混凝机理
- 格式:pdf
- 大小:1.05 MB
- 文档页数:51
3.2混凝机理3.2.1 胶体的凝聚机理凝聚主要是指胶体脱稳并生成微小聚集体的过程。
压缩双电层作用根据DLVO理论,加入含有高价态正电荷离子的电解质时,高价态正离子通过静电引力进入到胶体颗粒表面,置换出原来的低价正离子,这样双电层仍然保持电中性,但正离子的数量却减少了,也就是双电层的厚度变薄,胶体颗粒滑动面上的ξ电位降低。
当ξ电位降至0时,称为等电状态,此时排斥势垒完全消失。
ξ电位降至某一数值使胶体颗粒总势能曲线上的势垒Emax=0,胶体颗粒即发生聚集作用,此时的ξ电位称为临界电位ξk。
叔采-哈代法则:起聚沉作用的主要是反离子,反离子的价数越高,其聚沉效率越高。
聚沉值:在指定情形下使一定量的胶体颗粒聚沉所需的电解质的最低浓度,以mmol/dm3为单位。
一般情况下,聚沉值与反离子价数的六次方成反比,即符合:(3.1)双电层压缩机理不能解释加入过量高价反离子电解质引起胶体颗粒电性改变符号而重新稳定的现象,也解释不了与胶体颗粒代相同电荷的聚合物或高分子有机物也有好的聚集效果的现象。
吸附—电性中和胶体颗粒表面吸附异号离子、异号胶体颗粒或带异号电荷的高分子,从而中和了胶体颗粒本身所带部分电荷,减少了胶粒间的静电引力,使胶体颗粒更易于聚沉。
驱动力包括静电引力、氢键、配位键和范德华力等。
可以解释水处理中胶体颗粒的再稳定现象。
吸附架桥作用(Bridging)分散体系中德胶体颗粒通过吸附有机物或无机高分子物质架桥连接,凝集为大的聚集体而脱稳聚沉。
①. 长链高分子架桥②. 短距离架桥三种类型:①. 胶粒与不带电荷的高分子物质发生架桥,涉及范德华力、氢键、配位键等吸附力。
②. 胶粒与带异号电荷的高分子物质发生架桥,除范德华力、氢键、配位键外,还有电中和作用。
③. 胶粒与带同号电荷的高分子物质发生架桥,“静电斑”作用胶体保护示意图网捕—卷扫作用投加到水中的铝盐、铁盐等混凝剂水解后形成较大量的具有三维立体结构的水合金属氧化物沉淀,当这些水合金属氧化物体积收缩沉降时,象筛网一样将水中胶体颗粒和悬浊质颗粒捕获卷扫下来。
混凝剂作用机理范文混凝剂是指在水处理、污水处理等领域中用于凝结悬浮物或溶解物质的化学药剂。
它可以将溶液中的悬浮物或溶解物质聚集成较大的颗粒,使其沉降或浮起,从而实现水质的净化和处理。
混凝剂主要通过以下几种作用机理实现凝结作用。
1.电化学中和机理:混凝剂可以通过电化学反应中和溶液中的带电离子。
当混凝剂被加入水中时,其分子中的氢氧根离子(OH-)会与水中的氢离子(H+)结合,形成水分子(H2O)。
这样就会减少溶液中的酸性或碱性离子,使溶液中的电荷减小,有利于水中悬浮物或溶解物质的凝结。
2.凝聚机理:混凝剂可以通过凝聚机理将细小的悬浮物或溶解物质聚集成较大的团状结构。
混凝剂在水中形成的聚集体有助于吸附、沉降或浮起悬浮物或溶解物质。
这一过程主要涉及混凝剂与悬浮物或溶解物质之间的物理作用力,如吸附力、静电力等。
3.缔合机理:混凝剂可以通过与溶液中的金属离子结合形成难溶的沉淀物质,从而将金属离子从溶液中移除。
混凝剂中的一些成分可以与金属离子发生络合反应,形成金属离子与混凝剂之间的络合物,这些络合物通常具有较大的离子化合物或难溶的沉淀物质,可以从溶液中凝结出来。
4.吸附作用机理:混凝剂可以通过表面吸附作用与悬浮物或溶解物质发生作用。
混凝剂的分子结构通常具有较大的表面积和活性位点,可以吸附住悬浮物或溶解物质的分子或离子。
这样可以使悬浮物或溶解物质相互靠近,形成较大的凝结体,有利于其沉降或浮起。
混凝剂的作用机理并不是单一的,通常是多种机理共同作用的结果。
在实际应用中,选择合适的混凝剂需要考虑水质特点、溶液成分、混凝剂的性质等因素。
不同的混凝剂可能具有不同的机理,因此在具体应用中需要选择适宜的混凝剂来实现水处理和净化的目的。
混凝的机理混凝是一种常用的水处理技术,广泛应用于污水处理、自来水处理、工业废水处理等领域。
混凝的目的是通过添加混凝剂使悬浮在水中的颗粒物聚集成较大的团簇,便于后续的沉淀或过滤,从而达到水的净化和澄清的目的。
本文将从混凝剂的种类、作用机理、影响因素等方面介绍混凝的机理。
一、混凝剂的种类混凝剂是混凝过程中最关键的因素之一,根据其化学成分和作用机理,可以将混凝剂分为以下几类:1. 无机混凝剂:主要包括铁盐、铝盐、钙盐等。
其作用机理是通过电化学反应或水解反应产生氢氧化物或氢氧根离子,使悬浮颗粒带有正电荷或负电荷,从而发生凝聚作用。
2. 有机混凝剂:主要包括聚合物、界面活性剂等。
其作用机理是通过分子间的吸引作用,使颗粒物和混凝剂形成复合物,从而发生凝聚作用。
3. 天然混凝剂:主要包括淀粉、蛋白质等。
其作用机理是通过分子间的吸引作用和空间位阻作用,使颗粒物和混凝剂形成复合物,从而发生凝聚作用。
二、混凝剂的作用机理混凝剂的作用机理可以归纳为以下几个方面:1. 电化学作用:无机混凝剂通过电化学反应或水解反应产生氢氧化物或氢氧根离子,使悬浮颗粒带有正电荷或负电荷,从而发生凝聚作用。
2. 吸附作用:有机混凝剂通过分子间的吸引作用,使颗粒物和混凝剂形成复合物,从而发生凝聚作用。
3. 空间位阻作用:天然混凝剂通过分子间的吸引作用和空间位阻作用,使颗粒物和混凝剂形成复合物,从而发生凝聚作用。
4. 铵基作用:有机混凝剂中的铵基可以与悬浮颗粒表面的负电荷形成离子对,从而发生凝聚作用。
5. 桥联作用:有机混凝剂中的分子可以同时与两个或多个颗粒物形成桥式结构,从而发生凝聚作用。
6. 溶胶-凝胶转变作用:混凝剂可以通过溶胶-凝胶转变作用,使悬浮颗粒形成较大的凝胶团簇,从而发生凝聚作用。
三、影响混凝效果的因素混凝过程中,除了混凝剂的种类和作用机理外,还受到以下因素的影响:1. pH值:pH值的变化会影响混凝剂的电荷状态和水解程度,从而影响混凝效果。
混凝剂的作用机理
混凝剂是指用于水处理中的一类化学药剂,它们的作用是改变悬浮物
或胶体粒子之间的相互作用,使它们聚集成较大的团簇,并沉淀到水体底部,从而实现水体的净化和固液分离。
混凝剂的作用机理可以归纳为以下
几个方面:
1.破坏表面电荷平衡:水中的悬浮物或胶体粒子通常带有带负电荷,
这使它们相互之间发生排斥,难以聚集成大的颗粒。
混凝剂中的活性物质(如铝盐或铁盐)通过释放阳离子,与粒子表面的带负电荷相互作用,将
粒子表面的电荷中和,破坏了粒子之间的静电排斥力,促使它们聚集成较
大的团簇。
2.形成凝聚剂:混凝剂中的活性物质可以通过与悬浮物或胶体粒子的
表面结合形成凝聚剂,从而使得粒子之间的距离进一步缩短,增大聚集的
可能性。
一些混凝剂,如聚合物,具有多个功能基团,可以与粒子表面多
个位置形成物理或化学结合。
3.增大粒子的有效半径:混凝剂中一些物质在水中的溶解度较低,因
此在加入水中时会发生沉淀反应,产生具有一定分散性的大颗粒物。
这些
颗粒物相互作用,吸附粒子形成较大的凝聚物。
同时,一些水中的溶解性
物质也能通过吸附到粒子表面来增大其有效半径,从而有助于粒子的沉淀。
4.形成胶体状物质:有些混凝剂在水中形成胶体状物质,即胶体颗粒。
这些胶体颗粒可以增大凝聚体的稳定性,有助于胶体粒子之间的相互作用,从而形成更大的凝聚物。
以上是混凝剂的一些作用机理,其中相互作用机制的选择和应用取决
于悬浮物或胶体粒子的特性以及所需的混凝效果。
在实际应用中,一般根
据水体的水质要求选择合适的混凝剂,并通过试验和优化来确定最佳的投加量和混凝条件。
简述水的混凝过程和机理混凝是一种水处理过程,通常用于去除水中的悬浮物和浑浊物质。
这个过程涉及到化学和物理反应,通过添加化学物质或物理处理来聚集和沉淀悬浮物。
在混凝过程中,水中的悬浮物被聚集成更大的颗粒,使其更容易沉淀或过滤。
在本文中,我们将详细讨论水的混凝过程和机理。
混凝过程混凝过程通常包括以下步骤:1. 水的预处理:在混凝之前,需要对水进行预处理。
这可能包括过滤或沉淀,以去除粗大的颗粒和悬浮物。
2. 混凝剂的添加:在水中添加化学混凝剂,以促进悬浮物的聚集。
常见的混凝剂包括氯化铁、氯化铝、硫酸铝等。
3. 混合:将混凝剂和水混合,以促进悬浮物的聚集和沉淀。
4. 沉淀:让混合物静置一段时间,以使悬浮物沉淀到底部。
5. 上清液处理:将上清液从底部取出,以去除沉淀物。
混凝机理混凝的机理可以分为化学和物理两个方面。
化学机理混凝剂的添加可以促进悬浮物的聚集,因为混凝剂可以与水中的悬浮物发生化学反应。
混凝剂通常是带正电荷的离子,如Fe3+、Al3+等,这些离子可以与水中的负电荷颗粒吸引在一起形成较大的颗粒。
这些聚集的颗粒被称为混凝凝聚体,它们越大,越容易沉淀。
物理机理混凝过程中的物理机理包括布朗运动、沉降和拦截。
布朗运动是一种微粒子在液体中随机运动的现象。
在混凝过程中,悬浮颗粒会与周围的水分子发生碰撞,从而聚集在一起。
沉降是指颗粒由于重力作用而向下沉降。
拦截是指较小的颗粒被较大的颗粒拦截,从而形成更大的颗粒。
混凝剂的选择混凝剂的选择取决于水的性质和悬浮物的类型。
常用的混凝剂包括氯化铁、氯化铝、硫酸铝等。
氯化铁适用于去除有机物和色素,而氯化铝和硫酸铝适用于去除无机悬浮物。
此外,还可以使用聚合物混凝剂,它们可以形成更大的凝聚体,从而更容易沉淀。
混凝反应的影响因素混凝反应的影响因素包括混凝剂的类型和浓度、水的pH值、悬浮物的类型和浓度等。
在选择混凝剂时,需要考虑水的性质和悬浮物的类型,以确定最佳的混凝剂。
水的pH值也是影响混凝反应的重要因素,通常在pH值为6-8之间,混凝效果最好。