中国风能的利用现状及发展
- 格式:doc
- 大小:124.00 KB
- 文档页数:9
风能技术的发展现状与未来趋势分析概述:近年来,世界各国对清洁能源的需求不断增加,风能作为一种可再生能源备受关注。
本文将分析风能技术的发展现状以及未来趋势,并探讨其在能源转型中的地位和作用。
一、风能技术的发展现状1. 增长态势迅猛:近年来,全球各国对风能技术的投资不断增加,风电装机容量不断扩大。
特别是在欧洲和中国,风能发电已经成为重要的能源来源,电网接入能力和产业规模也不断提升。
2. 技术突破与创新:风力发电技术从传统的水平轴风力机逐渐发展到现代的垂直轴风力机和深海风电。
同时,各种新型风力发电机组投入使用,如直驱风机、齿轮箱减少型风机等。
3. 风电成本下降:随着技术的发展和规模的增大,风电的成本不断下降。
尤其是在风机制造、运维和电网接入方面的成本降低,使得风能发电逐渐具备竞争力。
二、风能技术的未来趋势1. 大规模风电开发:随着对清洁能源需求的增加以及技术的进步,未来将会有更多的大规模风电场建设。
同时,风电场的规模将会更大,并且在海上风电和远海风电的开发上会有更多突破。
2. 大数据和人工智能的应用:随着大数据和人工智能技术的发展,风能行业将会更好地应用这些技术。
比如,通过大数据分析风速、风向等数据,优化风机的布局和运行;通过人工智能算法,提高风电场的发电效率。
3. 高效风能转换技术:未来,风能转换技术将会更加高效,从而提高风能的利用率和发电效益。
例如,利用新型材料和结构设计,改进风机的气动性能;发展可调控和预测性强的风机,以适应变化多样的气象条件。
4. 能源储存技术的研发:风能的不稳定性是目前面临的一个难题,因此,能源储存技术的研发将成为未来风能行业的重要方向。
例如,利用电池储能、氢能储能等技术,将风能转化为可靠的电力供应。
5. 国际合作与政策支持:风能技术的发展需要国际合作和政策支持。
各国应加强合作,共享技术和经验,共同推动风能技术的发展。
此外,政府应出台相应的政策,提供资金支持和减税优惠,以推动风能行业的健康发展。
我国当前风能发展现状及未来趋势分析近年来,我国的风能发展取得了长足的进展。
随着全球对可再生能源需求的不断增长,风能作为一种清洁、可再生、可持续的能源形式,逐渐成为我国能源结构转型的重要组成部分。
本文将对我国当前风能发展的现状进行分析,并展望其未来的趋势。
一、我国当前风能发展现状1. 发展规模壮大:我国是世界上风电装机容量最大的国家。
截至2020年底,我国的风电装机容量达到了280GW,是全球风电装机容量的近40%。
其中,陆上风电装机容量占比较大,但近年来海上风电发展迅速,已成为风能发展的重要方向。
2. 技术水平提升:我国在风能技术领域的投入不断增加,取得了显著成果。
在风力发电技术方面,我国已经掌握了多种关键技术,例如可调桨叶、直驱发电机组等。
此外,我国还在海上风电技术方面进行了大量研发工作,取得了一系列突破,填补了多项技术空白。
3. 政策支持措施:我国政府积极推动风能发展,制定了一系列支持政策。
包括国家发展改革委、能源局等相关部门发布的风电发展规划和政策文件,以及对风电行业的财税支持、上网电价补贴等。
这些政策的出台,为风能产业的健康发展提供了良好的环境。
二、未来发展趋势1. 规模进一步扩大:未来,我国的风电装机容量还将进一步扩大。
根据《能源发展“十四五”规划纲要》的目标,到2025年,我国风电的装机容量将超过400GW。
随着进一步的技术升级和成本降低,海上风电将成为重点发展方向,预计到2025年,海上风电装机容量将达到20GW以上。
2. 技术创新提速:我国将继续加大在风能技术研发方面的投入,推动技术创新和突破。
特别是在风电装备制造、运维维护、智能化控制等方面,将加强研究和开发工作,提高风能的利用效率和可靠性。
同时,新能源与大数据、人工智能等技术的结合也将为风能发展带来新的机遇。
3. 多能源协同发展:未来的能源发展将强调多能源协同发展和综合利用。
风能作为清洁能源的代表,将与其他可再生能源形式如太阳能、水能等进行协同发展。
风力发电的发展现状及应用一、风力发电的发展现状风力发电是一种利用风能产生电力的技术,目前已经成为可再生能源领域中的主要代表之一。
随着全球对清洁能源的需求不断增加,风力发电技术取得了长足的发展,成为全球能源结构的重要组成部分。
1.全球风力发电装机容量的快速增长根据国际能源署(IEA)的数据显示,2000年至2019年,全球风力发电的装机容量从17.5GW增长到651GW,呈现出了快速增长的趋势。
特别是在欧洲、北美以及亚洲地区,风力发电已成为主要的清洁能源之一。
2.技术进步推动风力发电成本持续下降随着技术的不断创新和进步,风力发电的成本在持续下降。
据国际可再生能源机构(IRENA)的数据显示,全球范围内,风力发电的成本已经大大降低,特别是在欧洲一些发达国家,风力发电的成本已经竞争力十足,甚至低于传统化石能源。
3.政策和市场推动风力发电的发展许多国家和地区都出台了支持风力发电的政策和规划,鼓励企业和投资者加大对风力发电的投入。
而且,一些国家还采取了采购电力的方式,鼓励风力发电项目的建设和发展。
4.风力发电在能源转型中的重要作用当前,全球正在进行能源结构的转型,寻求更加清洁和可持续的能源供应。
而风力发电正是能够满足这一需求的重要能源形式,它能够代替传统的化石能源,减少温室气体的排放,保护环境和改善空气质量。
二、风力发电的应用风力发电作为一种清洁、可再生的能源形式,具有较广泛的应用领域。
它不仅可以用于大型商业发电项目,也可以在小型家庭和商业用途中得到应用。
1.大型商业风电项目大型商业风电项目是风力发电的主要应用形式,它通常是由大型风力发电场组成,通过集中式的发电和输送系统,为城市和工业区域供应电力。
这种风电项目通常会占据较大的土地面积,需要大规模的投资和建设。
2.分布式风能发电项目分布式风能发电项目是指在城市、农村或者工业区域附近设立小型风力发电设备,利用风能为小范围用户供电。
这种项目通常规模较小,可以分散建设,适合于电网不发达或者需求相对较小的地区。
中国风能的利用现状及发展摘要:随着化石能源的不断消耗,新能源的开发利用引起了世界各国的重视。
新能源具有污染少、储量大、永续性等特点。
我国新能源产业呈现强劲发展势头,其中,风电发展最为迅猛。
我国风能资源丰富,目前中国风电技术的开发利用取得了巨大进步。
但中国的风能资源开发利用仍然存在诸多问题,如风电的并网消纳难、电力市场不完善、相关配套法规不健全和风机制造技术基础薄弱等,这些制约因素严重阻碍了我国风电的可持续发展。
本文着重阐述了中国新能源风能的资源条件、我国风能发展现状及制约中国风能发展的因素并对我国风能发电的发展前景进行了展望。
能源是人类生存和发展的重要物质基础,是人类从事各种经济活动的原动力。
由于化石能源(如煤、石油、天然气等能源)自然储量的有限性以及人类对其需求的无限性,随着人类对化石燃料无节制的开采和利用,化石能源短缺的矛盾日益突出。
长期以来,我国以化石能源为主的能源构成形式加剧了对化石能源的依赖,据统计,2007 -2010年我国能源消耗总量不断上升,增长率分别为7. 8%、4. 0%、6. 3%、5. 9%;2011年能源消耗总量达34. 8亿t标准煤,比2010年增长7%。
能源消耗总量中,煤、石油、天然气这些化石能源在2007-2010年所占比例分别为93. 2%、92.3%、92.2%、91.4%,是能源消费的主要部分。
人均资源量少、资源消耗量大、能源供需矛盾尖锐以及利用效率低下、环境污染严重、能源结构不合理[2]已成为制约我国经济社会可持续发展的重要因素。
等温室气体的排同时,化石能源的使用也给环境带来了许多负面影响,CO2放导致全球气候变暖,并引发了气候的极端变化和一系列的自然灾害。
在这种情况下,人类必须另辟蹊径,积极寻求能够替代化石能源的新能源和可再生能源,逐步摆脱对传统化石能源的依赖。
以水能、太阳能、风能、地热能、海洋能、生物质能和核能等为代表的新能源又称非化石能源,不但取之不尽、用之不竭,而且低碳、清洁、环保,既有利于保障能源供给,又可极大地减少温室气体的排放。
中国风能利用现状分析1、风力发电概况能源是现代社会和经济发展的基础。
远期,能源工业面临矿物资源枯竭的问题;近期,能源工业面临全球环境污染的压力。
自1973年发生石油危机以来,世界各国都在寻求替代化石燃料的能源,投入大量的经费进行研究开发。
因此推动了太阳能、风能等可再生能源的发展,成为近期内最有大规模开发利用前景的可再生能源。
20年来风力发电从试验研究迅速发展为一项成熟技术,发电成本从每千瓦时20美分降到5美分,接近常规能源发电,形成一个新兴的产业。
我国从80年代初把风力发电作为农村电气化的措施,主要研究、开发和示范应用小型充电用风电机,供牧民和渔民一家一户使用。
我国政府在1992年就环境和发展问题提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等新能源”。
并陆续出台了“乘风计划”、“双加工程”等。
丹麦是开发风电最早的国家,而且当前在风电机技术和生产方面仍处于领先地位,风电装机约占发电总装机容量的5%以上。
2000年德国风电装机611.3万千瓦,连续几年居世界第一。
表1为世界风电发展状况。
表1 2006年世界新增风电装机国家排名单位:MW随着技术的进步、生产规模的扩大,风电的成本大大降低。
目前在风能资源和建设较好的地区,风电电价基本为4美分/kWh。
电价成本的降低增加了风电的竞争力,进一步加速了风电发展。
风力发电的利用方式主要有两类,一类是独立运行(离网型)供电系统,即电网未通达的偏远地区,如高山、草原和海岛等,用小型风力发电机组为蓄电池充电,再通过逆变器转换成交流电向终端电器供电,单机容量一般在100W-10KW;或者采用中型风电机与柴油发电机或光伏太阳电池组成混合供电系统,目前系统的容量约10KW-200KW,解决小社区用电问题。
(目前国家正在招标的“西部省份无电乡通电工程光伏电站建设项目”即“光伏工程”,部分电站就是采用风光互补)。
另一类是作为常规电网的电源,并网运行,商业化的机组单机容量为150KW-1650KW,既可单独并网,也可以由多台,甚至成百上千台组成风力发电场(简称风电场,国外亦称风力田)。
中国风能地利用现状及发展中国是全球最大的新能源生产和消费国家,其中风能作为重要组成部分在中国的地利条件及发展状况备受关注。
本文将探讨中国风能的地利条件和现状,并展望中国风能的未来发展。
首先,中国拥有丰富的风能资源。
根据中国可再生能源商务委员会的数据,中国具备约2.7亿千瓦的可开发风电资源,其中大部分位于沿海和内陆地区。
华北地区和东北地区是中国风能资源最丰富的地区,平均风速高、资源密集,非常适合建设风电场。
此外,中国东南沿海地区也拥有较好的风能资源,这些地区既有利于离岸风电的发展,也有助于满足当地电力需求。
第二,中国风电的发展状况良好。
中国自2005年以来,风电装机容量年均增速超过30%,成为世界最大的风能市场。
截至2024年底,中国风电累计装机容量已达到281.5万千瓦,占全球总量的约35%。
中国已经形成了从技术研发、制造到工程建设的完整产业链,包括风机制造、风能设备、风场开发等多个领域。
中国企业在国内外市场都具有竞争力,从海外市场的订单数量和规模来看,中国风电设备已经具备一定的国际市场份额。
然而,中国风能发展还存在一些挑战和问题。
首先,由于地缘等因素,中国风能资源分布不均,导致资源开发利用水平不同。
一些资源丰富的地区由于电网接纳能力不足、土地争议、缺乏人力等问题,导致风能资源开发利用不充分。
其次,风能发电存在不稳定性和间歇性的特点,需要解决与电力系统的融合问题,以实现更高的可靠性和稳定性。
此外,由于风能项目的建设周期较长,投资回报周期较长,风电企业面临着融资难题。
为了进一步发展风能,中国应该采取以下措施。
首先,加强对风能资源调查与评估,合理规划风电场建设。
其次,加强电网和储能技术研发,提高风能的稳定性和可靠性。
进一步发展离岸风电,利用海洋风能资源,缓解陆地资源短缺问题。
此外,政府应制定更加精准的政策和规划,为风电企业提供税收减免和贷款贴息等支持,加大对风能产业的扶持力度。
综上所述,中国风能在地利条件和发展状况方面具备广阔的发展前景。
风能利用技术的研究现状与发展趋势目前,随着全球环境污染问题的严重性日益突出,人们的环保意识也逐渐增强。
在这样的背景下,可再生能源成为了人们关注的焦点之一。
风能作为一种高效、清洁、绿色的可再生能源,一直受到人们的关注。
本文将探讨风能利用技术的研究现状与发展趋势。
一、风力发电技术现状风能的利用可分为风力发电和其他利用。
这里,我们主要介绍风力发电技术的现状。
当前,风力发电已成为了全球主要的可再生能源之一,并已越来越成熟和普及。
而风力发电技术的主要特点是,其具有采用轮毂式或框架式叶轮转动产生动力,驱动发电机发电的能力。
第一代风电技术是传统的水平轴式风力发电机。
它的特点是在水平方向上安装的叶轮进行转动,同时也增加了斜角等因素。
随着时间的流逝,这种技术逐渐成熟并得到了广泛应用。
第二代风电技术是从第一代风电技术发展而来的,它主要是水平轴式风力发电机中的升级版。
它的特点是使用了多桨、高塔等技术,使得发电效率得到了很大提升。
而在此基础上,出现了一些更为成熟的技术,如变桨风力发电等。
而第三代风电技术,主要是指垂直轴式风力发电机。
它的特点是在各个方向上都拥有很好的性能,同时也较为灵活。
不过,垂直轴式风力发电机在实践中的应用仍然存在一些挑战,如风能的不稳定性等。
总体而言,在风能利用技术中,风力发电技术是目前应用最为广泛、技术上最为成熟的一种。
二、风力发电技术的发展趋势尽管风力发电技术已经取得了巨大的发展,但仍存在许多问题和挑战。
因此,在未来的发展中,人们需要进一步提升以及创新风力发电技术,以满足日益增长的需求。
首先,未来风力发电技术需要进一步降低成本。
如何减少成本是风力发电技术未来发展中亟需攻克的一项难题。
对此,我们需要关注一些新的技术,如缆索式风力发电、悬挂直轴风力发电机等。
其次,未来风力发电技术还需要进一步提升安全性与稳定性。
风能具有难以控制的特点,因此如何在不影响发电效率的前提下减少事故的发生,也成为了未来发展的重中之重。
风能发电技术的发展现状与未来趋势随着全球对可再生能源的需求不断增长,风能发电技术作为一种清洁、可再生的能源形式备受关注。
本文着重讨论风能发电技术的发展现状以及未来的趋势。
一、风能发电技术的发展现状近年来,全球范围内风能发电技术得到了快速发展。
主要表现在以下几个方面:1.设备效率的提升随着科技的进步和工程经验的积累,风轮和发电机等核心设备的效率得到了显著提升。
现代风轮的叶片设计更加科学合理,能够更好地捕捉到风能。
发电机的转换效率也有所提高,使得发电系统的整体效率得到了提升。
2.风场规模的扩大过去,风能发电主要采用分散式布局,各个风电场规模相对较小。
然而,近年来越来越多的大型风电场开始兴建,这些风电场规模庞大,集中供电能力更强,带动了风能发电行业的规模化发展。
3.储能技术的创新风能发电存在一个固有的问题,即能量的不稳定性。
当风速不够时,发电量将会减少或甚至中断。
为了解决这一问题,人们致力于开发储能技术,如利用电池储能、水泵储能等,使得风能发电系统能够更有效地存储和利用发电能量。
二、风能发电技术的未来趋势虽然风能发电技术已经取得了显著的进展,但仍然存在许多挑战和发展空间。
未来,风能发电技术将朝以下几个方向发展:1.海上风电的兴起由于陆地资源受限,海上风电在未来将成为重要的发展方向。
海上的风能资源更加丰富,而且海上风场不会影响到人类的居住与生活。
然而,海上风电面临的技术和经济挑战较多,例如海上风轮的制造和安装成本较高,海上环境对设备的腐蚀等。
因此,未来的研发将集中在降低海上风电成本、提高设备可靠性和维修技术。
2.智能化和自动化技术的应用随着人工智能和自动化技术的迅速发展,未来风能发电技术将更加智能化和自动化。
智能监测系统可以实时监控风场的状态和功率输出,实现远程控制和维护。
自动化技术可以提供更加精确和快速的风轮定位和转向,提高发电系统的效率和可靠性。
3.风能与其他能源形式的结合未来,风能发电技术将与其他能源形式相互结合,实现能量的互补与平衡。
浅谈风力发电的现状及前景1. 引言1.1 介绍风力发电的背景意义1. 可再生能源:风力发电是一种可再生能源,通过利用风能来产生电力,可以有效地减少对有限资源的消耗,实现能源可持续利用。
2. 环保节能:风力发电不会产生二氧化碳等温室气体和污染物,是一种清洁、环保的能源形式,有助于改善空气质量,减少能源消耗。
3. 节约资源:利用风力发电可以减少对煤炭、天然气等非可再生能源的需求,有助于保护地球资源,降低能源的开采和开发成本。
4. 促进经济发展:发展风力发电产业可以刺激相关技术的进步和创新,带动就业增长,提高国家的能源安全和经济竞争力。
1.2 概述本文要讨论的内容本文主要讨论风力发电的现状及前景。
首先将介绍风力发电的发展历史,探讨其技术原理,并分析当前面临的主要问题。
随后将展望风力发电的未来发展前景,并探讨其在可再生能源中的地位。
最后对风力发电的现状进行总结,展望未来,并得出结论。
通过全面分析和探讨,可以更好地了解风力发电在能源领域中的地位和作用,为推动可持续发展提供参考。
2. 正文2.1 风力发电的发展历史风力发电的发展历史可以追溯到古代的帆船和风车。
帆船利用风力推动船只航行,风车则利用风力磨谷物或提水灌溉农田。
在18世纪末至19世纪初,随着工业革命的兴起,风力发电开始被用于发电。
最早的风力发电机是由丹麦物理学家和发明家皮特·鲁格特发明的,他于1891年建造了世界上第一个风力发电机。
20世纪初,风力发电开始在欧洲和美国得到广泛应用。
随着技术的不断进步和对可再生能源的需求增加,风力发电逐渐成为一种重要的清洁能源。
在20世纪末和21世纪初,随着风力发电技术的成熟和成本的降低,风力发电迅速发展。
目前,全球各国都在加大对风力发电的投资和推广,特别是在欧洲、中国和美国等国家和地区。
随着技术的不断创新和发展,风力发电系统的效率和稳定性不断提高,成本不断降低,风力发电正在成为一种可持续发展的清洁能源,为人类应对气候变化和能源安全提供了重要的支持。
中国风电发展现状与未来展望一、风能资源风能储量我国幅员辽阔,海岸线长,风能资源比较丰富;根据全国900多个气象站陆地上离地10m高度资料进行估算,全国平均风功率密度为100W/m2,风能资源总储量约亿kW,可开发和利用的陆地上风能储量有亿kW,近海可开发和利用的风能储量有亿kW,共计约10亿kW;如果陆上风电年上网电量按等效满负荷2000小时计,每年可提供5000亿千瓦时电量,海上风电年上网电量按等效满负荷2500小时计,每年可提供万亿千瓦时电量,合计万亿千瓦时电量;风能资源分布我国面积广大,地形条件复杂,风能资源状况及分布特点随地形、地理位置不同而有所不同;风能资源丰富的地区主要分布在东南沿海及附近岛屿以及北部地区;另外,内陆也有个别风能丰富点,海上风能资源也非常丰富;北部东北、华北、西北地区风能丰富带;北部东北、华北、西北地区风能丰富带包括东北三省、河北、内蒙古、甘肃、青海、西藏和新疆等省/自治区近200km宽的地带;三北地区风能资源丰富,风电场地形平坦,交通方便,没有破坏性风速,是我国连成一片的最大风能资源区,有利于大规模的开发风电场,但是当地电网容量较小,限制了风电的规模,而且距离负荷中心远,需要长距离输电;沿海及其岛屿地区风能丰富带;沿海及其岛屿地区包括山东、江苏、上海、浙江、福建、广东、广西和海南等省/市沿海近10km宽的地带,冬春季的冷空气、夏秋的台风,都能影响到沿海及其岛屿,加上台湾海峡狭管效应的影响,东南沿海及其岛屿是我国风能最佳丰富区;沿海地区经济发达,沿海及其岛屿地区风能资源丰富,风电场接入系统方便,与水电具有较好的季节互补性;然而沿海岸的土地大部份已开发成水产养殖场或建成防护林带,可以安装风电机组的土地面积有限;内陆风能丰富点;在内陆一些地区由于湖泊和特殊地形的影响,形成一些风能丰富点,如鄱阳湖附近地区和湖北的九宫山和利川等地区;海上风能丰富区;我国海上风能资源丰富,东部沿海水深2m到15m的海域面积辽阔,按照与陆上风能资源同样的方法估测,10m高度可利用的风能资源约是陆上的3倍,即7亿多kW,而且距离电力负荷中心很近;随着海上风电场技术的发展成熟,经济上可行,将来必然会成为重要的可持续能源;二、风电的发展建设规模不断扩大,风电场管理逐步规范1986年建设山东荣成第一个示范风电场至今,经过近20多年的努力,风电场装机规模不断扩大截止2004年底,全国建成43个风电场,安装风电机组1292台,装机规模达到万kW,居世界第10位,亚洲第3位位于印度和日本之后;另外,有关部门组织编制有关风电前期、建设和运行规程,风电场管理逐步走向规范化;专业队伍和设备制造水平提高,具备大规模发展风电的条件经过多年的实践,培养了一批专业的风电设计、开发建设和运行管理队伍,大型风电机组的制造技术我国已基本掌握,主要零部件国内都能自己制造;其中,600kW及以下机组已有一定数量的整机厂,初步形成了整机试制和小批量生产;截止2004年底,本地化风电机组所占市场份额已经达到18%,设备制造水平不断提高,目前,我国已经具备了设计和制造750kW定桨距定转速机型的能力,相当于国际上二十世纪90年代中期的水平;与国外联合设计的1200千瓦和独立设计的1000千瓦变桨距变转速型样机于2005年安装,进行试验运行;风力发电成本逐步降低随着风电产业的形成和规模发展,通过引进技术,加速风电机组本地化进程以及加强风电场建设和运行管理,我国风电场建设和运行的成本逐步降低,初始投资从1994年的约12000元/kW降低到目前的约9000元/kW;同时风电的上网电价也从超过元/kWh降低到约元/kWh;2003年国务院电价改革方案规定风电暂不参与市场竞争,电量由电网企业按政府定价或招标价格优先购买;国家发展改革委从2003年开始推行风电特许权开发方式,通过招投标确定风电开发商和上网电价,并与电网公司签订规范的购电协议,保证风电电量全部上网,风电电价高出常规电源部分在全省范围内分摊,有利于吸引国内外各类投资者开发风电;2005年2月28日通过的中华人民共和国可再生能源法中规定了“可再生能源发电项目的上网电价,由国务院价格主管部门根据不同类型可再生能源发电的特点和不同地区的情况,按照有利于促进可再生能源开发利用和经济合理的原则确定”,“电网企业为收购可再生能源电量而支付的合理的接网费用以及其他合理的相关费用,可以计入电网企业输电成本,并从销售电价中回收;”和“电网企业依照本法第十九条规定确定的上网电价收购可再生能源电量所发生的费用,高于按照常规能源发电平均上网电价计算所发生费用之间的差额,附加在销售电价中分摊”,将风电特许权项目中的特殊之处已经用法律条文作为通用的规定,今后风电的发展应纳入法制的框架;三、存在问题资源需要进行第二轮风能资源普查,在现有气象台站的观测数据的基础上,按照近年来国际通用的规范进行资源总量评估,进而采用数值模拟技术编制高分辨率的风能资源分布图,评估风能资源技术可开发量;更重要的是应该利用GIS地理信息系统技术将电网、道路、场址可利用土地,环境影响、当地社会经济发展规划等因素综合考虑,进行经济可开发储量评估;风电设备生产本地化现有制造水平远落后于市场对技术的需求,国内定型风电机组的功率均为兆瓦级以下,最大750千瓦,而市场需要以兆瓦级为主流;国内风电机组制造企业面临着技术路线从定桨定速提升到变桨变速,单机功率从百千瓦级提升到兆瓦级的双重压力,技术路线跨度较大关;自主研发力量严重不足,由于国家和企业投入的资金较少,缺乏基础研究积累和人才,我国在风力发电机组的研发能力上还有待提高,总体来说还处于跟踪和引进国外的先进技术阶段;目前国内引进的许可证,有的是国外淘汰技术,有的图纸虽然先进,但受限于国内配套厂的技术、工艺、材料等原因,导致国产化的零部件质量、性能需要一定时间才能达到国际水平;购买生产许可证技术的国内厂商要支付昂贵的技术使用费,其机组性能价格比的优势在初期不明显;在研发风电机组过程中注重于产品本身,而对研发过程中需要配套的工作重视不够;由于试验和测试手段的不完备,有些零部件在实验室要做的工作必须总装后到风电场现场才能做;风电机组的测试和认证体系尚未建立;风电机组配套零部件的研发和产业化水平较低,这样增加了整机开发的难度和速度;特别是对于变桨变速型风机,国内相关零部件研发、制造方面处于起步阶段,如变桨距系统,低速永磁同步发电机,双馈式发电机、变速型齿轮箱,交直交变流器及电控系统,都需要进行科技攻关和研发;成本和上网电价比较高基本条件设定:根据目前国内风电场平均水平,设定基本条件为:风电场装机容量5万千瓦,年上网电量为等效满负荷2000小时,单位千瓦造价8000-10000元,折旧年限年,其他成本条件按经验选取;财务条件:工程总投资分别取4亿元8000元/千瓦、亿元9000元/千瓦和5亿元10000元/千瓦,流动资金150万元;项目资本金占20%,其余采用国内商业银行贷款,贷款期15年,年利率%;增值税税率为%,所得税税率为33%,资本金财务内部收益率10%;风电成本和上网电价水平测算:按以上条件及现行的风电场上网电价制度,以资本金财务内部收益率为10%为标准,当风电场年上网电量为等效满负荷2000小时,单位千瓦造价8000~10000元时,风电平均成本分别为~元/千瓦时,较为合理的上网电价范围是~元/千瓦时含增值税;成本在投产初期较高,主要是受还本付息的影响;当贷款还清后,平均度电成本降至很低;风电场造价对上网电价有明显的影响,当造价增加时,同等收益率下的上网电价大致按相同比率增加;我国幅员辽阔,各地风电场资源条件差别很大,甚至同一风电场址内资源分布也有较大差别;为了分析由风能资源引起的发电量变化对成本和平均上网电价影响,分别计算年等效满负荷小时数为1400、1600、1800、2200、2400、2600、2800、3000的情况下发电成本见表1,上网电价见表2;如果全国风电的平均水平是每千瓦投资9000元,以及资源状况按年上网电量为等效满负荷2000小时计算,则风电的上网电价约每千瓦时元,比于全国火电平均上网电价每千瓦时元高一倍;电网制约风电场接入电网后,在向电网提供清洁能源的同时,也会给电网的运行带来一些负面影响;随着风电场装机容量的增加,以及风电装机在某个地区电网中所占比例的增加,这些负面影响就可能成为风电并网的制约因素;风力发电会降低电网负荷预测精度,从而影响电网的调度和运行方式;影响电网的频率控制;影响电网的电压调整;影响电网的潮流分布;影响电网的电能质量;影响电网的故障水平和稳定性等;由于风力发电固有的间歇性和波动性,电网的可靠性可能降低,电网的运行成本也可能增加;为了克服风电给电网带来的电能质量和可靠性等问题,还会使电网公司增加必要的研究费用和设备投资;在大力发展风电的过程中,必须研究和解决风电并网可能带来的其他影响;四、政策建议1.加强风电前期工作;建立风电正常的前期工作经费渠道,每年安排一定的经费用于风电场风能资源测量、评估以及预可研设计等前期工作,满足年度开计划对风电场项目的需要;2.制定“可再生能源法”的实施细则,规定可操作的政府合理定价,按照每个项目的资源等条件,以及投资者的合理回报确定上网电价;同时也要规定可操作的全国分摊风电与火电价差的具体办法;3.加速风电机组本地化进程,通过技贸结合等方式,本着引进、消化、吸收和自主开发相结合的原则,逐步掌握兆瓦级大型风电机组的制造技术;引进国外智力开发具有自主知识产权的机组,开拓国际市场;4.建立风电制造业的国家级产品检测中心、质量保证控制体系以及认证制度,不断提高产品质量,降低成本,完善服务;5.制定适应风电发展的电网建设规划,研究风电对电网影响的解决措施;五、“十一五”和2020年风电规划我国电源结构70%是燃煤火电,而且负荷增长迅速,环境影响特别是减排二氧化碳的压力越来越大,风能是清洁的可再生能源,我国资源丰富,能够大规模开发,风电成本逐年下降,前景广阔;风电装机容量规划目标为2005年100万千瓦,2010年400~500万千瓦,2020年2000~3000万千瓦;2004年到2005年,“十五计划”后半段重点建设江苏如东和广东惠来两个特许权风电场示范项目,取得建设大规模风电场的经验,2005年底风力发电总体目标达100万千瓦;2006年到2010年;“十一五规划”期间全国新增风电装机容量约300万千瓦,平均每年新增60~80万千瓦,2010年底累计装机约400~500万千瓦;提供这样的市场空间主要目的是培育国内的风电设备制造能力,国家发展改革委于2005年7月下发文件,要求所有风电项目采用的机组本地化率达到70%,否则不予核准;此后又下发文件支持国内风电设备制造企业与电源建设企业合作,提供50万千瓦规模的风电市场保障,加快制造业发展;目前国家规划的主要项目有广东省沿海和近海示范项目31万千瓦;福建省沿海及岛屿22万千瓦;上海市12万千瓦;江苏省45万千瓦;山东省21万千瓦;吉林省33万千瓦;内蒙古50万千瓦;河北省32万千瓦;甘肃省26万千瓦;宁夏19万千瓦;新疆22万千瓦等;目前各省的地方政府和开发商均要求增加本省的风电规划容量;2020年规划目标是2000~3000万千瓦,风电在电源结构中将有一定的比例,届时约占全国总发电装机10亿千瓦容量的2~3%,总电量的1~%; 2020年以后随着化石燃料资源减少,成本增加,风电则具备市场竞争能力,会发展得更快;2030年以后水能资源大部分也将开发完,近海风电市场进入大规模开发时期;。
风能利用现状和发展趋势风能作为一种可再生能源,具有广阔的利用前景和巨大的发展潜力。
通过利用风能发电,不仅可以减少对传统化石能源的依赖,还有助于降低环境污染和全球温室气体的排放。
本文将从风能利用的现状和发展趋势两个方面进行探讨。
首先,我们来了解一下风能利用的现状。
目前,全球风能发电已经得到广泛应用,并取得了显著的发展成果。
根据国际能源署的数据,2020年全球风能发电装机容量已经达到了792吉瓦,占全球总装机容量的7%。
多个国家都在积极推动风能发电的发展,其中中国和美国是全球最大的风能发电国家,分别占据了全球总装机容量的48%和18%。
此外,德国、印度、西班牙等国家也在风能发电方面取得了显著的进展。
在风能利用的发展趋势方面,未来几年内预计风能发电将继续保持良好的增长态势。
首先,随着科技的进步和技术的不断革新,风能发电的效率将不断提高。
目前,风力涡轮机采用的是三叶式叶片,但近年来,研究人员已经开始探索更高效的设计。
一些新型的涡轮机设计采用了多层次,或者整体结构更适应风场的设计,这将进一步提高风能发电的性能。
其次,风能的贮存技术将得到更好的发展。
尽管风能是一种清洁能源,但由于天气等因素的限制,风能发电具有一定的不稳定性。
因此,开发更先进的风能贮存技术将有助于克服这个问题,确保能源的稳定供应。
最后,风能发电在城市化进程中的应用将得到进一步推广。
随着人口增长和城市化程度的提高,城市对电力需求的增加将推动更多的风能发电项目在城市地区建设,从而实现城市可持续发展的目标。
除了上述提到的现状和发展趋势,风能利用还面临一些挑战和问题。
首先,风能发电的成本问题是一个需要解决的难题。
尽管风能发电的成本已经大幅下降,但与传统的化石能源相比,仍然存在一定的竞争力差距。
因此,进一步降低风能发电的成本,提高其经济性是一个需要努力解决的问题。
其次,风能发电的环境影响也需要引起重视。
虽然风能是一种清洁能源,但风力涡轮机的建设和运营也可能对鸟类迁徙、自然景观等造成一定程度的影响。
风能资源的开发与利用现状分析在当今世界,能源问题日益凸显,寻找清洁、可再生的能源成为了人类社会发展的重要任务。
风能作为一种取之不尽、用之不竭的清洁能源,其开发与利用受到了广泛的关注。
本文将对风能资源的开发与利用现状进行详细的分析。
一、风能资源的特点风能是一种无污染、可再生的能源,具有以下显著特点:1、储量丰富:地球上的风能资源极其丰富,据估算,全球风能总量约为 274×10^9MW,其中可利用的风能约为 2×10^7MW。
2、分布广泛:风能在世界各地都有分布,无论是陆地还是海洋,都存在着一定的风能资源。
3、清洁环保:风能在利用过程中不产生温室气体和其他污染物,对环境友好。
4、间歇性:风能的产生具有间歇性和不稳定性,风速的大小和方向会随时间变化。
二、风能资源的开发技术1、风力发电技术水平轴风力发电机:这是目前应用最广泛的风力发电装置,其叶片旋转轴与风向平行。
垂直轴风力发电机:叶片旋转轴垂直于地面,具有无需对风装置、噪音低等优点,但目前应用相对较少。
2、风电场建设选址:选择风能资源丰富、地形开阔、交通便利、电网接入条件良好的地区建设风电场。
风机布局:合理安排风机的位置,以充分利用风能资源,减少风机之间的相互干扰。
3、储能技术电池储能:如锂离子电池、铅酸电池等,可将多余的风电储存起来,在需要时释放。
超级电容器储能:具有充放电速度快、循环寿命长等优点。
三、风能资源的利用现状1、全球风能利用规模持续增长近年来,全球风力发电装机容量不断增加。
据统计,截至_____年,全球风力发电装机容量已超过_____MW。
其中,欧洲、北美和亚洲是风力发电发展较为迅速的地区。
2、技术水平不断提高随着科技的进步,风力发电的效率不断提高,成本逐渐降低。
风机的单机容量不断增大,从早期的几百千瓦发展到如今的数兆瓦甚至十几兆瓦。
同时,智能化控制技术的应用,也提高了风电场的运行稳定性和可靠性。
3、政策支持力度加大许多国家和地区都出台了鼓励风能发展的政策,如上网电价补贴、税收优惠等。
风电资源的利用与发展近年来,随着环境问题的日益严重和能源需求的不断增长,可再生能源逐渐受到人们的关注和重视。
其中,风能作为最具潜力和发展前景的可再生能源之一,受到了广泛的关注和研究。
在这篇文章中,我们将探讨风电资源的利用与发展,以及对环境和经济的影响。
一、风电资源的概述风能是自然界中不可或缺的能源之一。
通过利用风力转动风力发电机,将机械能转化为电能,以供给人们的生产生活。
相较于传统的化石能源,风能具有无污染、可再生、广泛分布和免费获取的特点。
据统计,全球每年可获得的风能资源超过6000万千瓦时,相当于全球能源消耗的300倍。
二、风电资源的优势1.环保无污染相比于煤炭和石油等化石能源,风能是一种清洁的能源。
在风力发电过程中,没有直接排放任何污染物,不会导致空气和水源的污染。
这对减少温室气体和改善环境质量具有积极的影响。
2.可再生性强风能是可再生的能源,因为风是大气运动的自然结果。
与化石能源相比,风能不仅资源丰富,而且不会耗尽。
风力发电厂投入使用后,可以不间断地取得电能,可持续供应能源。
3.经济效益显著发展风能资源可以为社会经济发展带来积极的影响。
建设风力发电厂不仅可以创造就业岗位,还可以提供清洁的电力供应,降低能源成本,促进社会可持续发展。
三、风电资源的利用状况1.国内风电发展现状我国拥有丰富的风能资源,是世界上风能资源最丰富的国家之一。
截至2020年底,我国累计风电装机容量已超过2000万千瓦,位居全球首位。
尽管取得了巨大的发展成就,但仍然面临着一些挑战,如风电资源分布不均、并网接入难度大等。
2.国际风电发展现状全球范围内,风电得到了广泛的应用和推广。
欧洲、美国和中国是目前风电发展最快的地区。
在北欧一些国家,风能已成为主要的电力来源。
各国对风能的发展采取了不同的政策和措施,如制定优惠的购电价,鼓励私人投资等。
四、风电资源的发展前景随着能源需求的不断增长和环境问题的日益突出,风电资源的发展前景广阔。
风能利用技术的现状与发展趋势在当今世界,能源问题日益凸显,寻找清洁、可再生的能源成为当务之急。
风能作为一种丰富、无污染的能源,其利用技术正经历着快速的发展和变革。
风能利用技术的现状可谓成果丰硕。
首先,风力发电场的规模不断扩大。
在许多地区,大型风电场如雨后春笋般出现,一排排高耸的风力发电机矗立在广阔的平原、山脉和近海区域。
这些风电场的发电能力逐渐增强,为当地的电力供应做出了重要贡献。
在技术方面,风力发电机的设计和制造技术取得了显著进步。
叶片的设计更加科学,采用了先进的空气动力学原理,以提高风能的捕获效率。
同时,材料的改进也使得叶片更加坚固耐用,能够承受恶劣的天气条件。
发电机的性能也在不断提升,发电效率更高,稳定性更好。
再者,海上风能的开发逐渐成为热点。
相比于陆地,海上的风能资源更加丰富,而且风速更加稳定。
许多国家和地区纷纷加大对海上风能的投入,建设了大规模的海上风电场。
然而,海上风能开发也面临着一些挑战,如海洋环境的复杂性、建设和维护成本较高等。
目前,风能在全球能源结构中的占比逐渐上升。
一些国家已经将风能作为重要的能源来源之一,制定了相关的政策和规划来推动其发展。
同时,风能的应用领域也在不断拓展,除了发电之外,还用于海水淡化、制氢等领域。
展望未来,风能利用技术有着广阔的发展前景和趋势。
智能化和数字化技术将在风能领域得到更广泛的应用。
通过传感器和数据分析,实现对风力发电机的实时监测和故障预测,提高运行效率和可靠性。
同时,利用人工智能算法优化风电场的布局和运营,进一步提升风能的利用效率。
在技术创新方面,新型的风力发电机设计将不断涌现。
例如,垂直轴风力发电机可能会得到更多的关注和发展,其在低风速环境下具有更好的性能,并且对安装空间的要求相对较低。
此外,储能技术的发展将有助于解决风能的间歇性问题,使得风能能够更稳定地供应电力。
随着技术的进步和成本的降低,风能的应用范围将进一步扩大。
在偏远地区和一些特殊场景,如海上石油平台、海岛等,风能将成为主要的能源供应方式。
风力发电发展现状以及行业发展趋势研究一、本文概述随着全球能源结构的转型和环境保护的日益迫切,风力发电作为一种清洁、可再生的能源形式,正日益受到世界各国的重视。
风力发电利用风力驱动风力发电机组转动,将风能转化为电能,具有资源丰富、分布广泛、技术成熟、经济可行等优点,因此在全球能源领域占据了重要地位。
本文将对风力发电的发展现状进行深入剖析,探讨行业的发展趋势,以期为读者提供全面、准确的信息,为推动风力发电行业的持续健康发展提供参考。
本文将首先回顾风力发电的发展历程,分析当前全球及我国风力发电的装机规模、发电量、技术进步等方面的现状。
接着,文章将重点探讨风力发电行业的发展趋势,包括技术进步、成本控制、市场拓展、政策支持等方面的内容。
本文还将对风力发电行业的未来发展进行展望,分析行业可能面临的挑战和机遇,并提出相应的建议。
通过本文的研究,我们希望能够为相关企业和政府部门提供决策参考,推动风力发电行业的健康、可持续发展,为实现全球能源结构的优化和环境保护贡献力量。
二、风力发电发展现状近年来,随着全球能源结构的不断调整和环保意识的日益增强,风力发电作为一种清洁、可再生的能源形式,得到了广泛的关注和迅速的发展。
全球风力发电装机容量持续增长,多个国家和地区纷纷制定了一系列鼓励风电发展的政策和规划。
在技术方面,风力发电机组单机容量不断增大,叶片设计更加先进,塔筒结构更加稳固,风能利用效率显著提高。
同时,随着智能化、互联网技术的深入应用,风电场运营管理和维护也逐渐实现了智能化和远程化,提升了风电场的运行效率和可靠性。
在产业布局上,风力发电产业链不断完善,风机制造、风电设备、风电场开发、运营维护等各环节均得到了快速发展。
风电设备制造企业数量不断增加,产品种类更加齐全,技术水平持续提高。
风电场开发项目遍布全球,尤其是在风能资源丰富的地区,风电场建设规模不断扩大。
然而,风力发电也面临着一些挑战。
一是风电场建设和运营过程中可能对环境产生一定影响,需要加强环境保护和生态修复工作。
国内外风能利用的情况和发展趋势
随着全球能源需求的不断增长,风能作为一种清洁、可再生的能源,受到越来越多的关注和重视。
本文将从国内外两个方面,分别探讨风能利用的情况和发展趋势。
一、国内风能利用的情况和发展趋势
1.风能利用的现状
中国是世界上风能资源最为丰富的国家之一,拥有巨大的风能资源潜力。
截至2020年底,中国风电装机容量已经达到了281.5GW,占全球总装机容量的一半以上。
其中,内陆地区的风能资源潜力巨大,但开发利用程度相对较低。
2.发展趋势
未来,中国风能行业将继续保持快速发展的态势。
政府将继续加大对风能行业的支持力度,推动风电技术的创新和升级,提高风电的发电效率和可靠性。
同时,随着新能源消纳能力的提高,风电的市场需求也将不断增加。
二、国外风能利用的情况和发展趋势
1.风能利用的现状
欧洲是全球风能利用最为成熟的地区之一,拥有丰富的风能资源和先进的风电技术。
截至2020年底,欧洲风电装机容量已经达到了217.5GW,占全球总装机容量的三分之一以上。
同时,美国、印度等国家也在积极推动风能的开发利用。
2.发展趋势
未来,国外风能行业将继续保持稳定发展的态势。
随着全球能源转型的加速,风能作为一种清洁、可再生的能源,将得到越来越多的关注和重视。
同时,随着风电技术的不断创新和升级,风能的发电效率和可靠性也将不断提高。
总体来说,风能作为一种清洁、可再生的能源,具有广阔的发展前景和巨大的市场潜力。
未来,国内外风能行业将继续保持快速发展的态势,为全球能源转型和可持续发展做出更大的贡献。
风力发电的发展状况与发展趋势1. 引言风力发电作为一种可再生能源,具有环保、可持续等优势,在全球范围内得到了广泛应用和发展。
本文将对风力发电的发展状况进行分析,并展望其未来的发展趋势。
2. 风力发电的发展状况2.1 全球风力发电装机容量根据国际能源署(IEA)的数据,截至2020年底,全球风力发电装机容量达到了650吉瓦,占全球电力装机容量的6%。
其中,中国、美国和德国是全球风力发电装机容量最大的三个国家。
2.2 国内风力发电装机容量中国是全球最大的风力发电市场,截至2020年底,中国风力发电装机容量达到了280吉瓦,占全球总装机容量的43%。
中国在风力发电技术、装机规模和市场应用方面取得了显著成就。
2.3 风力发电发展速度近年来,全球风力发电装机容量呈现快速增长的趋势。
根据IEA的数据,2019年全球新增风力发电装机容量为60吉瓦,创下历史新高。
预计到2030年,全球风力发电装机容量将超过1.2万吉瓦。
3. 风力发电的发展趋势3.1 技术进步与成本降低随着技术的不断进步,风力发电设备的效率不断提高,成本逐渐降低。
特别是在风力发电机组的设计和制造方面,通过提高转子直径、优化叶片设计等手段,可以提高发电效率,降低发电成本。
3.2 海上风力发电的崛起海上风力发电具有风能资源丰富、视觉影响小等优势,近年来得到了越来越多的关注。
欧洲国家在海上风力发电方面取得了显著进展,且已建成了一批大型海上风电场。
预计未来,海上风力发电将成为风力发电的重要发展方向。
3.3 智能化与数字化应用随着智能化与数字化技术的发展,风力发电设备的运维管理变得更加智能化和高效化。
通过传感器、物联网等技术手段,可以实时监测风力发电机组的运行状态,提前预警故障,并进行远程维护和管理,提高发电效率和可靠性。
3.4 多能互补与储能技术应用风力发电与其他能源形式的互补利用,可以提高能源利用效率和供电稳定性。
例如,风力发电与太阳能光伏发电的结合,可以实现全天候的电力供应。
中国风能的利用现状及发展摘要:随着化石能源的不断消耗,新能源的开发利用引起了世界各国的重视。
新能源具有污染少、储量大、永续性等特点。
我国新能源产业呈现强劲发展势头,其中,风电发展最为迅猛。
我国风能资源丰富,目前中国风电技术的开发利用取得了巨大进步。
但中国的风能资源开发利用仍然存在诸多问题,如风电的并网消纳难、电力市场不完善、相关配套法规不健全和风机制造技术基础薄弱等,这些制约因素严重阻碍了我国风电的可持续发展。
本文着重阐述了中国新能源风能的资源条件、我国风能发展现状及制约中国风能发展的因素并对我国风能发电的发展前景进行了展望。
能源是人类生存和发展的重要物质基础,是人类从事各种经济活动的原动力。
由于化石能源(如煤、石油、天然气等能源)自然储量的有限性以及人类对其需求的无限性,随着人类对化石燃料无节制的开采和利用,化石能源短缺的矛盾日益突出。
长期以来,我国以化石能源为主的能源构成形式加剧了对化石能源的依赖,据统计,2007 -2010年我国能源消耗总量不断上升,增长率分别为7. 8%、4. 0%、6. 3%、5. 9%;2011年能源消耗总量达34. 8亿t标准煤,比2010年增长7%。
能源消耗总量中,煤、石油、天然气这些化石能源在2007-2010年所占比例分别为93. 2%、92.3%、92.2%、91.4%,是能源消费的主要部分。
人均资源量少、资源消耗量大、能源供需矛盾尖锐以及利用效率低下、环境污染严重、能源结构不合理[2]已成为制约我国经济社会可持续发展的重要因素。
同时,化石能源的使用也给环境带来了许多负面影响,CO2等温室气体的排放导致全球气候变暖,并引发了气候的极端变化和一系列的自然灾害。
在这种情况下,人类必须另辟蹊径,积极寻求能够替代化石能源的新能源和可再生能源,逐步摆脱对传统化石能源的依赖。
以水能、太阳能、风能、地热能、海洋能、生物质能和核能等为代表的新能源又称非化石能源,不但取之不尽、用之不竭,而且低碳、清洁、环保,既有利于保障能源供给,又可极大地减少温室气体的排放。
新能源被认为是能够同时解决能源危机、金融危机和气候危机的战略性支点,因而成为新一轮国际竞争的热点。
新能源特别是风能,是一种清洁、廉价、储量极为丰富的可再生能源,它与常规能源不同,在其利用过程中不会带来环境污染问题,其储量也不会随着其本身的转化和利用而减少。
不但分布来源广泛和储量丰富,而且技术相对成熟,开发利用成本相对较低,具备了规模化开发利用的条件。
因此,风能这种可再生清洁能源受到了世界各国的日益关注。
我国不但拥有丰富的风能资源,而且风电开发和利用技术位居世界前列。
因此自20世纪70年代末以来,随着世界各国对环保、能源短缺及节能等问题的日益关注,认为大规模利用风力发电(简称风电)是减少空气污染,缓解能源短缺的有效措施之一。
中国三北地区(西北、华北、东北)及东南沿海地区有丰富的风能资源,而这些地区又都存在能源短缺和环境污染问题,因此通过利用风电来改变能源结构并改善环境,不失为能源开发领域中重要的策略之一。
1,中国的风能资源及分布地球大气中蕴藏着巨大的风能资源,据估算约有2 x 1010kW。
中国幅员辽阔,海岸线长,风能资源比较丰富。
中国气象科学研究院根据全国900多个气象站陆地上离地10 m高度资料进行估算,全国平均风功率密度为100W /m2,风能资源总量约32. 26亿kW,估计只有约10%可以利用,测算出陆地上技术可开发风能储量约2. 53亿kW;近海可开发利用风能约7. 5亿kW,共计约10亿kW,仅次于俄罗斯和美国,居世界第三位。
按同样条件对沿海水深2-15 m海域估算,海上风能储量750GW,共计约1 TW。
陆上风电和海上风电年上网电量分别按等效满负荷2 000 h和2 500 h计算,每年可提供0. 5万亿和1. 8万亿kW●h电量,合计2. 3万亿kW●h,相当于我国2010年发电量的54. 4 %,风能利用空间非常大。
在我国,东北、华北、西北(图1)具有丰富的风能资源。
内陆也有风资源较丰富的地区,像江西都阳湖和湖北通山。
图1 我国风资源丰富的省区2,中国风能开发利用现状在水能、太阳能、风能、地热能、海洋能和生物质能等众多可再生能源资源中,风能因其易获取、资源丰富、分布广泛和成本低等特征,在世界可再生能源资源的利用中获得了巨大发展。
中国对风能的利用早在公元5000年前就有纪录,但现实的风力发电起步较晚,始于20世纪50年代后期。
随后,国家出台了一系列促进风电发展的激励政策和鼓励措施,实施了多项工程计划项目,如“乘风计划”、“光明工程”等。
经过近60年的发展,中国风能开发利用取得了巨大进步,风电发电量、装机容量和风电场数量位居世界前列。
2. 1风电装机容量和发电量规模不断扩大从2005年开始,中国的风电装机容量每年的增长数量均翻番。
截至2011年底,我国风电新增装机容量约为1800万kw,而在2006年新增装机容量仅为134. 73万kW;到2011年,我国风电总装机容量达到了62. 7GW,居全球领先地位。
连续6年的装机容量的大规模、快速增长,中国风电装机容量的增长率已占全球总增量的40%。
从图2可见,在过去的几年我国风电的装机容量在不断增加,且每年的增长幅度也逐步扩大,在这段时期我国进入了风电快速发展阶段。
但在连续5年的翻番增长后,我国风电装机容量的增速有所减缓。
从图2可见,风电装机容量的年增长速度2006 -2009年超过100% , 2010 -2011年增长速度分别递减为61. 65 % , 42. 91 %。
因此,2011年成为中国风电发展的一个转折年,我国风电从快速发展阶段进入到调整期。
截止到2012年6月,我国并网风电达到5258万kw首次超越美国,达到世界第一。
而在5年前,我国的并网风电仅200万kW。
从200 -5000万kw,我国风电只用了5年就走过了欧美国家15年走完的历程。
与风电装机容量规模扩大相对应的是风电发电量的逐年增加。
根据国家能源局的统计数据,2009年中国风电发电量为276. 1亿kW●h,占全部发电量的0. 75 %,同比增长111.14%。
据国家电网的数据,2010年国家电网公司消纳风电电量474亿kw●h,截止2011年底消纳的风电量达到了706亿kW●h,同比增长48. 9%。
随着风电发电量的不断增加,电网对风电量的消纳成为一个较突出的问题。
针对这一问题,我国也制定了一系列的鼓励和补贴政策,国家能源局于2012年6月1日发布了《关于加强风电并网和消纳工作有关要求的通知》。
在相关激励政策和措施的引导下,各省级电网区域加强了对风电的消纳利用,各省级电网区域风电平均利用时数已达到了1920h,其中尤以福建省最多为3096h。
图2 2006 -2011年我国风电新增装机容量及年增长速度2. 2中国风电技术取得了较大进步我国风力发电起步较晚,在2004年之前风能利用技术落后,风电设备制造业不完善。
为了促进我国风电发展,降低设备成本,国家一直坚持推进风机设备国产化,风电设备制造业也实现了从无到有、从小到大的跨越式发展。
我国风电设备国产化率从2004年的10%一跃上升为2011年的90%。
在发展的过程中,我国风机企业不仅打破了国外企业对兆瓦级风机的技术垄断,还坚持自主创新和研发,形成了规模化的生产能力,主要零部件的制造和配套能力有所提高[11]。
随着我国风电设备制造业自主创新能力的提升,我国自主知识产权的风力机不断地出口到海外,采用中国标准的风电项目开始在国外投产发电。
2012年5月,由水电顾问集团EPC总承包的埃塞俄比亚阿达玛风电项目首台机组成功并网发电。
这是我国第一个技术、标准、管理和设备整体走出去的风电项目,它采用中国标准进行设计、施工和验收,采用中国风机设备和中国监理,所以具有重要的战略意义和现实意义。
随着风电技术的日臻完善,我国风电装机在全国的覆盖面逐步扩大。
我国首先安装第一台风力机的省市分别为北京、湖北、山西、河南和湖南,其他各省市也相继建立起了风电场。
截止2011年8月底,我国共有486个并网运行的风电场,分布在除西藏和广西以外的全国所有地区。
此外,2011年9月22日,广西壮族自治区第一座风力发电站—中电投金紫山风电场项目一期工程首批机组在顺利完成一系列规定试验项目后,顺利并入广西电网投产发电。
这意味着随着紫金山风电场项目各期工程的竣工,广西也即将拥有风电场。
中国可再生能源课题综合组和风能组就风能中、长期的发展目标分别进行了预测,另外,国内外一些专家和机构也对我国风能发展目标进行过预测。
经过综合分析,风能组提出的预测结果见表1。
表1 中国风电累计装机容量发展目标2.3海上风电的发展海上风电是风电行业最前沿的领域,近年来我国在海上风电发展领域取得了较好的成绩。
我国国内第一座海上风力发电站是由中国海洋石油公司于2007年11月投资兴建的。
众所周知,海洋环境复杂,发展海上风电风险较大,技术要求高。
尽管如此,由于我国掌握了较为前沿的风电利用技术,截至2010年底海上风电装机容量为13. 8万kw,位居全球第七位。
2012年1月,专家审批通过了河北唐山乐亭县菩提岛海上风电场示范项目300MW工程可行性报告,方案推荐为100台单机容量3000kw的风力发电机组,使其成为我国规模最大的海上风电项目,预计2015年前投入运营。
这是我国风电技术不断趋于完善的又一里程碑。
3,制约中国风能发展的因素风能产业是一个新兴的有前景的高新技术产业。
2020年我国风电总装机容量要达到3000万千瓦的目标,为风能产业的发展提供了很大的空间,但是风能产业又是一个有风险的产业,我国风电经历了几年的快速发展,在2010年的低谷期和2011年的转折年后,仍然取得了举世瞩目的成绩,控制着全球最大的风电市场。
但在快速发展的背后,中国的风电也表现出来许多矛盾和问题,如风电的并网消纳问题、电力市场的约束、相关配套法规不完善、风机制造技术基础薄弱等,这些制约因素都对我国风电的可持续发展造成了严重阻碍。
3. 1风电快速发展与并网消纳难并存从2005年开始,我国风电的发展进入了高速轨道,风电新增装机容量及总装机容量均在大幅度提升,但是并网发电增长较为缓慢,风电弃风限电现象一直存在。
相关数据显示,仅2011年全国弃风限电总量就超过了100亿kW●h。
我国风资源较为集中,1000万千瓦级风电基地多集中于内蒙古、新疆、甘肃和冀北等经济相对落后地区,产生的风电难以就地消纳,同时风电集中地区又远离我国的用电负荷中心,跨区域输电能力的薄弱影响了风电的大规模利用,使许多风电场建立后出现严重的弃风问题,产生的风电也未被充分利用。
2011年我国风电全年发电量在700亿kW●h左右,尽管与2010年的501亿kW●h相比增幅在40%左右,但与2010年风电发电量同比81. 41%的增速相比,2011年风电发电量增速出现了大幅下滑。