。
防止措施:一一加大铸型刚度。
发挥石墨化膨胀自补缩作用,无帽口铸造。
――增加石墨化膨胀体积。
提高CE,尤其C,强化孕育,防Fe3C形成。
——减少液态收缩。
适当降低浇注温度。
――优化工艺设计,顺序凝固/同时凝固2、夹渣一次渣:熔炼、球化处理(浇注前)形成的非金属夹杂物进入型腔所致——清渣/过滤、适当提高浇注温度、二次渣:浇注过程及尚未凝固前形成的非金属夹杂物一一浇注系统设计,平稳充型,控制Mg残留量3、石墨漂浮(与可锻铸铁的灰点缺陷区分,看看灰点缺陷,课本94页)原因:初生石墨上浮至铸件上表面/冒口防止措施:控制CE<4.6,厚壁铸件适当降低CE。
低硅原铁水+强化孕育4、皮下气孔:原因:铁水中的Mg/MgS与铸型/涂料中水反应生成措施:适当降低残余Mg及铸型水分,型砂添加煤粉5、球化衰退:原因:球化元素随球化处理后时间延长而损耗一一挥发、氧化、回硫;孕育衰退、石墨核心数量减少、石墨球粗大、畸变措施:保持足够球化元素残留量;清渣防回硫;覆盖防氧化减挥发;厚大件用抗衰退能力强的球化剂(铱基重稀土球化剂);抗衰退孕育剂、加Bi等微量元素3. 常用铸铁的成份、组织、性能特点及应用?1 )灰铁:以C、Si、Mn、P、S五元素为主,高牌号时还含有少量Cr、Mo、Cu、Ni、Sn等合金元素;碳主要以片状石墨形式存在,基体为P+F,常以P为主;断口呈暗灰色;铸造性能好、强度较低(<400MPa)、冲击韧性及伸长率很低,导热性、减振性较好。
铝合金熔炼与铸造铝合金是一种常见且广泛使用的金属材料,具有较低的密度、良好的导热性和耐腐蚀性,因此在许多行业中得到了广泛的应用。
铝合金的熔炼和铸造是制造铝合金制品的关键步骤。
本文将介绍铝合金熔炼和铸造的基本原理、工艺和注意事项。
一、铝合金熔炼1.1 熔炼原理铝合金熔炼的主要原理是将铝及其他合金元素加热至其熔点,使其融化成液态,以便进行后续的铸造工艺。
铝的熔点较低,约为660°C,因此相对较容易熔化。
而其他合金元素的加入可以改变铝合金的性质,例如提高其强度、耐腐蚀性或者改善加工性能。
1.2 熔炼工艺铝合金熔炼工艺一般分为两种:批量熔炼和连续熔炼。
批量熔炼是将一定量的铝和其他合金元素加入炉内,通过加热熔化成液态,并进行充分混合。
这种方法适用于小规模生产,常用的炉型有电阻炉和燃气炉。
而连续熔炼是将铝合金材料加入熔炉的顶部,通过炉内的加热和熔化过程,使得底部的液态铝合金不断流出。
这种方法适用于大规模生产,常用的炉型有回转炉和隧道炉。
1.3 熔炼注意事项在铝合金的熔炼过程中,需要注意以下几个方面。
首先,炉内的温度需要控制在适当的范围内,以避免过度燃烧或者过度冷却。
其次,需要保持良好的熔炼环境,防止氧气、水分或杂质等对炉内材料的影响。
最后,在加入其他合金元素时,需要根据配比和工艺要求进行准确的添加,以保证最终铝合金的性能。
二、铝合金铸造2.1 铸型设计铝合金铸造的第一步是进行铸型设计。
铸型设计的目的是根据最终产品的形状和要求,确定合适的铸造方法和材料,以及适当的铸型结构。
常见的铸型结构有砂型、金属型和陶瓷型等。
其中砂型是最常用的铸造方法,可以应用于各种形状和尺寸的产品。
2.2 铸造工艺铝合金的铸造工艺可以分为传统铸造和压铸两种。
传统铸造是将熔融的铝合金液体倒入铸型中,并通过自然冷却形成最终产品。
这种方法适用于小批量生产,但精度和表面光滑度相对较低。
压铸是将高压液压机将铝合金液体注入铸型中,通过压力传递和快速冷却,实现快速成型。
第3章熔炼和铸造在工业生产的众多环节中,熔炼和铸造是至关重要的两个步骤。
它们不仅是将原材料转化为有用产品的关键过程,更承载着对质量、性能和精度的严格要求。
熔炼,简单来说,就是将各种原材料通过加热等方式融合在一起,形成具有特定成分和性能的液态金属。
这个过程就像是一场精心编排的“化学舞蹈”。
首先,要对原材料进行严格的筛选和检验。
无论是矿石、废旧金属还是其他金属材料,都必须保证其质量和纯度符合生产要求。
否则,就如同在美味的汤中混入了杂质,会影响最终的“口感”——也就是金属的性能。
在熔炼过程中,温度的控制是重中之重。
过高的温度可能导致金属的过度氧化,增加杂质含量,同时也会消耗过多的能源;而过低的温度则无法使原材料充分熔化和融合,导致成分不均匀。
这就需要熔炼工人如同经验丰富的大厨,精准地掌握火候。
除了温度,熔炼时所使用的熔炉类型也有多种选择。
常见的有电弧炉、感应炉等。
电弧炉依靠强大的电弧放电产生高温,适用于大规模的熔炼作业;感应炉则通过电磁感应原理加热金属,具有加热速度快、效率高的优点。
而铸造,则是将熔炼得到的液态金属注入到特定的模具中,使其冷却凝固,从而获得具有一定形状、尺寸和性能的铸件。
这就像是给液态金属“塑形”,让它们变成我们所需要的各种零部件。
模具的设计和制造是铸造环节的关键之一。
模具不仅要能够准确地塑造出所需的形状,还要考虑到金属液的流动、冷却收缩等因素,以避免出现缺陷。
比如说,如果模具的排气不畅,就可能在铸件中形成气孔,影响其质量和强度。
铸造的方法也是多种多样的。
砂型铸造是最为常见和传统的一种,它成本相对较低,适用于生产形状较为复杂的铸件。
而压力铸造则是在高压下将金属液注入模具,能够生产出精度高、表面质量好的铸件,但设备成本较高。
在实际的生产中,熔炼和铸造往往是紧密相连的。
只有熔炼过程中控制好成分和温度,才能为铸造提供优质的液态金属;而只有铸造环节中设计好模具、选择合适的工艺,才能将液态金属完美地转化为符合要求的铸件。
球墨铸铁是一种高强度、高韧性的铸铁材料,其熔炼与铸造工艺主要包括以下几个步骤。
原料准备:主要原料是铸铁和球化剂。
铸铁通常是废铁、废钢等回收材料,而球化剂则是一种能够使铸铁中的碳以球形形式存在的添加剂。
熔炼铸造:将原料放入高温熔炉中进行熔炼,熔炼温度通常在1400℃以上。
在熔炼过程中,加入球化剂,使铸铁中的碳以球形形式存在。
浇注铸造:将熔融的球墨铸铁液体倒入铸型中,待其冷却凝固后,取出铸件。
热处理:对铸件进行热处理,以提高其强度和韧性。
通常采用淬火和回火的方法进行热处理。
加工和表面处理:对铸件进行加工和表面处理,以达到所需的形状和表面质量。
在整个铸造过程中,还需要特别注意以下几点:
球墨铸铁铸造工艺比普通灰铁铸件造型更为严格,其缩量要大于普通灰铁铸件,因此在造型时要加大冒口尺寸,确保冒口内铁液能够完全补充需要的缩量。
造型用型砂不能使用水泥砂造型,而要选用树脂砂或水玻璃砂进行造型,且耐火涂料要选择高温耐火材料。
在熔炼过程中,要严格控制球墨铸铁的含量要求,如要求球墨铸件材质为QT450材质,就需要控制五大元素含量在特定范围内。
浇铸时要采用高温出炉低温浇铸的原则,开始浇铸后要保证每个冒口铁液都能浇满,并持续为冒口补充铁液直至冒口内铁液不再下沉减少为止。
第一章1.铁碳相图的二重性从热力学观点上看,Fe-Fe3C相图只是介稳定的,Fe-C(石墨)相图才是稳定的。
从动力学观点看,在一定条件下,按Fe-Fe3C相图转变亦是可能的,因此就出现了二重性。
2.对比Fe-G和Fe-G-Si准二元相图,硅的作用有如下各点:1、共晶点和共析点含碳量随硅量的增加而减少。
2、硅的加入使相图上出现了共晶和共析转变的三相共存区。
(共晶区:液相、奥氏体加石墨;共析区:奥氏体、铁素体加石墨)3、共晶和共析温度范围改变了,硅对稳定系和介稳定系的共晶温度的影响是不同的。
4、硅量的增加,还缩小了相图上的奥氏体区。
实际意义:对分析铸铁的凝固过程、组织形成以及制定热处理工艺。
3.碳当量和共晶度的意义及表达式。
碳当量:CE=C+1/3(Si+P) 根据各个元素对共晶点的影响,将这些元素的量折算成碳量的增减。
共晶度:Sc=C铁/Cc=C铁/(4.26%-1/3(Si+P))C铁——铸铁实际含碳量(%)Cc——稳定态共晶点的含碳量(%)Si、P——铸铁中硅、磷含量(%)如Sc>1为过共晶、Sc=1为共晶、Sc<1为亚共晶成分铸铁。
4.初析石墨的结晶和初析奥氏体的结晶铸铁从液态转变成固态的一次结晶过程,包括初析和共晶凝固两个阶段初析石墨的结晶:当过共晶成分的铁液冷却时,先遇到液相线,在一定的过冷下便会析出初析石墨的晶核,并在铁液中逐渐长大。
初析奥氏体的结晶:当凝固在平衡条件下进行时,只有当化学成分为亚共晶时才会析出初析奥氏体。
非平衡条件下,铸铁中存在一个共生生长区,而且偏向石墨的一方,因而在实际情况下,往往共晶甚至过共晶成分的铸铁在凝固过程中也会析出初析奥氏体。
5.亚共晶灰铸铁共晶转变工程示意图(文字)看书6.球墨铸铁共晶转变示意图。
(文字)看书课后习题:分析讨论片状石墨、球状石墨的长大过程及形成条件。
第二章灰铸铁的金相组织特点:由金属基体和片状石墨组成,还有少量的非金属夹杂物。
灰铸铁的性能特点:1、强度性能较差(石墨的缩减作用、缺口作用)2、硬度的特点(布氏硬度和抗拉强度比值不恒定)3、较低的缺口敏感性4、良好的减震性5、良好的摩擦性缩减作用:由于石墨在铸铁中占有一定量的体积,使金属基体承受负荷的有效截面积减少。
第3章熔炼和铸造熔炼和铸造是金属加工中重要的工艺,它们在许多领域,如制造业、建筑业和航空航天等行业都有广泛的应用。
本文将就熔炼和铸造的基本概念、流程以及一些常见的熔炼和铸造方法进行介绍。
一、熔炼熔炼是将固态金属材料加热到其熔点以上,使之转变为液态的过程。
熔炼的目的是为了得到纯净的金属液体,以便进一步进行铸造或其他加工。
常见的熔炼方式有电弧炉、电感炉和氧气炉等。
电弧炉是一种常用的熔炼设备,它通过将电流引入炉内的电弧,使金属材料加热熔化。
电弧炉广泛应用于钢铁、铝合金等金属的熔炼过程中。
电感炉则利用金属材料对电磁场的感应加热,适用于熔点较高的金属。
氧气炉是一种将电加热与氧气吹焊相结合的熔炼设备,它适用于高温熔炼和精炼金属材料。
氧气炉能够提供高温和氧气,使金属的含碳量降低,从而得到更纯净的金属液体。
二、铸造铸造是将熔化的金属液体倒入预先制作好的铸型中,待其冷却凝固后,将金属零件取出的过程。
铸造是金属加工中最常用的工艺之一,能够制造出形状复杂的金属零件。
常见的铸造方法有砂型铸造、压力铸造和连铸等。
砂型铸造是一种常见的铸造方法,其原理是在铸型中填充一定湿度的砂料,然后将熔化的金属液体倒入铸型中,待其冷却凝固后,取出金属零件。
砂型铸造通常用于制造大型、形状复杂的金属零件。
压力铸造是一种高效、高精度的铸造方法,能够制造出高质量的金属零件。
在压力铸造过程中,金属液体通过压力喷射进入铸型,然后通过压力固化和冷却,最终得到所需的金属零件。
连铸是一种连续铸造的方法,可以实现高效的金属生产。
在连铸过程中,金属液体连续地流过冷却水口,形成连续的结晶体,最后拉出所需的金属线材、板材或型材。
三、总结熔炼和铸造是金属加工中不可或缺的工艺。
熔炼通过加热金属材料使之熔化,得到金属液体;铸造则是将熔化的金属液体倒入铸型中,最终得到所需的金属零件。
熔炼和铸造通常采用不同的设备和工艺,如电弧炉、砂型铸造等。
随着科技的进步,熔炼和铸造工艺得到了不断的改进和创新,新的设备和工艺也被应用于熔炼和铸造过程中。
铸造合金及其熔炼铸造合金是指由两种或两种以上的金属混合而成的材料,通常用于制造复杂形状的零件。
铸造合金具有较高的强度、韧性和耐磨性,同时还具有一定的耐腐蚀性和抗氧化性能。
它们通常用于制造高负荷运行的机械部件、汽车和航空航天零件、医疗设备和通信设备等领域。
铸造合金通常是通过熔炼过程制造的。
熔炼是将金属加热到其熔点以上,使其融化成为液态的过程。
在熔炼过程中,金属经历了一系列化学反应,例如氧化、还原、溶解和合金化等反应。
这些反应是产生所需铸造合金的关键。
在熔炼过程中,金属通常被加入到熔炉中。
熔炉是一种大容量的设备,用于加热和融化金属。
熔炉可以分为燃气熔炉、电弧炉和感应炉等几种类型。
其中,电弧炉是最常用的类型,它通过电极放电产生高温,将金属加热到液态。
熔炼时必须控制热量和化学成分,以产生所需的铸造合金。
在熔炼过程中,需要添加一些合金元素以改善铸造合金的性能。
例如,铝可以用于提高铸造合金的强度和耐腐蚀性,钛可以用于提高铸造合金的高温性能,铜可以用于提高铸造合金的导热性等。
这些合金元素通常以块状添加到熔炉中,随着金属的融化,它们逐渐溶解并与其他金属元素形成一种均匀的合金混合物。
一旦合金达到了所需的化学成分和温度,就可以进行铸造过程。
铸造是将液态合金倒入模具中,并使其冷却硬化的过程。
在铸造过程中,有两个关键的因素:一是铸造温度,二是冷却速度。
控制这两个因素可以获得所需的铸造合金性能。
铸造合金的性能取决于其化学成分、铸造温度和冷却速度等因素。
高强度和高耐磨性的合金通常需要较高的铸造温度和较快的冷却速度。
然而,在某些情况下,较慢的冷却速度可能会导致更优良的铸造合金性能,例如抗腐蚀性能和高温氧化性能等。
因此,在生产铸造合金时必须进行适当的试验和分析,以确保所产生的合金具有所需的性能。
铸造合金及其熔炼论文正文
这本书主要向我们介绍了有关铸造方面的绝大多数内容,用三篇共十七章的篇幅来具体的为我们所了解,主要包括:铸铁及其熔炼,铸铸钢及其熔炼,铸造非铁合金及其熔炼。
第一篇主要内容有:铸铁的结晶及组织的形成、灰铸铁、强韧铸铁、特种性铸铁以及铸铁的熔炼;接着第二篇又介绍了铸造碳钢、铸造低碳合金钢铸造高合金钢、电弧炉炼钢、感应电炉炼钢和钢的卢外精炼;最后第三篇章讲了铝合金的铸造、铸造铝合金的熔炼、铸造铜合金铸造铜合金的熔炼以及铸造锌合金以及熔炼。
1按铸铁的断口特征分类
灰口铸铁:断口呈灰色或暗灰色;
白口铸铁:断口呈银白色;
麻口铸铁:断口呈灰色与银白色交错。
2按铸铁中石墨的存在形式或形态分类
灰铸铁:铸铁中的石墨呈片状;灰铸铁按其生产过程中是否进行孕育处理又可分为:普通灰铸铁(未进行孕育处理)和孕育铸铁(进行孕育处理)
蠕墨铸铁:铸铁中的石墨呈蠕虫状;
球墨铸铁:铸铁中的石墨呈球状;
可锻铸铁:经石墨化退火后铸铁中的石墨呈团絮状。
最主要的是掌握铸铁和铸钢的组织、分类、热处理、性能、铸造方式以及如何保护的措施等等。
铸造行业及铸造技术的现状
中国已是制造大国,铸件年产量已达到1987万t,是世界铸件生产第一大国。
2002年中国二重集团公司成功地浇注了特大型轧钢机机架铸件,总共冶炼、浇注钢液730t。
中国的铸造行业与国外工业发达国家相比,仍有差距。
例如,重大工程的关键铸件如长江三峡水轮机的第一个铸造拼焊结构的叶轮重426t仍从加拿大进口,价值为960万美元;航空发动机及其它重要的动力机械的关键铸件如燃汽轮机高温合金单晶体叶片的铸造技术尚有待突破,中国铸件仍然是以普通灰铸铁为主,铝和镁合金及球墨铸铁的占有比例远不及美国。
铸铁的发展前景
(1)加强高强度薄壁灰铸铁生产技术的开发
低成本和良好的铸造性能是灰铸铁的主要优势,所以灰铸铁已广泛应用于汽车、内燃机、农机、压缩机和市政建设等领域。
今后制约灰铸铁件增长和发展的主要因素之一是轻量化,铸铁轻量化将为铸铁工业注入新的活力,今后应加强高强度薄壁灰铸铁的生产技术的开发。
(2)进一步推广使用球墨铸铁
随着我国汽车工业和铸管工业的发展,以及随着我国球墨铸铁生产水平的提高,应用领域的拓宽,预计进入21世纪,我国球铁件产量必将有大幅度的增长,应进一步扩大等温淬火球墨铸铁在承受强载荷工况机械零件和耐磨件上的应用。
推广铸态球墨铸铁,节约能源,降低生产成本。
(3)扩大蠕墨铸铁的应用
蠕墨铸铁是一种新型材料,它的强度、塑韧性高于灰铸铁,铸造性能优于球墨铸铁,具有优良的耐热疲劳性能和导热性能,可在柴油机缸盖和排气管、液压阀、机床床身、钢锭模、玻璃模具等铸件上推广应用。
(4)抓好铸铁熔炼环节,提供优质铁水
当前, 随着市场竞争的加剧, 铸铁作为一种传统的金属材料正面临着材料的质量、性能和价格的严重挑战。
众所周知, 铸铁是一种具有极大开发潜力的复杂、多元、多相结构材料, 其组织和性能可随其凝固方式的不同而产生很大的变化。
所以有关铸铁及其控制, 多年来一直受到世界各国企业界和学术界的极大关注。
纵观近几年各国铸造杂志上和历次铸造年会上发表的论文,有关铸铁的内容都占有相当多的份额, 而且其内容涉及到铸铁的方方面面, 如热处理、疲劳强度、特殊性能∋耐蚀、耐热、耐氧化性、耐磨性、减震性(、组织控制和凝固、表面改性和复合化技术等方面。
由于受能源劳动力价格和环境因素的影响, 今后工业发达伺家的铸件将会逐渐减少,转而向发展中国家采购一般铸件, 但同时又会向发展中国家出高附加值、高技术含量的优质铸件。
可以说, 铸铁材料的高附加价值化是应对未来更加激烈的铸件市场竞争、满足用户多样化需求的主要对策。
早在60年代初期,即开始了对铝基复合材料的研究。
初期研究主要是针对铝合金基体和增强颗粒、增强纤维的复合,研究复合材料各方面的性能。
复合材料的性能较原基体铝合金在强度、刚性、耐热、耐腐性等方面均有大幅度的提高。
例如,以铸造A356合金为基的SiC(15%)颗粒增强复合材料,强度由255 MPa提高到317 MPa,弹性模量由75.2 GPa提高到95.8 GPa,但伸长率有所下降。
在204 ℃时,A356与A356/SiC/20的σb和σ0.2分别为103MPa,83 MPa与214 MPa,234 MPa。
A356与A356/SiC/20、铸铁的耐磨性比较,在相同的条件下体积磨损量之比为1∶0.28∶0.36。
铝基复合材料具有高的比强度、比刚度和优良的高温力学性能以及低的膨胀系数和优良的耐磨性,在航空、航天、汽车、电子、光学等工业领域具有十分广泛的应用前景,是当前金属基复合材料研究的热点,也是铸造铝合金发
展的新方向。
总结
在铸造的过程中仍有很多缺点与弊端,它的工序依旧比较复杂,有待我们改进,工作环境可以通过技术来改善。
相信未来的铸铁行业将会越来越完善,更加便捷,能够克服现在很多技术上面的难题,相信随着铸造的发展我过一定会赶超美国成为真正的世界第一!。