初等数论模拟试题四套(附答案)
- 格式:doc
- 大小:498.50 KB
- 文档页数:13
初等数论练习题一一、填空题1、τ(2420)=27;ϕ(2420)=_880_2、设a ,n 是大于1的整数,若a n —1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,—2,-1,0,1,2,3,4}。
4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x —23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_.78、⎪⎭⎫ ⎝⎛10365 =—1。
9、若p 是素数,则同余方程xp - 1≡1(mod p )的解数为二、计算题1、解同余方程:3x 2+11x -20≡0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20≡0 (mod 3)的解为x ≡1 (mod 3),同余方程3x 2+11x -38 ≡0 (mod 5)的解为x ≡0,3 (mod 5),同余方程3x 2+11x -20≡0 (mod 7)的解为x ≡2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡b 1 (mod 3),x ≡b 2 (mod 5),x ≡b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解: 故同余方程x 2≡42(mod 107)有解。
3、求(127156+34)28除以111的最小非负余数.解:易知1271≡50(mod 111)。
初等数论试卷一一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( )A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解.9、设f(x)=10nn a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,nn i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________; 24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。
初等数论练习题一一、填空题1、d(2420)=12; 0(2420)=_880_2、设比n是大于1的整数,若是质数,则a=_2.3、模9的绝对最小完全剩余系是_卜4, -3, -2, -1,0,1,2,3,4}.4、同余方程9x+12=0(mod 37)的解是x三11 (mod 37)。
5、不定方程18x-23y=100 的通解是x=900+23t, y=700+18t t Z。
.6、分母是正整数m的既约真分数的个数为—(山)_。
7、18100被172除的余数是_殛。
9、若p是素数,则同余方程L 1 l(modp)的解数为p-1 。
二、计算题疋11X 20 0 (mod lO5)o1、解同余方程:3解:因105 = 3 5 7,同余方程3x211X 20 0 (mod 3)的解为x 1 (mod 3),同余方程3x211X 38 0 (mod 5)的解为x0, 3 (mod 5),同余方程3x211X 20 0 (mod 7啲解为x2, 6 (mod 7), 故原同余方程有4解。
作同余方程组:x (mod 3), x b2 (mod 5), x b3 (mod 7),其中®=1, b2 = 0, 3, b3 = 2, 6,由子定理得原同余方程的解为x 13, 55, 58, 100 (mod 105)o2. 判断同余方程/三42(mod 107)是否有解?*3x7 2 3 7)=(二)(一)(―-)107 107 107 1072 3 I 。
, 2 v( —) = -1, ( — ) = (-1) 2 2(ArL) = -<±) = L 107 107 3 3.-.(—) = 1 107故同余方程x 2三42(mod 107)有解。
3、求(12715C +34) 23除以ill 的最小非负余数。
解:易知 1271 = 50 (mod 111)0由 502 =58 (mod 111) , 503 三58X50三 14 (mod 111), 509=143=80 (mod111)知 502G = (509)彳x50三803X50三803x50三68x50三70 (mod 111) 从而505C=16 (mod 11 l)o故(12715C +34) 2c = (16+34) 20 =502G =70 (mod 111)三、证明题1、 已知p 是质数,(a,p) =1,证明:(1) 当 Q 为奇数时,a p l +(p-l)A =O (mod p);(2) 当a 为偶数时,衣三°(mod p)。
初等数论习题与答案、及测试卷1 证明:n a a a ,,21 都是m 的倍数。
∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证:)12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax by ax ++/00 (y x ,为任意整数)b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax ba +∴故),(00b a by ax =+4 证:作序列 ,23,,2,0,23,b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2 ,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 2 1,21+-=-=+=,则有21212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 01,21++=-=+-=则同样有 2b t ≤综上存在性得证下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+?=+=?2,2,222211b t b t t bs t bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1)令S=n14131211+++++,取M=p k 75321-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。
初等数论试卷一一、单项选择题:(1分/题×20题=20分)1.设为实数,为的整数部分,则( )x []x x A.; B.;[][]1x x x ≤<+[][]1x x x <≤+C.; D..[][]1x x x ≤≤+[][]1x x x <<+2.下列命题中不正确的是( )A.整数的公因数中最大的称为最大公因数;12,,,n a a a L B.整数的公倍数中最小的称为最小公倍数12,,,n a a a L C.整数与它的绝对值有相同的倍数a D.整数与它的绝对值有相同的约数a 3.设二元一次不定方程(其中是整数,且不全为零)有一整数解ax by c +=,,a b c ,a b ,则此方程的一切解可表为( )()00,,,x y d a b =A.00,,0,1,2,;abx x t y y t t d d =-=+=±±L B.00,,0,1,2,;abx x t y y t t d d =+=-=±±LC.00,,0,1,2,;bax x t y y t t d d =+=-=±±LD.00,,0,1,2,;bax x t y y t t dd =-=-=±±L4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25;C.3,4,5; D.8,16,175.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+B.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒≡C.()()111212mod mod ;a b m a a b a m ≡⇒≡D.()()112211mod mod .a b m a b m ≡⇒≡6.模10的一个简化剩余系是( )A. B.0,1,2,,9;L 1,2,3,,10;LC. D.5,4,3,2,1,0,1,2,3,4;-----1,3,7,9.7.的充分必要条件是( ) ()mod a b m ≡A. B.;m a b -;a b m -C. D.;m a b +.a b m +8.设,同余式的所有解为( )()43289f x x x x =+++()()0mod 5f x ≡A.或 B.或1x =1;-1x =4;C.或 D.无解.1x ≡()1mod 5;-9、设f(x)=其中为f(x)的一个解,10n n a x a x a +++K K ()0,mod i a x x p ≡是奇数若()0mod p ≡则:()A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有10.则同余式()10(),,0mod ,,nn in f x a x a x a a a p n p =+++≡>/K K 设其中为奇数:()()()0mod f x p ≡的解数A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n 11.若2为模p 的平方剩余,则p 只能为下列质数中的 :()A .3 B .11 C .13 D .2312.若雅可比符号,则 ( )1a m ⎛⎫=⎪⎝⎭A .()2mod ,x a m ≡同余式一定有解B .;()()2,1,mod a m x a p =≡当时同余式有解C .;()2(,mod m p x a p =≡当奇数)时同余式有解D ..()2(),mod a p x a p =≡当奇数时同余式有解13.( )()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于 A . 4 B . 3 C . 2 D . 114. 模12的所有可能的指数为;( ) A .1,2,4 B .1,2,4,6,12 C .1,2,3,4,6,12 D .无法确定15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( ) A . B . 322ind =323ind =C .D . 350ind =3331025ind ind ind =+17.下列函数中不是可乘函数的是: ( )A .茂陛鸟斯(mobius)函数w(a) ;B . 欧拉函数;()a φC .不超过x 的质数的个数;()x πD .除数函数;()a τ18. 若对模的指数是,>0,>0,则对模的指数是( )x m ab a ab x αm A .B .C .D .无法确定a b ab 19.,均为可乘函数,则( )()f a ()g a A .为可乘函数;B .为可乘函数()()f a g a ()()f ag a C .为可乘函数; D .为可乘函数()()f a g a +()()f a g a -20.设为茂陛乌斯函数,则有( )不成立()a μA .B .C .D .()11μ=()11μ-=()21μ=-()90μ=二.填空题:(每小题1分,共10分)21. 3在45中的最高次n = ____________________;!22. 多元一次不定方程:,其中 , ,…,,N 均为整数,1122n n a x a x a x N +++=L 1a 2a n a ,有整数解的充分必要条件是___________________;2n ≥23.有理数,,,能表成纯循环小数的充分必要条件是ab0a b <<)(,1a b =_______________________;24. 设为一次同余式,的一个解,则它的所有()0mod x x m ≡()mod ax b m ≡a ≡()0mod m 解为_________________________;25. 威尔生(wilson )定理:________________________________________;26. 勒让德符号=________________________________________;5031013⎛⎫⎪⎝⎭27. 若,则是模的平方剩余的充分必要条件是_____________(欧拉判别条件);)(,1a p =a p 28. 在模的简化剩余系中,原根的个数是_______________________;m 29. 设,为模的一个原根,则模的一个原根为_____________;1α≥g p α2p α30._________________________________。
《初等数论》模拟试卷说明:考生应有将全部答案写在答题纸上,否则作无效处理一、填空(30分)1、d (1001)= 。
σ(2002)= 。
φ(5005)= 。
2、梅森数n M 是形如 的数。
3、不能表示成5X+6Y (X 、Y 非负)的最大整数为 。
4、2003!中末尾连续有 个零。
5、(21a+4,14a+3)= 。
6、222z y x =+通解为 。
7、费尔马大定理是 。
8、从1001到2000的所有整数中,13的倍数有 。
9、c x a x a x a n n =++....2211有解的充要条件是 。
10、p,q 是小于是100的素数,pq- 1=x 为奇数,则x 的最大值是 。
11、[X]=3,[Y]=5,则[X —2Y]可能的值为 。
12、X 能被3,4,7整除,这个最小的正整数是 。
13、两个素数的和是39,这两个素数是 。
二、解同余方程组(12分)⎪⎩⎪⎨⎧≡+≡≡)7mod 25)5(mod 1)4(mod 1x x x一、叙述并且证明费尔马定理。
(12分)二、证明:设d是自然数n的正因子,则有∏=n d n d nd )(21 (10分)三、设P为奇素数,则有(10分)(1)111)1....(21----++p p p p ≡-1(modP)(2)p P P P )1....(21-++ ≡0(modP)六、用初等方法解不定方程01996202=+-xy x 。
(8分)七、解不定方程式15x+25y=-100. (6分)八、试证33393z y x =+ 无正整数解。
(6分)九、请用1到9这九个数中的六个(不重复)写出一个最大的能被15整除的六位数(6分)《初等数论》模拟试卷(B )答案一、1、8,1152,960,2、12-n3、19,4、499,5,1, 6、见书7、见书 8、77,9、c a a a n ),,(21 10、193,11、-9,-8,-7, 12、84,13、2,37二、孙子定理)140(mod 86≡x三、见书。
《初等数论》模拟试卷浙江师范⼤学《初等数论》考试卷(G卷)⼀、填空(30分)1、d (1001)= 6 。
σ(2002)= 40322、c x a x a x a n n =++....2211有解的充要条件是c a a a n |),...,(21 。
3、不能表⽰成5X+6Y (X 、Y ⾮负)的最⼤整数为 19 。
4、2003!中末尾连续有 499 个零。
5、(21a+4,14a+3)= 1 。
6、222z y x =+通解为。
7、两个素数的和是39,这两个素数是 2 、 37 。
8、从1001到2000的所有整数中,13的倍数有 77 。
9、p,q 是⼩于是100的素数,pq- 1=x 为奇数,则x 的最⼤值是 193 。
⼆、解同余⽅程组(12分)≡+≡≡)7mod 25)5(mod 1)4(mod 1x x x 由孙⼦定理得).140(mod 81≡x三、证明费尔马定理。
(10分)四、明:设d是⾃然数n的正因⼦,则有∏=nd n d nd )(21(10分)答、设d 是n 的因⼦,则dn也是n 的因⼦,⽽n 的因⼦数为d (n )所以∏∏=n d n d d n d |,所以∏=nd n d n d )(2)(即有∏=n d n d n d )(21五、P为奇素数,则有(10分))(m od )(p b a b a p p p +≡+答、由费尔马⼩定理知对⼀切整数有 a p ≡a (p ) b p ≡b (P ),由同余性质知有 a p +b p ≡a+b (p )⼜由费尔马⼩定理有(a+b )p ≡a+b (p ) (a+b )p ≡a p +b p (p )六、⽤初等⽅法解不定⽅程01996202=+-xy x 。
(10分)答:由题意知x 为偶数,设12x x =,则有04991012 1=+-y x x 即有499)10(11-=-y x x由499为素数有两因⼦只能取499,1 ±,从⽽得==502y x -=-=502y x ==50998y x ?-=-=50998y x 七、解不定⽅程式15x+25y=-100. (8分) 答: Z t t y t x ∈+-=-=,34,5⼋、请⽤1到9这九个数中的六个(不重复)写出⼀个最⼤的能被6整除的六位数(10分)答:987654浙江师范⼤学《初等数论》考试卷(A 卷)⼀、填空(30分)1、d (1000)= 16 (2的3次*5的3次。
初等数论模拟试题及答案一、选择题(每题2分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 13D. 162. 一个数的最小素因子是它本身,这个数是什么?A. 0B. 1C. 质数D. 合数3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数。
若n=12,φ(12)的值是多少?A. 4B. 6C. 8D. 124. 一个数如果只有1和它本身两个因数,这个数是什么?A. 0B. 1C. 质数D. 合数5. 以下哪个数是完全数?A. 6B. 12C. 28D. 4966. 一个数的约数个数是奇数,这个数是什么?A. 质数B. 合数C. 完全数D. 素数7. 模n的逆元是指一个整数a,使得a×x ≡ 1 (mod n),以下哪个数在模5下没有逆元?A. 1B. 2C. 3D. 48. 费马小定理指出,如果p是一个质数,那么对于任意整数a,a^(p-1) ≡ 1 (mod p)。
以下哪个选项是错误的?A. a^4 ≡ 1 (mod 5)B. a^3 ≡ 1 (mod 7)C. a^2 ≡ 1 (mod 4)D. a^2 ≡ 1 (mod 3)9. 哥德巴赫猜想是指每一个大于2的偶数都可以表示为两个质数之和。
以下哪个数不能被表示为两个质数之和?A. 4B. 6C. 8D. 1010. 以下哪个数是梅森素数?A. 3B. 7C. 2^7 - 1D. 2^3 - 1二、填空题(每题2分,共20分)11. 素数是指只有________和它本身两个因数的自然数。
12. 如果a和b互质,那么它们的最大公约数是________。
13. 一个数的约数个数是偶数,这个数至少有________个约数。
14. 欧拉函数φ(1)的值是________。
15. 模n的剩余类集合记为Z/nZ,它包含________个元素。
16. 费马小定理中,如果a和p互质,那么a^(p-1) ≡ ________ (mod p)。
初等数论期末考试模拟试卷(含答案)一、填空题(每题5分,共25分)1. 若两个正整数a和b的最大公约数为1,则称a和b互质。
若a和b互质,则a+b与a-b也互质。
()2. 设m和n是正整数,且m、n互质。
若存在正整数k,使得km+1与kn+1互质,则k的最小值为()。
答案:13. 已知p和q是不同的质数,且p+q=17,则p^2+q^2的最小值为()。
答案:974. 设F(n)表示斐波那契数列的第n项,且F(n+1)=F(n)+F(n-1),F(1)=1,F(2)=1。
若F(n)能被3整除,则n的最小值为()。
答案:85. 已知正整数a、b、c满足a^2+b^2=c^2,则称a、b、c 为勾股数。
勾股数中,a、b、c都是奇数的三元组称为奇素勾股数。
已知最小的奇素勾股数是(3,4,5),则第二小的奇素勾股数是()。
答案:(15,8,17)二、选择题(每题5分,共25分)6. 以下关于最大公约数和最小公倍数的说法,错误的是()。
A. 两个正整数的最大公约数是它们的公共因子中最大的一个B. 两个正整数的最大公约数等于它们的乘积除以最小公倍数C. 两个正整数的最大公约数和最小公倍数的乘积等于这两个数的乘积D. 两个正整数的最大公约数和最小公倍数一定互质答案:D7. 设p是质数,且p>2,则以下说法正确的是()。
A. p的平方能被3整除B. p的立方能被3整除C. p的平方加1能被3整除D. p的平方减1能被3整除答案:D8. 以下关于斐波那契数列的说法,错误的是()。
A. 斐波那契数列中的任意两个相邻项互质B. 斐波那契数列中的任意两个非相邻项互质C. 斐波那契数列中的任意三个连续项构成勾股数D. 斐波那契数列中的任意两个相邻项之比越来越接近黄金比例答案:C9. 设a、b、c是勾股数,且a是最小的质数。
以下说法正确的是()。
A. b和c一定互质B. b和c一定不互质C. b和c中至少有一个是质数D. b和c中至少有一个不是质数答案:D10. 以下关于同余的说法,错误的是()。
初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解.A c b a ),(B ),(b a cC c aD a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391]=[391,17221136⨯]=[1768,391] ------------(4分)= 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ;-------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
02013自学考试初等数论模拟试题(含答案)一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9.7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解 C.()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( )A .()()f a g a 为可乘函数;B .()()f ag a 为可乘函数C .()()f a g a +为可乘函数;D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________; 23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件);28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30. ()48ϕ=_________________________________。
初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、 =-1。
⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。
初等数论试卷,最全⾯的答案,包括截图初等数论考试试卷⼀、单项选择题:(1分/题X 20题=20分)1 ?设x为实数,lx ]为x的整数部分,则(A )A.[xl X ::: lx ; E. [x I ::: x Ixl ? 1 ;C. lx I x lx A:;1 ;D. lx I ::: X ::: Ix.l ? 1 .2.下列命题中不正确的是(B )A.整数a i,a2,||(,a n的公因数中最⼤的称为最⼤公因数;C.整数a与它的绝对值有相同的倍数D.整数a与它的绝对值有相同的约数3 .设⼆元⼀次不定⽅程ax?by=c (其中a,b,c是整数,且a,b不全为零)有⼀整数解x o,y°,d⼆a,b,则此⽅程的⼀切解可表为(C )a bA.x =x°t, y ⼆y°t,t =0, _1,_2」H;d da bB.x = X o t, y ⼆y o t,t = 0, —1, _2」H;d db ac. x =X o t, y =y°t,t =0, _1,_2,川;d db aD. x =x°t, y ⼆y o t,t =0, ⼀1,_2,|";d d4. 下列各组数中不构成勾股数的是(D )A. 5, 12, 13;B. 7, 24, 25;C.3, 4, 5;D. 8, 16, 175. 下列推导中不正确的是(D )A.? 三b modm ,a2 三d modm = y a?三b b2modm ;B.Q= b mod m ,a2 = b2 modm = Qa? = bb 2mod m ;c. Q= b mod m = 时2 = ba 2modm ;2 2C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.a1= b1 modm = Q=b modm .6 .模10的⼀个简化剩余系是(D )A. 0,1,2,川,9;B. 1,2,3川1,10;7. a三b modm的充分必要条件是(A )A. ma —b;B. a —b m;C.m a +b;D. a +b m.&设f x =x42x38x 9,同余式f x三0 mod5的所有解为(C )A. x =1 或-1;B. x =1 或4;C. x 三1 或-1 mod5 ;D.⽆解.9、设f(x)= a n X n JlUII a1x ? a°其中a i是奇数,若x = x0mod p 为f(x) = 0 mod p 的⼀个解, 则:(?)A. 了.三/.: mod p ⼚定为f (x)三0(mod p勺,1的⼀个解B. '三I mod p「,::1,⼀定为f (x)三0 mod p :的⼀个解D. 若x三x° mod p -为f (x)三0 mod p -的⼀个解,则有x :三x° mod p10.设f (x)⼆a n x n|川|) ax a0,其中a i为奇数,a n丞Omodp,n p,则同余式f (x) =0 mod p 的解数:( )A.有时⼤于p但不⼤于n; B .不超过pC.等于p D .等于n11.若2为模p的平⽅剩余,则p只能为下列质数中的:( D )A. 3 B . 11 C . 13 D . 2312.若雅可⽐符号->1,则(C )Im⼃2A. 同余式x三a modm ⼀定有解,B. 当a,m =1时,同余式x2=a mod p有解;C. 当m = p(奇数)时,同余式x2三a mod p有解;D. 当a⼆p(奇数)时,同余式x2三a mod p有解.13.若同余式x2三a mod2‘,〉-3, 2, a =1有解,则解数等于(A )C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.18. 若x 对模m 的指数是ab , a >0, ab >0,则a 对模m 的指数是(B )A. a B . b C . ab D.⽆法确定19. f a , g a 均为可乘函数,则(A ) A. f a g a 为可乘函数; B . f ag (a )C. f a g a 为可乘函数; D . f a - g a 为可乘函数20. 设丄[a 为茂陛乌斯函数,则有(B )不成⽴A ⼆ J 1 =1B .空-1 =1C .⼆■-2 = -1D .⼆=9 =0⼆. 填空题:(每⼩题1分,共10分)21.3在45!中的最⾼次n = ________ 21 ___ ; 22. 多元⼀次不定⽅程:a 1x 1 a 2x 2 ?⼁II a n x^ N ,其中a 1 , a 2,…,a n , N 均为整数,n _ 2 ,有整数解的充分必要条件是 _ ( a 1 , a 2 ,…,a n ,) I N_a23.有理数⼀,0cavb , (a,b )=1,能表成纯循环⼩数的充分必要条件是_ (10, b ) =1__; b- _ 24. 设x 三冷 mod m 为⼀次同余式ax 三b modm , a = 0 mod m 的⼀个解,则它的所有解 A . 414. A . 15. A . B . 3 C 模12的所有可能的指数为:( 1, 2, 4 B . 1, 2, 4, 6, 若模m 的原根存在,下列数中,2 B .3 C 16. 对于模5,下列式⼦成⽴的是.2 A )12 C . 1, 2, m不可能等于:( D . 12 B ) 3, D 4, 6,12 D ?⽆法确定 )A. in d 32 =2ind 3^=3 C. in d 35 =0ind 310 ⼆ ind 32 ind 35 17. A. 下列函数中不是可乘函数的是:茂陛鸟斯(mobius )函数w(a ); B. 欧拉函数■- a ;C. 不超过x 的质数的个数⼆x ;25. ____________________________ 威尔⽣(wilson )定理: _______________ (P —1)! +1 三0(modp ), p 为素数 _____________ ;26. 勒让德符号'^03 |= 1 ;訂013⼃27. 若a, p [=1,则a 是模p 的平⽅剩余的充分必要条件是 a 2三1 mod p (欧拉判别条件; 28.在模m 的简化剩余系中,原根的个数是 _讥営m __; 29.设。
初等数论考试试卷1一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). Ab a = B b a -= C b a ≤ D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定 3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A)(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠5、如果( ),则不定方程c by ax =+有解. Acb a ),( B),(b a c Cca Dab a ),(6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分) 1、D. 2、A 3、C 4、A 5、A 6、B 二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分) 1、求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391]=[391,17221136⨯]=[1768,391]------------(4分)= 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分) 解:因为(9,21)=3,1443,所以有解;----------------------------(2分) 化简得4873=+y x ;-------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分) 所以原方程的特解为48,96=-=y x ,-------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论练习题一一、填空题1、d(2420)=12; ϕ(2420)=_880_2、设a,n 是大于1的整数,若an -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(m od 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y =100的通解是x =900+23t,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m)_。
7、18100被172除的余数是_256。
8、⎪⎭⎫ ⎝⎛10365 =-1。
9、若p 是素数,则同余方程x p - 1 ≡1(mo d p)的解数为 p -1 。
二、计算题1、解同余方程:3x2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (m od 3)的解为x ≡ 1 (mo d 3), 同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mo d 7)的解为x ≡ 2,6 (mod 7), 故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b3 (mo d 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解: 故同余方程x 2≡42(mod 107)有解。
初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ; -------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论试题及答案大学一、选择题(每题5分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 100以内最大的素数是:A. 97B. 98C. 99D. 100答案:A3. 一个数的最小素因子是3,那么这个数至少是:A. 3B. 6C. 9D. 12答案:B4. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A二、填空题(每题5分,共20分)1. 一个数的因数个数是______,那么这个数一定是合数。
答案:32. 如果一个数的各位数字之和是3的倍数,那么这个数本身也是3的倍数,这个性质称为______。
答案:3的倍数规则3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数,那么φ(10)等于______。
答案:44. 哥德巴赫猜想是指任何一个大于2的偶数都可以表示为两个______之和。
答案:素数三、解答题(每题15分,共30分)1. 证明:如果p是一个素数,那么2^(p-1) - 1是p的倍数。
证明:设p是一个素数,根据费马小定理,对于任意整数a,若p不能整除a,则有a^(p-1) ≡ 1 (mod p)。
特别地,当a=2时,有2^(p-1) ≡ 1 (mod p)。
这意味着2^(p-1) - 1是p的倍数。
2. 计算:求1到100之间所有素数的和。
答案:2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 +97 = 1060四、综合题(每题10分,共20分)1. 已知a和b是两个不同的素数,证明:a + b至少有4个不同的素因子。
证明:设a和b是两个不同的素数,那么a和b至少有2个不同的素因子。
如果a + b是素数,那么a + b至少有3个不同的素因子。
初等数论模拟试题二一、单项选择题1、=),0(b(C ).Ab B b- D 02、如果a b,b a,则(D ).A ba±a≤ D b=a-= C ba= B b3、如果1(bab+=(C ).,aba,则),)(=A aB bC 1D ba+4、小于30的素数的个数(A ).A 10B 9C 8D 75、大于10且小于30的素数有(C ).A 4个B 5个C 6个D 7个6、如果n3,n5,则15(A )n.A 整除B 不整除C 等于D不一定7、在整数中正素数的个数(C ).A 有1个B 有限多C 无限多D 不一定二、计算题1、求24871与3468的最大公因数?解: 24871=3468⨯7+5953468=595⨯5+493595=493⨯1+102493=102⨯4+85102=85⨯1+1785=17⨯5,所以,(24871,3468)=17.2、 求[24871,3468]=?解:因为(24871,3468)=17所以[24871,3468]= 17346824871⨯ =所以24871与3468的最小公倍数是。
3、求[136,221,391]=?解: [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391] = 173911768⨯=⨯=40664. 三、证明题1、 如果b a ,是两个整数,0 b ,则存在唯一的整数对r q ,,使得r bq a +=,其中b r ≤0.证明 :首先证明唯一性.设q ',r '是满足条件的另外整数对,即r q b a '+'=,b r '≤0.所以r bq r q b +='+',即()r r q q b '-=-',r r q q b '-=-'.又由于b r ≤0,b r '≤0,所以b r r '-.如果q q '≠,则等式r r q q b '-=-'不可能成立.因此q q '=,r r '=. 其次证明存在性.我们考虑整数的有序列……,,3,2,,0,,2,3b b b b b b ---……则整数a 应介于上面有序列的某两数之间,即存在一整数q 使()b q a qb 1+≤ .我们设qb a r -=,则有r bq a +=,b r ≤0.2、 证明对于任意整数n ,数62332n n n ++是整数.证明: 因为62332n n n ++=)32(62n n n ++=)2)(1(61++n n n , 而且两个连续整数的乘积是2的倍数,3个连续整数的乘积是3的倍数,并且(2,3)=1, 所以从)2)(1(2++n n n 和)2)(1(3++n n n 有)2)(1(6++n n n , 即62332n n n ++是整数.3、 任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.证明: 因为=-121a a a a n n 12211101010a a a a n n n n +⨯++⨯+⨯--- ,n n a a a a 121- =n n n n a a a a +⨯++⨯+⨯---10101012211 ,所以,121a a a a n n --n n a a a a 121- =).101()101(10)110(10)110(1132311------+-⨯++-⨯+-⨯n n n n n n a a a a而上面等式右边的每一项均是9的倍数, 于是所证明的结论成立.4、 证明相邻两个偶数的乘积是8的倍数.证明: 设相邻两个偶数分别为)22(,2+n n所以)22(2+n n =)1(4+n n 而且两个连续整数的乘积是2的倍数 即)1(4+n n 是8的倍数.初等数论模拟试题三一、单项选择题1、如果( A ),则不定方程c by ax =+有解.A c b a ),(B ),(b a cC c aD a b a ),(2、不定方程210231525=+y x (A ).A 有解B 无解C 有正数解D 有负数解二、求解不定方程1、144219=+y x .解:因为(9,21)=3,1443,所以有解;化简得48+yx;73=考虑1-=y,2=x,x,有13=7+y所以原方程的特解为48-x,=y,96=因此,所求的解是Z348=,96。
-7,=+ttyt-x∈2、18x.-y6=17解:因为18,6(,所以有解;17)考虑1,3==yx;-yx,1176=所以18=yx是特解,,54=即原方程的解是1754--,==t18ytx63、25x.+y37107=解:因为(107,37)=125,所以有解;考虑1x,+y37107=有26=yx,=,9-所以,原方程特解为25x=225,259⨯=y=-650,=-26⨯所以通解为t-=+=225-,37ty650x1074.求不定方程4y+zx的整数解.13+725=解我们将它分为两个二元一次不定方程来求解25x+13y=t, t+7z=4.利用求二元一次不定方程的方法,因为25(-t)+13(2t)= t, 32+7⨯(-4)=4,所以,上面两个方程的解分别为⎩⎨⎧-=+-=1125213k t y k t x , ⎩⎨⎧--=+=224732k z k t . 消去t 就得到所求的解⎪⎩⎪⎨⎧--=+-=-+-=22121414256471332k z k k y k k x , 这里21,k k 是任意整数.5.求不定方程8594=+-z y x 的整数解.解 我们将它分为两个二元一次不定方程来求解4x-9y=t, t+5z=8.利用求二元一次不定方程的方法,因为4(-2t)-9(-t)= t, 48+5⨯(-8)=8,所以,上面两个方程的解分别为⎩⎨⎧--=--=11492k t y k t x , ⎩⎨⎧--=+=228548k z k t . 消去t 就得到所求的解⎪⎩⎪⎨⎧--=---=---=221218544810996k z k k y k k x , 这里21,k k 是任意整数.初等数论模拟试题四一、选择题1、整数能被( B )整除.A 3B 3与9C 9D 3或92、整数能被(C )整除.A 3B 5C 7D 93、模5的最小非负完全剩余系是( D ).A -2,-1,0,1,2B -5,-4,-3,-2,-1C 1,2,3,4,5D 0,1,2,3,44、如果)(mod m b a ≡,c 是任意整数,则(A )A )(mod m bc ac ≡B b a =C ac T )(m od m bcD b a ≠二、解同余式(组)(1))132(mod 2145≡x .解 因为(45,132)=3¦21,所以同余式有3个解.将同余式化简为等价的同余方程 )44(mod 715≡x .我们再解不定方程74415=-y x ,得到一解(21,7). 于是定理4.1中的210=x . 因此同余式的3个解为)132(mod 21≡x ,)132(mod 65)132(mod 313221≡+≡x , )132(mod 109)132(mod 3132221≡⨯+≡x .(2))45(mod 01512≡+x解 因为(12,45)=3¦15,所以同余式有解,而且解的个数为3. 又同余式等价于)15(mod 054≡+x ,即y x 1554=+. 我们利用解不定方程的方法得到它的一个解是(10,3), 即定理4.1中的100=x . 因此同余式的3个解为)45(mod 10≡x ,)45(mod 25)45(mod 34510≡+≡x , )45(mod 40)45(mod 345210≡⨯+≡x .(3))321(m od 75111≡x .解 因为(111,321)=3¦75,所以同余式有3个解.将同余式化简为等价的同余方程)107(mod 2537≡x .我们再解不定方程2510737=+y x ,得到一解(-8,3). 于是定理4.1中的80-=x .因此同余式的3个解为)321(mod 8-≡x , )321(mod 99)321(mod 33218≡+-≡x , )321(mod 206)321(mod 332128≡⨯+-≡x .(4)⎪⎩⎪⎨⎧≡≡≡)9(mod 3)8(mod 2)7(mod 1x x x .解 因为(7,8,9)=1,所以可以利用定理5.1.我们先解同余式)7(mod 172≡x ,)8(mod 163≡x ,)9(mod 156≡x ,得到)9(mod 4),8(mod 1),7(mod 4321-=-==x x x .于是所求的解为).494(mod 478)494(mod 510 )494(mod 3)4(562)1(631472=-=⨯-⨯+⨯-⨯+⨯⨯≡x(5)⎪⎪⎩⎪⎪⎨⎧≡≡≡≡)9(mod 5)7(mod 3)5(mod 2)2(mod 1x x x x . (参考上题)三、证明题1、 如果整数a 的个位数是5,则该数是5的倍数. 证明 设a 是一正整数,并将a 写成10进位数的形式:a =1101010n n n n a a a --+++,010i a ≤.因为10≡0(mod5),所以我们得到)5(mod 0a a ≡ 所以整数a 的个位数是5,则该数是5的倍数.2、证明当n 是奇数时,有)12(3+n .证明 因为)3(mod 12-≡,所以)3(mod 1)1(12+-≡+n n .于是,当n 是奇数时,我们可以令12+=k n .从而有)3(mod 01)1(1212≡+-≡++k n , 即)12(3+n .初等数论模拟试题四一、计算:1、 判断同余式)593(m od 4382≡x 是否有解?(答:无解。
方法参照题2)2、判断同余式)1847(m od 3652≡x 是否有解?解 我们容易知道1847是素数,所以只需求⎪⎭⎫ ⎝⎛1847365的值. 如果其值是1,则所给的同余式有解,否则无解. 因为735365⨯=,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛184773184751847365.再)4(mod 173),4(mod 15≡≡,所以 1525184718475-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛,.17471111711731 73117327322731847184773-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ 所以, ⎪⎭⎫ ⎝⎛1847365=1. 于是所给的同余式有解. 3、 11的平方剩余与平方非剩余. 解 因为52111=-,所以平方剩余与平方非剩余各有5个. 又因为 112≡,422≡,932≡,542≡,352≡,所以,1,3,4,5,9是素数11的5个平方剩余.其它的8个数,2,6,7,8,10是素数11的平方非剩余.4、 计算⎪⎭⎫ ⎝⎛563429,其中563是素数. ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛---42967)1(429674292429134429563429563)1(5634298142921563.214292⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-=----27672767)1(67276742967429)1(429672167.212721429.216711311327)1(27132113.2127=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=--, 即429是563的平方剩余.5、计算⎪⎭⎫ ⎝⎛443383(计算方法参照题4) 二、证明题:1、 证明相邻两个整数的立方之差不能被5整除.证明 因为133)1(233++=-+n n n n ,所以只需证明1332++n n T )5(mod .而我们知道模5的完全剩余系由-2,-1,0,1,2构成,所以这只需将n=0,±1,±2代入1332++n n 分别得值1,7,1,19,7.对于模5, 1332++n n 的值1,7,1,19,7只与1,2,4等同余,所以1332++n n T )5(mod所以相邻两个整数的立方之差不能被5整除。