第14讲条件随机场课件
- 格式:pdf
- 大小:1.80 MB
- 文档页数:71
条件随机场条件随机场(Conditional Random Fields,CRF)是一种概率图模型,常用于序列标注问题。
它是基于给定输入序列的条件下,对输出序列进行建模的方法。
CRF的设计使得它特别适用于自然语言处理和计算机视觉等领域的序列标注任务。
设输入序列为X,输出序列为Y,我们的目标是根据输入序列X预测输出序列Y。
CRF将标注问题建模为一个条件概率模型P(Y,X),即给定输入序列X下输出序列Y的条件概率分布。
CRF的核心思想是将标注问题转化为一个由输入序列和输出序列共同决定的全局能量最小化问题。
在CRF中,输出序列Y的概率分布由特征函数的线性组合表示,特征函数是关于输入序列X和输出序列Y的函数。
特征函数可以根据问题的特定需求来设计。
经典的特征函数有:1.状态特征函数:描述当前状态下的输出特征,例如当前词的词性标记。
2.转移特征函数:描述相邻状态之间的输出特征,例如当前词的词性标记和下一个词的词性标记之间的转移特征。
3.开始特征函数和结束特征函数:描述开始和结束状态的输出特征。
CRF的核心是定义全局能量函数,其通过特征函数的线性组合来度量给定输入序列X和输出序列Y的不匹配程度。
全局能量函数可以表示为以下形式:E(Y,X)=∑F_k(Y,X)∙w_k其中,F_k(Y,X)表示第k个特征函数,w_k表示对应的权重。
全局能量函数越小,意味着输出序列Y的概率越大。
在CRF中,我们通过最大熵原理来确定权重w_k。
最大熵原理认为模型在给定输入序列X下的条件下,应当满足的约束是使得模型的熵达到最大。
我们使用拉格朗日乘子法来求解权重w_k,以最小化目标函数。
在训练阶段,我们使用训练数据来估计CRF模型的参数(即权重w_k)。
常用的参数估计方法有最大似然估计和最大正则化似然估计。
在预测阶段,给定一个新的输入序列X,我们可以使用动态规划算法(如前向-后向算法)来求解输出序列的最优解。
动态规划算法可以高效地计算全局能量函数。
随机场-Random Field2010年11月03日⁄技术, 科研⁄共 3875字⁄评论数 2⁄被围观 3,708+随机场(Random field)定义如下:在概率论中, 由样本空间Ω = {0, 1, ..., G− 1}n取样构成的随机变量X所组成的S = {X1, ..., X n}。
若对所有的ω∈Ωi下式均成立,则称π为一个随机场。
π(ω) > 0.一些已有的随机场如:马尔可夫随机场(MRF), 吉布斯随机场 (GRF), 条件随机场 (CRF), 和高斯随机场。
转载的东西不靠谱。
有空自己学习写下来。
----------------------------马尔可夫随机场(Markov Random Field),也有人翻译为马尔科夫随机场,它包含两层意思:一是什么是马尔可夫,二是什么是随机场。
马尔可夫一般是马尔可夫性质的简称。
它指的是一个随机变量序列按时间先后关系依次排开的时候,第N+1时刻的分布特性,与N时刻以前的随机变量的取值无关。
拿天气来打个比方。
如果我们假定天气是马尔可夫的,其意思就是我们假设今天的天气仅仅与昨天的天气存在概率上的关联,而与前天及前天以前的天气没有关系。
其它如传染病和谣言的传播规律,就是马尔可夫的。
随机场包含两个要素:位置(site),相空间(phase space)。
当给每一个位置中按照某种分布随机赋予相空间的一个值之后,其全体就叫做随机场。
我们不妨拿种地来打个比方。
“位置”好比是一亩亩农田;“相空间”好比是种的各种庄稼。
我们可以给不同的地种上不同的庄稼,这就好比给随机场的每个“位置”,赋予相空间里不同的值。
所以,俗气点说,随机场就是在哪块地里种什么庄稼的事情。
好了,明白了上面两点,就可以讲马尔可夫随机场了。
还是拿种地打比方,如果任何一块地里种的庄稼的种类仅仅与它邻近的地里种的庄稼的种类有关,与其它地方的庄稼的种类无关,那么这些地里种的庄稼的集合,就是一个马尔可夫随机场。