第三章 混凝剂的种类
- 格式:ppt
- 大小:224.00 KB
- 文档页数:174
常用的混凝剂有哪些1、无机混(絮)凝剂无机低分子絮凝剂有氯化铝、硫酸铝、硫酸铁、氯化铁等。
其聚集速度慢,形成的絮状物小,腐蚀性强,在水处理过程中存在较大的问题,而逐渐被无机高分子絮凝剂所取代。
无机高分子絮凝剂是在传统铝盐、铁盐的基础上发展起来的一种新型的水处理剂,价格较低廉,净水效果好。
PAC聚合氯化铝的混凝性能好,生成的矾花大,投药量少,效率高,沉降快,适合水质范围较宽。
主要用于饮用水和工业给水的净化。
同时还能用于去除水中所含的铁、锰、铬、铅等重金属,以及氟化物和水中含油等,故可用于处理多种工业废水。
PAFC聚合氯化铝铁是一种新型的无机高分子净水剂,产品中铝铁二者的配比是可调的,以适应不同水质的需求,已分别在石化、钢铁、煤炭工业等废水的净化处理中得到应用。
结果表明,该药剂质优、价廉,是一种新型、高效、稳定的净水剂,具有广泛的应用前景。
有人通过实验比较得出PAFC的净水效果稍好于PAC,但PAFC加药成本比PAC 少得多。
PFS聚合硫酸铁具有良好的絮凝和吸附作用,广泛应用于原水,饮用水、自来水、工业用水、工业废水及生活污水的处理。
聚合硫酸铝(PAS)是一种使用最广的混凝剂,主要用于饮用水和工业用水的净化处理。
2、有机高分子混凝剂与无机絮凝剂相比,合成有机高分子絮凝剂用量少,絮凝速度快,受共存盐类、介质pH及环境温度影响小,生成污泥量也少;而且有机高分子絮凝剂分子可带—COO、—NH—、SO3、—OH等亲电基团,可具链状、环状等多种结构,利于污染物进入絮体,脱色性好。
一般有机絮凝剂的色度去除较无机絮凝剂高20%左右。
3、微生物混凝剂微生物絮凝剂是利用生物技术,从微生物或其分泌物提取、纯化而获得的一种安全、高效、能自然降解的新型水处理剂,至今发现具有絮凝性的微生物已超过17种,包括霉菌、细菌、放线菌和酵母菌等。
它分为:(1)直接利用微生物细胞的絮凝剂,如某些细菌、霉菌、放线菌和酵母,他们大量存在于土壤、活性污泥和沉积物中;(2)利用微生物细胞壁提取物的絮凝剂,如酵母细胞壁的葡聚糖、甘露聚糖、蛋白质和N-乙酰葡萄糖胺等成分;(3)利用微生物细胞代谢产物的絮凝剂,微生物细胞分泌到细胞外的代谢产物是细胞的荚膜和粘液质,除水外,其主要成分为多糖及少量多肽、蛋白质、脂类及其复合物。
第三章混凝剂的种类1.混凝剂的分类若要取得好的混凝效果,应选择适宜的混凝剂与助凝剂。
混凝剂、助凝剂应具有使用方便、价格低廉、货源充足等优点。
混凝剂的种类很多,按其化学成分可分为无机混凝剂、有机混凝剂两大类。
(1)无机混凝剂①铝盐混凝剂如硫酸铝、明矾、聚合氯化铝等。
铝盐混凝剂具有腐蚀性小、净化效果、使用方法等优点。
但水温低时,硫酸铝水解困难,形成的絮凝体较松散。
效果不如铁盐。
值得注意的是聚合氯化铝为一种无机高分子混凝剂,又称碱式氯化铝,简称为PAC,这种聚合铝的优点是矾花形成块,粒重易沉淀,投量比硫酸铝低。
②铁盐混凝剂如三氧化铁、硫酸亚铁、聚合铁等。
铁盐混凝剂所形成的矾花较重,易沉淀,处理低温浊水的效果比铝盐好。
但三氧化铁的腐蚀性较大,出水含铁量较高。
硫酸亚铁又称绿矾,价廉,货源充分,但混凝效果不如三价铁盐。
因此,在使用硫酸亚铁是把二价铁氧化为三价铁,以增强混凝效果。
聚合铁是一种无机高分子混凝剂,其净化效果比三氧化铁、硫酸亚铁的效果好。
铁盐混凝剂的PH使用范围较宽,在5~11之间。
③镁盐混凝剂如硫酸镁、碳酸镁等。
镁盐等混凝剂的特点是形成的絮凝体比铝盐的还重,容易沉淀,而且可以重复利用。
但因镁盐的价格较贵,国内很少采用。
目前应用最广的是铝盐混凝剂和铁盐混凝剂。
(2)有机混凝剂可分为有机合成高分子混凝剂和天然高分子絮凝剂两大类。
①有机合成高分子混凝剂一般都是水溶性的线型高分子聚合物,它呈链状,并由很多链节组成,每一链节为一化和单体,各单体以共价键结合。
聚合体的分子量是各单体的分子量的总和,单体的总数称聚合度。
高分子混凝剂的聚合度即指链节数,高聚合物的相对分子质量高达150万~160万。
按照高分子聚合物在水中离解的情况,可分为阳离子型、阴离子型、非离子型。
在我国使用最多的高分子混凝剂是聚丙烯酰胺(PAM),它是非离子型聚合物,相对分子量在15万以上。
商品浓度一般为8%,使用时,一般控制水浓度在30%~40%较好。
混凝剂分类:
1.水泥类混凝剂:水泥类混凝剂主要用于水泥制品的生产和混凝土的施工。
其中包括水泥增塑剂、水泥减水剂、水泥稳定剂等。
水泥增塑剂可以改善混凝土的可塑性和流动性,减少水泥用量。
水泥减水剂可以降低混凝土的水灰比,提高强度和耐久性。
水泥稳定剂可以防止水泥的早期凝结和失水。
2.粘结剂类混凝剂:粘结剂类混凝剂主要用于陶瓷、玻璃和矿石等领域。
其中包括硅酸盐粘结剂、磷酸盐粘结剂、硫酸盐粘结剂等。
硅酸盐粘结剂可以促进颗粒的粘结和结晶,提高材料的强度和硬度。
磷酸盐粘结剂可以增加矿石的粘结力,提高矿石的选矿效果。
硫酸盐粘结剂可以提高陶瓷的烧结密度和抗氧化性能。
3.纸浆类混凝剂:纸浆类混凝剂主要用于造纸工业中的纤维分散和纸张制备过程。
其中包括沉淀性混凝剂、聚合物混凝剂、阳离子混凝剂等。
沉淀性混凝剂可以促使纤维的沉淀和分散,提高纸张的强度和光滑度。
聚合物混凝剂可以增加纤维的黏合力和纸张的强度。
阳离子混凝剂可以改善纸浆的过滤性能和流变性能。
4.环保类混凝剂:环保类混凝剂主要用于废水处理和废气处理。
其中包括絮凝剂、脱硫剂、脱氮剂等。
絮凝剂可以使悬浮颗粒聚集成团,便于沉淀和过滤。
脱硫剂可以吸收和中和烟气中的硫化物,减少大气污染物的排放。
脱氮剂可以催化氮氧化物的还原和催化分解,降低脱氮的能耗和成本。
常见的混凝剂、助凝剂和絮凝剂混凝剂、助凝剂和絮凝剂混凝水中悬浮的颗粒在粒径小到一定程度时,其布朗运动的能量足以阻止重力的作用,而使颗粒不发生沉降。
这种悬浮液可以长时间保持稳定状态。
而且,悬浮颗粒表面往往带电(常常是负电),颗粒间同种电荷的斥力使颗粒不易合并变大,从而增加了悬浮液的稳定性。
混凝过程就是加入带正电的混凝剂去中和颗粒表面的负电,使颗粒“脱稳”。
于是,颗粒间通过碰撞、表面吸附、范德华引力等作用,互相结合变大,以利于从水中分离。
混凝剂是分子量低而阳电荷密度高的水溶性聚合物,多数为液态。
它们分为无机和有机两大类。
无机混凝剂主要是铝、铁盐及其聚合物。
絮凝絮凝是聚合物的高分子链在悬浮的颗粒与颗粒之间发生架桥的过程。
“架桥”就是聚合物分子上不同链段吸附在不同颗粒上,促进颗粒与颗粒聚集。
絮凝剂为有机聚合物,多数分子量较高,并有特定的电性(离子性)和电荷密度(离子度)。
实际过程要比上述理论复杂得多。
由于混凝剂/絮凝剂都是高分子物质,同一产品中大大小小的分子都有,所谓“分子量”只是一个平均概念。
所以,在用某一混凝剂或絮凝剂处理污水是,“电中和”和“架桥”作用会交织在一起同时发生。
絮凝过程是多种因素综合作用的结果,目前仍有一些没有认清和解决的问题。
就我们所知,絮凝过程与絮凝剂分子结构、电荷密度、分子量有关;与悬浮颗粒表面性质、颗粒浓度、比表面积有关;与介质(水)的pH值、电导、水中其他物质的存在、水温、搅动情况等因素有关。
因此尽管有理论和经验可循,用实验来选择絮凝剂仍然是不可缺少的。
混凝处理中包括凝聚和絮凝两个阶段。
在凝聚阶段水中的胶体双电层被压缩失去稳定而形成较小的微粒;在絮凝阶段这些微粒互相聚结(或由于高分子物质(1)PAM和无机铝盐混凝剂联用比单独用无机铝盐混凝剂,可以使去浊效果明显改善,而对去除CODMn和UV254改善很少;(2)PAM和无机铝盐混凝剂联用比单独用无机铝盐混凝剂,可使污泥湿基重量减少40%左右;(3)PAM和无机铝盐混凝剂联用比单独用无机铝盐混凝剂,可降低污泥处理费和净水加药费用,从而能降低总的净水成本;(4)用于饮用水处理的PAM,其单体AM含量均应小于0.05%,PAM投加率一般均少于1mg/l,足以保证饮用水的安全性。
混凝剂编辑词条目录1用途2选用原则3投加方式4应用5产品种类编辑本段用途混凝剂主要用于生活饮用水的净化和工业废水,特殊水质的处理(如含油污水,印染造纸污水、冶炼污水,含放射性特质,含Pb,Cr等毒性重金属和含F污水等)。
此外在精密铸造、石油钻探、制革、冶金造纸等方面也有广泛用途。
混凝剂就是在水处理过程中可以将水中的胶体微粒子相互粘结和聚集在一起的物质,通常混凝剂分为有机混凝剂和无机混凝剂两大类。
混凝的过程就是在水处理的过程中加入药剂,使杂质产生凝聚、絮凝的过程。
给水处理:以地面水为水源时,去除浊度和细菌。
经混凝沉淀后一般浊度小于10 度。
废水处理工业废水:用于处理一些特殊的废水,脱色、去除悬浮物等印染废水处理:适用于含颜料、分散染料、水溶性分子量较大的等染料废水处理。
混凝剂的选择与染料种类有关,需做混凝试验。
可以单独用无机混凝剂,也可和有机高分子絮凝剂联用。
采用PAC 混凝剂,投加量为140mg/L 时,TO C 去除率为68%。
含油废水处理:乳化油颗粒小、表面带电荷,加混凝剂,压缩双电层。
通常采用混凝气浮工艺。
混凝剂作为水处理药剂的具体用途:1、不需加其它助剂,絮凝体形成快而粗大,活性高,沉性高,沉淀快。
因而对高浊度水的净化效果特别明显。
2、适应PH值范围宽,降低原水中PH值小,因而对管道设备无腐蚀作用。
3、脱色、去污力强。
净水效果是AL2(SO4)3的4-6倍,ALCL3的3-5倍。
用量小,效力大;成本低,效益高。
编辑本段选用原则混凝剂种类繁多,如何根据水处理厂工艺条件、原水水质情况和处理后水质目标选用合适的混凝药剂,是十分重要的。
混凝剂品种的选择应遵循以下一般原则:(1)混凝效果好。
在特定的原水水质、处理后水质要求和特定的处理工艺条件下,可以获得满意的混凝效果。
(2)无毒害作用。
当用于处理生活饮用水时,所选用混凝剂不得含有对人体健康有害的成分;当用于工业生产时,所选用混凝药剂不得含有对生产有害的成分。
混凝剂在20世纪初,用混凝剂进行工作的快滤池进入给水处理的实践中,其运转经验表明,混凝剂具有很高的消毒能力。
从最早使用的天然混凝剂到初级合成 AIC13、FeS04-7H20或硅系列混凝剂,再到现今使用的高聚合类混凝剂(如聚合氯化铝PAC、聚合硫酸铁PFS、PASS、聚丙烯酰胺PAM等),以及即将到来的生物混凝剂,人类使用混凝剂的过程也会经历一个从天然到合成再到天然的循环。
混凝方法也由简单的搅拌发展到精确控制搅拌的各种边界条件、混凝剂最适应用环境,进而形成许多的混凝理论,在水的净化处理过程起着重要的指导作用。
1 混凝剂的定义与分类1.1 混凝剂的定义目前关于混凝剂的定义有两种方法:一种是根据胶体粒子聚集阶段的不同,即胶粒的表面改性及胶粒的粘连,将起胶粒表面改性作用的药品称为凝聚剂,使胶粒粘连的药品称为絮凝剂,兼有上述各种功能的药品为混凝剂;另外一种定义比较简单,将混凝剂与絮凝剂不加区分,因为从机理上区分凝聚与絮凝有时很困难。
1.2 混凝剂的分类目前,絮凝剂的品种繁多,按其化学成分可分为无机和有机两大类。
无机类的品种较少,主要是铝和铁的盐类及其水解聚合产物,但在水和废水处理中的用量很大;有机类的品种很多,主要是高分子化合物,又可分为天然的及人工合成的两部分,但用量不如无机类大。
2 混凝剂在我国的发展现状混凝剂剂的开发主要集中在无机高分子絮凝剂(IPF)的复合与混凝机理的研究方面,并提出了自己的某些理论,在指导新型混凝剂的开发方面起到了一定的作用。
如汤鸿霄在 A113结构模型方面所做的研究与李圭白在利用 KMnO4去除微污染水中的腐殖质方面的研究都在国际上有一定的影响。
目前,我国无机混凝剂的品种比较齐全,但天然与人工合成有机高分子絮凝剂相对国外而言品种较少。
例如,常用的聚合高分子主要是聚丙烯酰胺系列化合物,电荷基本局限于阴离子聚丙烯酰胺及非离子聚丙烯酰胺型,而一些发达国家无论在给水还是在废水处理中,阳离子型不同种类的聚合高分子的应用均明显超过阴离子型及非离子型聚合高分子。
混凝剂在污水处理中的应用:颗粒中较大的粗粒悬浮物可以利用自然沉淀去除,但是更微小的悬浮物,甚至是某些有害的化学离子,特别是胶体粒子沉降得很慢,甚至能在水中长期保持分散的悬浮状态而不能自然下沉,难以用自然沉淀的方法从水中分离除去。
混凝剂的原理是破坏这些细小颗粒的稳定性,使其互相接触而凝聚在一起,形成絮状物,并下沉分离。
利用混凝剂治理污水综合了混合、反应、凝聚、絮凝等九个过程。
由于混凝剂投入水中,大多可以提供大量的正离子。
正离子能把胶体颗粒表面所带的负电中和掉,使其颗粒间排斥力减小,从而容易想和靠近并凝聚程絮状细粒,实现了使水中细小胶体颗粒脱稳并凝聚成微小细粒的过程。
微小的细粒通过吸附、卷带和架桥形成更大的絮体沉淀下来,达到了可从水中分离出来的目的。
污水治理中常用的混凝剂大致可以分为三类:有机混凝剂、无机混凝剂和高分子混凝剂。
有机混凝剂有阴阳离子型之分;无机混凝剂有无机类、碱类、固体细粉类等区别;高分子混凝剂根据聚合度的不同可分为高聚合度混凝剂和低聚合度混凝剂,不同聚合度下又有阳离子型、阴离子型和非离子型,高分子混凝剂也有有机与无机类之分。
选用混凝剂的品种、数量应根据处理对象,即不同的废水的试验资料和条件而定,必须从价廉、易得、投用量少、处理效率高且生成的絮状物容易沉淀分离等方面考虑。
当投加单个混凝剂处理效果不理想时,还可以投加助凝剂或者可以考虑两种混凝剂按比例混合投加。
一、混凝剂种类按无机和有机类可分成以下几种:1、硫酸铝硫酸铝含有不同数量的结晶水,Al2(SO4)3·18H2O,其中n=6、10、14、16,18和27,常用的是Al2(SO4)3·18H2O其分子量为666.41,比重1.61,外观为白色,光泽结晶。
硫酸铝易溶于水,水溶液呈酸性,室温时溶解度大致是50%,pH值在2.5以下。
沸水中溶解度提高至90%以上。
硫酸铝使用便利,混凝效果较好,不会给处理后的水质带来不良影响。
水质工程学练习题(4)第三章混凝一、填空:1、水处理过程中,混凝过程主要的去除对象为胶体和微小悬浮物。
2、胶体在水中之所以稳定,主要原因为胶体的动力稳定、带电稳定和胶体的溶剂化作用。
3、常用的混凝剂有硫酸铝、三氯化铁和聚合氯化铝。
4、目前公认的四个混凝机理分别是:压缩双电层、吸附-电中和、吸附架桥、网捕-卷扫。
5、根据快速混合的原理,混合设施主要有如下四类:水利混合、水泵混合、管式混合、机械混合。
6、混凝剂与水的混合絮凝中控制水利条件的重要参数是速度梯度G值和絮凝时间T 值。
混合阶段要求的水利条件是G值为700~1000S-1,T值为10~20s,絮凝阶段要求的水利条件是平均G值为20~70S-1,GT值为1×104 ~1×105。
二、名词解释:混凝的定义总电位ζ电位压缩双电层速度梯度G--指两相邻水层的水流速度差与它们之间的距离的比值。
复合混凝剂同向絮凝异向絮凝混凝剂助凝剂三、问答题:1.试述混凝机理,及影响混凝效果的主要因素。
答:胶粒的混凝机理①压缩双电层作②吸附电中和作用③吸附架桥作用④网捕卷扫作用(4分)絮凝机理:①异向絮凝②同向絮凝(3分)影响因素:(3分)①水温的因素②PH的影响③水的碱度的影响④浊质颗粒的影响⑤水中有机污染物的影响⑥混凝剂的种类及投加量的影响⑦混凝剂的投加方式的影响2、铝盐和铁盐作为混凝剂在水处理过程中发挥哪三种作用?(1)Al3+或Fe3+和低聚合度高电荷的多核羟基配合物的脱稳凝聚作用。
(2)高聚合度羟基配合物的桥连絮凝作用。
(3)以氢氧化物沉淀形式存在时的网捕絮凝作用。
3. 混凝药剂的选择遵循哪些原则?P72第四章沉淀一、填空:1、在水处理领域中,颗粒在水中的沉降属于_层流___状态,颗粒的下沉速度可用_斯托克斯___公式计算。
2、澄清池内_泥渣__的体积浓度是提高原水中悬浮颗粒絮凝速率的决定性因素。
3、自由沉淀颗粒在水中所受的力有自身重力、水的浮力、粘滞阻力、惯性力。
混凝剂及混凝影响因素1.混凝剂的种类和性质混凝剂共分为无机和有机两大类,实际使用过程中,无机混凝剂使用量更大。
常用的混凝剂见下表:聚合氯化铝和聚合硫酸铝的性能优于硫酸铝,对水温、pH的适应性强,絮体生成快且密实,使用时无需加碱性助剂,腐蚀性小。
但铝盐对生物体有一定的影响,投加时,尽量避开污水的生物处理阶段。
铁系混凝剂不存在生物抑制性,低温下混凝效果好,但三氯化铁对金属有腐蚀作用,聚合硫酸铁代替三氯化铁,用量少,腐蚀性小,絮体生成快,大而密实,适宜水温10-50摄氏度,pH5.0-8.5。
有机混凝剂中天然的混凝剂如:淀粉、骨胶、多糖等,由于分子量小,电荷密度小,且容易降解失去活性,因此使用量远小于合成的有机混凝剂。
合成的有机混凝剂以聚丙烯酰胺为主,水解后得到阴离子型HPAM,引入基团得到阳离子型混凝剂氨甲基聚丙烯酰胺,可分别用于处理不同类型的污水。
由于有机混凝剂用量少、产生的污泥少,因此城市污水的初次沉淀和二次沉淀尽量采用聚丙烯酰胺类的混凝剂。
对于形成带色的有机胶体的污水,可用阳离子型混凝剂使其脱稳,再用非离子型或阴离子型混凝剂使脱稳的胶体变成易沉淀的絮体。
污水深度处理滤池采用PAM类作为助滤剂,可提高出水水质,延长滤池工作周期,加强滤池对流量变化的承受能力。
2.混凝剂的选择a.通过试验确定适合的混凝剂类型。
b.混凝剂的操作是否方便。
c.该混凝剂当地是否生产,质量是否可靠。
d.该混凝剂的经济合理性。
3.助凝剂a.pH调节剂:氧化钙、氢氧化钠、氢氧化钙、碳酸钠等。
b.氧化剂:次氯酸钠、臭氧等。
c.混凝改良剂:PAM、海藻酸钠、粘土等,改善絮体结构,增加粒径和密度等。
4.混凝影响因素a.pH值由于铝盐、铁盐类的混凝剂水解过程不断释放H+,导致pH降低,因此混凝过程需要投加一定量的碱性物质。
投加量应根据实验确定。
b.水温一般在常温下操作,低水温对混凝有明显的不良影响:低温时水的粘度大,胶体水化膜增厚,且无机盐类混凝剂水解需要吸热。
混凝剂标准一、混凝剂类型混凝剂主要包括聚合氯化铝(PAC)、聚合氯化铁(PFC)、聚合氯化硫酸铁(PFCS)、聚合氯化硫酸铝(PFCAlS)、聚合氯化硫酸铝铁(PFCAuS)等。
此外,还包括明矾、硫酸铁、硫酸铝、氯化铁、氯化铝等传统无机混凝剂。
二、混凝剂技术要求有效成分含量:聚合氯化铝(PAC)的氧化铝含量应不小于10.0%;聚合氯化铁(PFC)的氧化铁含量应不小于10.0%;聚合氯化硫酸铁(PFCS)的氧化铁含量应不小于10.0%,氧化硫含量应不小于4.0%;聚合氯化硫酸铝(PFCAlS)的氧化铝含量应不小于6.0%,氧化硫含量应不小于4.0%;聚合氯化铝铁(PFCAuS)的氧化铝含量应不小于6.0%,氧化硫含量应不小于4.0%。
水不溶物含量:聚合氯化铝(PAC)、聚合氯化铁(PFC)、聚合氯化硫酸铁(PFCS)、聚合氯化硫酸铝(PFCAlS)、聚合氯化铝铁(PFCAuS)等混凝剂的水不溶物含量应不大于0.5%。
盐基度:聚合氯化铝(PAC)、聚合氯化铁(PFC)、聚合氯化硫酸铁(PFCS)、聚合氯化硫酸铝(PFCAlS)、聚合氯化铝铁(PFCAuS)等混凝剂的盐基度应不小于60%。
密度:聚合氯化铝(PAC)、聚合氯化铁(PFC)、聚合氯化硫酸铁(PFCS)、聚合氯化硫酸铝(PFCAlS)、聚合氯化铝铁(PFCAuS)等混凝剂的密度应不小于1.15g/ml。
PH值:聚合氯化铝(PAC)、聚合氯化铁(PFC)、聚合氯化硫酸铁(PFCS)、聚合氯化硫酸铝(PFCAlS)、聚合氯化铝铁(PFCAuS)等混凝剂的PH值应不大于7。
5。
三、混凝剂使用条件适用范围:本标准适用于生活饮用水和工业用水的净化处理。
使用方法:根据污水的性质和浓度,按照一定比例加入混凝剂,搅拌均匀后静置沉淀一定时间,使悬浮物和污水分离,然后通过过滤或离心分离等方法进一步净化。
用量:聚合氯化铝(PAC)用量一般为10-20mg/L;聚合氯化铁(PFC)用量一般为10-20mg/L;聚合氯化硫酸铁(PFCS)用量一般为10-20mg/L;聚合氯化硫酸铝(PFCAlS)用量一般为10-20mg/L;聚合氯化铝铁(PFCAuS)用量一般为10-20mg/L。
混凝剂、助凝剂和絮凝剂混凝水中悬浮的颗粒在粒径小到一定程度时,其布朗运动的能量足以阻止重力的作用,而使颗粒不发生沉降。
这种悬浮液可以长时间保持稳定状态。
而且,悬浮颗粒表面往往带电(常常是负电),颗粒间同种电荷的斥力使颗粒不易合并变大,从而增加了悬浮液的稳定性。
混凝过程就是加入带正电的混凝剂去中和颗粒表面的负电,使颗粒“脱稳”。
于是,颗粒间通过碰撞、表面吸附、范德华引力等作用,互相结合变大,以利于从水中分离。
混凝剂是分子量低而阳电荷密度高的水溶性聚合物,多数为液态。
它们分为无机和有机两大类。
无机混凝剂主要是铝、铁盐及其聚合物。
絮凝絮凝是聚合物的高分子链在悬浮的颗粒与颗粒之间发生架桥的过程。
“架桥”就是聚合物分子上不同链段吸附在不同颗粒上,促进颗粒与颗粒聚集。
絮凝剂为有机聚合物,多数分子量较高,并有特定的电性(离子性)和电荷密度(离子度)。
实际过程要比上述理论复杂得多。
由于混凝剂/絮凝剂都是高分子物质,同一产品中大大小小的分子都有,所谓“分子量”只是一个平均概念。
所以,在用某一混凝剂或絮凝剂处理污水是,“电中和”和“架桥”作用会交织在一起同时发生。
絮凝过程是多种因素综合作用的结果,目前仍有一些没有认清和解决的问题。
就我们所知,絮凝过程与絮凝剂分子结构、电荷密度、分子量有关;与悬浮颗粒表面性质、颗粒浓度、比表面积有关;与介质(水)的pH值、电导、水中其他物质的存在、水温、搅动情况等因素有关。
因此尽管有理论和经验可循,用实验来选择絮凝剂仍然是不可缺少的。
混凝处理中包括凝聚和絮凝两个阶段。
在凝聚阶段水中的胶体双电层被压缩失去稳定而形成较小的微粒;在絮凝阶段这些微粒互相聚结(或由于高分子物质的吸(1)PAM和无机铝盐混凝剂联用比单独用无机铝盐混凝剂,可以使去浊效果明显改善,而对去除CODMn和UV254改善很少;(2)PAM和无机铝盐混凝剂联用比单独用无机铝盐混凝剂,可使污泥湿基重量减少40%左右;(3)PAM和无机铝盐混凝剂联用比单独用无机铝盐混凝剂,可降低污泥处理费和净水加药费用,从而能降低总的净水成本;(4)用于饮用水处理的PAM,其单体AM含量均应小于0.05%,PAM投加率一般均少于1mg/l,足以保证饮用水的安全性。
混凝剂、助凝剂和絮凝剂混凝水中悬浮的颗粒在粒径小到一定程度时,其布朗运动的能量足以阻止重力的作用,而使颗粒不发生沉降。
这种悬浮液可以长时间保持稳定状态。
而且,悬浮颗粒表面往往带电(常常是负电),颗粒间同种电荷的斥力使颗粒不易合并变大,从而增加了悬浮液的稳定性。
混凝过程就是加入带正电的混凝剂去中和颗粒表面的负电,使颗粒“脱稳”。
于是,颗粒间通过碰撞、表面吸附、范德华引力等作用,互相结合变大,以利于从水中分离。
混凝剂是分子量低而阳电荷密度高的水溶性聚合物,多数为液态。
它们分为无机和有机两大类。
无机混凝剂主要是铝、铁盐及其聚合物。
絮凝絮凝是聚合物的高分子链在悬浮的颗粒与颗粒之间发生架桥的过程。
“架桥”就是聚合物分子上不同链段吸附在不同颗粒上,促进颗粒与颗粒聚集。
絮凝剂为有机聚合物,多数分子量较高,并有特定的电性(离子性)和电荷密度(离子度)。
实际过程要比上述理论复杂得多。
由于混凝剂/絮凝剂都是高分子物质,同一产品中大大小小的分子都有,所谓“分子量”只是一个平均概念。
所以,在用某一混凝剂或絮凝剂处理污水是,“电中和”和“架桥”作用会交织在一起同时发生。
絮凝过程是多种因素综合作用的结果,目前仍有一些没有认清和解决的问题。
就我们所知,絮凝过程与絮凝剂分子结构、电荷密度、分子量有关;与悬浮颗粒表面性质、颗粒浓度、比表面积有关;与介质(水)的pH值、电导、水中其他物质的存在、水温、搅动情况等因素有关。
因此尽管有理论和经验可循,用实验来选择絮凝剂仍然是不可缺少的。
(1)PAM和无机铝盐混凝剂联用比单独用无机铝盐混凝剂,可以使去浊效果明显改善,而对去除CODMn和UV254改善很少;(2)PAM和无机铝盐混凝剂联用比单独用无机铝盐混凝剂,可使污泥湿基重量减少40%左右;(3)PAM和无机铝盐混凝剂联用比单独用无机铝盐混凝剂,可降低污泥处理费和净水加药费用,从而能降低总的净水成本;(4)用于饮用水处理的PAM,其单体AM含量均应小于0.05%,PAM投加率一般均少于1mg/l,足以保证饮用水的安全性。