(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时 线性变换、二阶矩阵及其乘法
- 格式:doc
- 大小:446.00 KB
- 文档页数:10
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值1. 设M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,求MN . 解:MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤01210. 2. 已知矩阵M =⎣⎢⎡⎦⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤b -2-7a ,求a 、b 的值.解:由题意,知MM -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎡⎦⎥⎤b -2-7a =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001, 即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[1 6-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)·(λ+3)=0,令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. (选修42P 73习题第1题改编)求矩阵N =⎣⎢⎡⎦⎥⎤3652的特征值及相应的特征向量.解:矩阵N 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-3-6-5λ-2=(λ-8)·(λ+3)=0, 令f(λ)=0,得N 的特征值为λ1=-3,λ2=8,当λ1=-3时⎩⎪⎨⎪⎧-6x -6y =0,-5x -5y =0,一个解为⎩⎪⎨⎪⎧x =-1,y =1, 故特征值λ1=-3的一个特征向量为⎣⎢⎡⎦⎥⎤-1 1; 当λ2=8时⎩⎪⎨⎪⎧5x -6y =0,-5x +6y =0,一个解为⎩⎪⎨⎪⎧x =6,y =5,故特征值λ2=8的一个特征向量为⎣⎢⎡⎦⎥⎤65.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使A α=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.[备课札记]题型1 求逆矩阵与逆变换例1 用解方程组的方法求下列矩阵M 的逆矩阵.(1) M =⎣⎢⎡⎦⎥⎤1101;(2) M =⎣⎢⎡⎦⎥⎤1221. 解:(1) 设M -1=⎣⎢⎡⎦⎥⎤a b c d ,则由定义知⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧a +c =1,b +d =0,c =0,d =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =0,d =1,故M-1=⎣⎢⎡⎦⎥⎤1-10 1. (2) 设M -1=⎣⎢⎡⎦⎥⎤a b c d, 则由定义知⎣⎢⎡⎦⎥⎤1221⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,2a +c =0,2b +d =1,解得⎩⎪⎪⎨⎪⎪⎧a =-13,b =23,c =23,d =-13,故M-1=⎣⎢⎢⎡⎦⎥⎥⎤-13 2323-13.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎡⎦⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎡⎦⎥⎤-13-12.从而由⎣⎢⎡⎦⎥⎤2-31-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135,得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-13-12⎣⎢⎡⎦⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3). 题型2 求特征值与特征向量例2 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4 a =3. (2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0 2x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32. 变式训练已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.令β=m α1+n α2,则m =4,n =-3. M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.题型3 根据特征值或特征向量求矩阵 例3 矩阵M =⎣⎢⎡⎦⎥⎤1102有特征向量为e 1=⎣⎢⎡⎦⎥⎤11,e 2=⎣⎢⎡⎦⎥⎤10, (1) 求e 1和e 2对应的特征值;(2) 对向量α=⎣⎢⎡⎦⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α.解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤11=λ1⎣⎢⎡⎦⎥⎤11,⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤10=λ2⎣⎢⎡⎦⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e 2=⎣⎢⎡⎦⎥⎤1916,M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎡⎦⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤200-1有特征向量e 1→=⎣⎢⎡⎦⎥⎤10,e 2→=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α→=⎣⎢⎡⎦⎥⎤x y ,求M 100α→.解:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤200-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1→=λ1e 1→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2,同理Me 2→=λ2e 2→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1.(2) 因为α→=⎣⎢⎡⎦⎥⎤x y =xe 1→+ye 2→,所以M 100α→=M 100(xe 1→+y·e 2→)=xM 100e 1→+yM 100e 2→=x λ1001e 1→+y λ2100e 2→=⎣⎢⎡⎦⎥⎤2100x y.1. 求函数f(x)=⎪⎪⎪⎪⎪⎪2cosx sinx -1的值域.解:f(x)=-2-sinxcosx =-2-12sin2x ∈⎣⎢⎡⎦⎥⎤-52,-32.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-143412-12,求矩阵A 的特征值. 解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,∴ A =(A -1)-1=⎣⎢⎡⎦⎥⎤2321. ∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4. 3. (2013·江苏)已知矩阵A =⎣⎢⎡⎦⎥⎤-10 02,B =⎣⎢⎡⎦⎥⎤1206,求矩阵A -1B . 解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-10 02⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001,故a =-1,b =0,c =0,d =12.∴ 矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012, ∴ A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10012⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1-2 0 3. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值;(2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =[]ax bx +y ,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y. 因为P′(x′,y ′)在圆x 2+y 2=1上,所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1,依题意可得a 2+b 2=2,2b =2 a =1,b =1或a =-1,b =1, 而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1011⎣⎢⎡⎦⎥⎤1011=⎣⎢⎡⎦⎥⎤1021 |A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值; (2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-8,得a +1=-8,所以a =-9. (2) 由(1)知A =⎣⎢⎡⎦⎥⎤ 1 -1-9 1,则矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. 已知M =⎣⎢⎡⎦⎥⎤2-1-43,N =⎣⎢⎡⎦⎥⎤4-1-31,求二阶方阵X ,使MX =N .解:(解法1)设X =⎣⎢⎡⎦⎥⎤x yz w ,据题意有⎣⎢⎡⎦⎥⎤2-1-43⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤4-1-31,根据矩阵乘法法则有⎩⎪⎨⎪⎧2x -z =4,2y -w =-1,-4x +3z =-3,-4y +3w =1.解得⎩⎪⎨⎪⎧x =92,y =-1,z =5,w =-1,所以X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. (解法2)因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤321221.所以X =M -1N =⎣⎢⎢⎡⎦⎥⎥⎤321221⎣⎢⎡⎦⎥⎤4-1-31=⎣⎢⎢⎡⎦⎥⎥⎤92-15-1.3. 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0),求实数a 的值;并求矩阵M 的特征值及其对应的特征向量.解:由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤1-2=⎣⎢⎡⎦⎥⎤-40,∴ 2-2a =-4 a =3.∴ M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0 x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0,∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.4. 设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2,则MN -1=⎣⎢⎡⎦⎥⎤1001.又M =⎣⎢⎡⎦⎥⎤2003,所以⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2=⎣⎢⎡⎦⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M-1=⎣⎢⎡⎦⎥⎤12013. (2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C . (2) 对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (ad -bc≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc-c ad -bca ad -bc . 2. 二阶行列式与方程组的解对于关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪ab c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A)=⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若将方程组中行列式⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪a m c n记为D y ,则当D≠0时,方程组的解为⎩⎪⎨⎪⎧x =D xD,y =D yD .请使用课时训练(B )第2课时(见活页).[备课札记]。
学案71 矩阵与变换 (一)二阶矩阵与变换导学目标: 1.了解矩阵的有关概念,理解二阶矩阵与平面列向量的乘法.2.了解几种常见的平面变换,理解矩阵对应的变换把平面上的直线变成直线(或者点).3.理解二阶矩阵的乘法及简单性质.自主梳理1.线性变换与二阶矩阵在平面直角坐标系xOy 中,由⎩⎪⎨⎪⎧x ′=ax +by ,y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表⎣⎢⎡⎦⎥⎤ab cd 称为________,其中a ,b ,c ,d 称为矩阵的________,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列).2.矩阵的乘法行矩阵[a 11a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法规则为[a 11a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11b 11+a 12b 21],二阶矩阵⎣⎢⎡⎦⎥⎤ab c d 与列矩阵⎣⎢⎡⎦⎥⎤x y 的乘法规则为⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +by cx +dy .矩阵乘法满足结合律,不满足交换律和消去律.3.几种常见的线性变换 (1)恒等变换矩阵M =⎣⎢⎡⎦⎥⎤1 00 1; (2)旋转变换R θ对应的矩阵是M =_____________________________________________; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=__________;若关于坐标原点对称,则变换对应矩阵M 3=____________;(4)伸压变换对应的二阶矩阵M =⎣⎢⎡⎦⎥⎤k 1 00 k 2,表示将每个点的横坐标变为原来的________倍,纵坐标变为原来的________倍,k 1,k 2均为非零常数;(5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =__________;(6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =__________,若沿y 轴平移|kx |个单位,则对应矩阵M =⎣⎢⎡⎦⎥⎤1 0k 1.(其中k 为非零常数). 4.线性变换的基本性质设向量α=⎣⎢⎡⎦⎥⎤x y ,规定实数λ与向量α的乘积λα=__________;设向量α=⎣⎢⎡⎦⎥⎤x 1y 1,β=⎣⎢⎡⎦⎥⎤x 2y 2,规定向量α与β的和α+β=__________.(1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=__________,②M (α+β)=______________________________.(2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).自我检测1.点A (3,-6)在矩阵⎣⎢⎢⎡⎦⎥⎥⎤1-10 12对应的变换作用下得到的点的坐标是________. 2.设⎣⎢⎡⎦⎥⎤4 -20 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ 0-1,则它表示的方程组为______________.3.设矩阵A =⎣⎢⎡⎦⎥⎤1 -10 1,矩阵A 所确定的变换将点P (x ,y )变换成点Q ,则Q 点的坐标为________.4.设△OAB 的三个点坐标为O (0,0),A (A 1,A 2),B (B 1,B 2),在矩阵M =⎣⎢⎡⎦⎥⎤1k 01对应的变换下作用后形成△OA ′B ′,则△OAB 与△OA ′B ′的面积之比为____________________.5.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变为点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在矩阵M 对应的变换作用下得到直线m :x -y -4=0,求l 的方程.探究点一 几种常见的变换例1 试讨论下列矩阵将所给图形变成了什么图形,并指出该变换是什么变换.(1)⎣⎢⎡⎦⎥⎤1 001,方程为y =2x +2;(2)⎣⎢⎡⎦⎥⎤-1 0 01,点A (2,5); (3)⎣⎢⎡⎦⎥⎤2 00 1,曲线方程为x 2+y 2=4.变式迁移1 将点(2,4)先经过矩阵⎣⎢⎡⎦⎥⎤1 002变换后,再绕原点逆时针旋转90°角所得的点坐标为________.探究点二 矩阵的乘法及几何意义例2 验证下列等式,并从几何变换的角度给予解释:⎣⎢⎡⎦⎥⎤1 113=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 101.变式迁移2 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12和N =⎣⎢⎢⎡⎦⎥⎥⎤22 22-22 22,求证:MN =NM .探究点三 矩阵与变换的综合应用例 3 已知两个城市甲与乙间的交通有陆路和航空两种,其陆路可用矩阵表示为M =错误!,航空可用矩阵表示为N =错误!.(1)试从NM 的结果中说明在这个网络里可以进行怎样的旅行? (2)请计算M 2,并据此矩阵说明网络里可以进行怎样的旅行? (3)请计算MNM ,并据此说明网络里可以做怎样的旅行?变式迁移3 已知A =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α,B =⎣⎢⎡⎦⎥⎤cos β -sin βsin β cos β,试求AB ,并对其几何意义给予解释.1.常见的变换矩阵(1)恒等变换矩阵为M =⎣⎢⎡⎦⎥⎤1 00 1;(2)伸压变换矩阵为M =⎣⎢⎡⎦⎥⎤k 00 1或M =⎣⎢⎡⎦⎥⎤1 00 k ;(3)反射变换矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 -1,M 2=⎣⎢⎡⎦⎥⎤-1001,M 3=⎣⎢⎡⎦⎥⎤-1 0 0 -1;(4)旋转变换矩阵为M =⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ;(5)投影变换矩阵为M 1=⎣⎢⎡⎦⎥⎤1 000,M 2=⎣⎢⎡⎦⎥⎤1010,M 3=⎣⎢⎡⎦⎥⎤0001;(6)切变变换矩阵为M =⎣⎢⎡⎦⎥⎤1k 01或M =⎣⎢⎡⎦⎥⎤1 0k1.2.矩阵的乘法不满足交换律,不满足消去律,但满足结合律.设A =⎣⎢⎡⎦⎥⎤ab cd ,B =⎣⎢⎡⎦⎥⎤u v st ,则AB =⎣⎢⎡⎦⎥⎤au +bs av +bt cu +ds cv +dt .课后练习(满分:90分)一、填空题(每小题6分,共48分) 1.矩阵⎣⎢⎡⎦⎥⎤a b c d (左)乘向量⎣⎢⎡⎦⎥⎤p q 的法则是________. 2.在某个旋转变换中,顺时针旋转π3所对应的变换矩阵为________.3.直线2x +y -1=0经矩阵M =⎣⎢⎡⎦⎥⎤-1 00 -1的变换后得到的直线方程为________.4.设a ,b ∈R ,若矩阵A =⎣⎢⎡⎦⎥⎤a 10b 将直线l :x +y -1=0变为直线x -y -2=0,则a=________,b =________.5.已知A =⎣⎢⎡⎦⎥⎤ 2 -3-4 6,B =⎣⎢⎡⎦⎥⎤8455,C =⎣⎢⎡⎦⎥⎤5 -23 1.则AB =________,AC =________. 6.曲线y =sin x 在矩阵MN 变换下的函数解析式为________.(其中M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1.) 7.在直角坐标系中,△OAB 的顶点坐标O (0,0),A (2,0),B (1,2),△OAB 在矩阵MN的作用下变换所得的图形的面积为________(其中矩阵M =⎣⎢⎡⎦⎥⎤1 00 -1,N =⎣⎢⎢⎡⎦⎥⎥⎤12222). 8.已知二阶矩阵M 满足M ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤10,M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22,则M 2⎣⎢⎡⎦⎥⎤1-1=________.二、解答题(共42分) 9.(14分)已知矩阵A =⎝⎛⎭⎪⎫1 121,向量β=⎝ ⎛⎭⎪⎫12.求向量α,使得A 2α=β.10.(14分)(2010·江苏)在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎡⎦⎤k 00 1,N =⎣⎡⎦⎤110,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值.11.(14分)已知矩阵M =⎣⎡⎦⎤1b a 1,N =⎣⎡⎦⎤c 0 2d ,且MN =⎣⎡⎦⎤2-2 00.①求实数a ,b ,c ,d 的值;②求直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程.学案71 矩阵与变换 (一)二阶矩阵与变换答案自主梳理1.二阶矩阵 元素 3.(2)⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ(3)⎣⎢⎡⎦⎥⎤-1 0 01 ⎣⎢⎡⎦⎥⎤-1 0 0 -1 (4)k 1 k2 (5)⎣⎢⎡⎦⎥⎤1 000 (6)⎣⎢⎡⎦⎥⎤1k 01 4.⎣⎢⎡⎦⎥⎤λx λy ⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2 (1)λMα Mα+Mβ自我检测1.(9,-3) 2.⎩⎪⎨⎪⎧4x -2y =03y =-1 3.(x -y ,y )4.1∶1解析 由题意知T M 为切变变换,故变换前后图形面积大小不变.5.(1)⎣⎢⎡⎦⎥⎤1234 (2)x +y +2=0解析 (1)设M =⎣⎢⎡⎦⎥⎤ab c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2.∴⎩⎪⎨⎪⎧a -b =-1c -d =-1.①⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2.②由①②联立得a =1,b =2,c =3,d =4,故M =⎣⎢⎡⎦⎥⎤1 234.(2)设(x ′,y ′)为l 上任意一点,在经矩阵M 变换下对应的点为(x ,y ), 则⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y ∴⎩⎪⎨⎪⎧x =x ′+2y ′y =3x ′+4y ′,代入x -y -4=0得x ′+y ′+2=0, 即x +y +2=0. 课堂活动区例 1 解题导引 对于已知变换前后的象和原象,要求变换矩阵这类问题,我们显然无法对所有的变换进行一一尝试,用待定系数法解题可起到事半功倍的效果.通过具体的矩阵对平面上给定图形(如正方形、三角形)的变换,应充分地认识到矩阵可表示如下的线性变换:恒等、反射、伸压、旋转、切变、投影.解 (1)所给方程表示的是一条直线.设A (x ,y )为直线上的任意一点,经过变换后的点为A ′(x ′,y ′).∵⎣⎢⎡⎦⎥⎤1 00 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴x =x ′,y =y ′.变换后的方程仍为y =2x +2. ∴该变换是恒等变换.(2)经过变化后变为(-2,5),它们关于y 轴对称,故该变换为关于y 轴的反射变换. (3)所给方程是以原点为圆心,2为半径的圆,设A (x ,y )为曲线上的任意一点,经过变换后的点为A 1(x 1,y 1),则⎣⎢⎡⎦⎥⎤2 001⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2x y =⎣⎢⎡⎦⎥⎤x 1y 1, ∴2x =x 1,y =y 1.将之代入到x 2+y 2=4可得方程x 214+y 124=4,此方程表示椭圆,所给方程表示的是圆,该变换是伸压变换.变式迁移1 (-8,2) 解析 由题意知⎣⎢⎡⎦⎥⎤cos 90° -sin 90°sin 90° cos 90°⎣⎢⎡⎦⎥⎤1002⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤1002⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤-8 2 例2 解题导引 ①熟悉六种线性变换,方可理解矩阵乘法的几何意义.矩阵乘法MN 的几何意义为对向量连续依次实施的两次几何变换(先T N 后T M )的复合变换.②因为矩阵的乘法运算不满足变换律,对应地,对一个向量a 先实施变换f ,再实施变换g 与先实施变换g ,再实施变换f ,其结果通常也是不一样的.因而做题时必须认真审题.弄清题意,不能混淆f (g (a ))和g (f (a )).解 等式右边表示的是对点(x ,y )先作沿x 轴的切变变换得(x +y ,y ),再将所得的点进行保持横坐标不变,纵坐标变为原来的2倍的伸压变换得(x +y,2y ),最后将得到的点作沿y 轴的切变变换得(x +y ,x +3y ).等式左边表示的是将点(x ,y )作如下变换:⎣⎢⎡⎦⎥⎤1113⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x +y x +3y ,即它也是将点(x ,y )变成了点(x +y ,x +3y ),因此,等式两边表示的变换相同,所以有⎣⎢⎡⎦⎥⎤1 113=⎣⎢⎡⎦⎥⎤1 011⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 10 1 变式迁移2 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22 =⎣⎢⎢⎡⎦⎥⎥⎤2+64 2-646-246+24,NM =⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-2222⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12=⎣⎢⎢⎡⎦⎥⎥⎤2+64 2-646-246+24, 故MN =NM .例3 解题导引 M 的意义表示陆路的网络图为甲→乙;N 的意义表示航空的网络图为甲→乙.解 (1)NM =⎣⎢⎡⎦⎥⎤1 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤1 10 1,这说明,在此网络中可以选择先陆路后航空的旅行.(2)M 2=⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤1 00 1,这说明,在此网络中可以选择先陆路后再陆路的旅行.(3)MNM =⎣⎢⎡⎦⎥⎤011 0⎣⎢⎡⎦⎥⎤1 11 0⎣⎢⎡⎦⎥⎤0 110=⎣⎢⎡⎦⎥⎤0 111,这说明,在此网络中可以选择先陆路,再航空,然后再陆路的旅行.变式迁移3 解 AB =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α⎣⎢⎡⎦⎥⎤cos β -sin βsin β cos β=⎣⎢⎡⎦⎥⎤cos αcos β-sin αsin β -cos αsin β-sin αcos βsin αcos β+cos αsin β -sin αsin β+cos αcos β =⎣⎢⎡⎦⎥⎤cos α+β -sin α+βsin α+β cos α+β AB 表示的变换为逆时针旋转α+β. A 表示逆时针旋转α,B 表示逆时针旋转β.课后练习区 1.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤p q =⎣⎢⎡⎦⎥⎤ap +bq cp +dq 2.⎣⎢⎢⎡⎦⎥⎥⎤ 1232-32 12解析 顺时针旋转π3即逆时针旋转53π,变换矩阵为⎣⎢⎢⎡⎦⎥⎥⎤cos 5π3 -sin 53πsin 5π3 cos 5π3 =⎣⎢⎢⎡⎦⎥⎥⎤ cos π3 sin π3-sin π3 cos π3=⎣⎢⎢⎡⎦⎥⎥⎤ 12 32-32 12. 3.2x +y +1=0解析 由变换矩阵M 知坐标变换公式为⎩⎪⎨⎪⎧ x ′=-x y ′=-y , 即⎩⎪⎨⎪⎧ x =-x ′y =-y ′,代入直线方程2x +y -1=0得2x ′+y ′+1=0.即2x +y +1=0.4.2 -1解析 在直线l 上任取一点P (x ,y ),经矩阵变换后为点P ′(x ′,y ′),则由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 10 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +y by , 得⎩⎪⎨⎪⎧ x ′=ax +y ,y ′=by .所以ax +y -by -2=0,即ax +(1-b )y -2=0,于是由a 1=1-b 1=-2-1,解得a =2,b =-1. 5.⎣⎢⎡⎦⎥⎤ 1 -7-2 14,⎣⎢⎡⎦⎥⎤ 1 -7-2 14 解析 AB =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤8 45 5=⎣⎢⎡⎦⎥⎤ 1 -7-2 14, AC =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤5 -23 1=⎣⎢⎡⎦⎥⎤ 1 -7-2 14. 6.y =2sin 2x解析 MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 2,即在矩阵MN 变换下⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤12x 2y , 则12y ′=sin 2x ′,即曲线y =sin x 在矩阵MN 变换下的函数解析式为y =2sin 2x . 7.1解析 MN =⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22,⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20,⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O ,A ,B 三点在矩阵MN 作用下变换所得的点分别为O ′(0,0),A ′(2,0),B ′(2,-1).可知△O ′A ′B ′的面积为1.8.⎣⎢⎡⎦⎥⎤-2-4 解析 设M =⎣⎢⎡⎦⎥⎤ab c d ,由M ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤10得,⎣⎢⎡⎦⎥⎤a c =⎣⎢⎡⎦⎥⎤10,所以a =1,c =0. 由M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22得,⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤22,所以b =1,d =2. 所以M =⎣⎢⎡⎦⎥⎤1 102. 所以M 2=⎣⎢⎡⎦⎥⎤1 10 2⎣⎢⎡⎦⎥⎤1 10 2=⎣⎢⎡⎦⎥⎤1 30 4. 所以M 2⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤1 304⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-2-4. 9.解 A 2=⎝ ⎛⎭⎪⎫1 12 1⎝ ⎛⎭⎪⎫1 12 1=⎝ ⎛⎭⎪⎫3 243.(4分) 设α=⎝ ⎛⎭⎪⎫x y ,由A 2α=β,得⎝⎛⎭⎪⎫3 24 3⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫12,(7分) 从而⎩⎪⎨⎪⎧ 3x +2y =1,4x +3y =2,解得⎩⎪⎨⎪⎧ x =-1,y =2.所以α=⎝ ⎛⎭⎪⎫-12.(14分)10.解 由题设得MN =⎣⎡⎦⎤k 00 1 ⎣⎡⎦⎤0 11 0=⎣⎡⎦⎤0 k 1 0.(4分)由⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤00=⎣⎡⎦⎤00,⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-20=⎣⎡⎦⎤ 0-2, ⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-21=⎣⎡⎦⎤k -2,可知A 1(0,0),B 1(0,-2),C 1(k ,-2).(10分) 计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,由题设知|k |=2×1=2,所以k 的值为-2或2.(14分)11.解 方法一 ①由题设得⎩⎪⎨⎪⎧ c +0=2,2+ad =0,bc +0=-2,2b +d =0,解得⎩⎪⎨⎪⎧ a =-1,b =-1,c =2,d =2.(6分) ②因为矩阵M 对应的线性变换将直线变成直线(或点),所以可取直线y =3x 上的两点(0,0),(1,3).由⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤00=⎣⎡⎦⎤00, ⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤13=⎣⎡⎦⎤-22得 点(0,0),(1,3)在矩阵M 所对应的线性变换作用下的象分别是点(0,0),(-2,2).(12分)从而直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程为y =-x .(14分) 方法二 ①同方法一.②设直线y =3x 上的任意点(x ,y )在矩阵M 所对应的线性变换作用下的象是点(x ′,y ′),由⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤x y =⎣⎡⎦⎤ x -y -x +y =⎣⎡⎦⎤-2x 2x得y ′=-x ′,即点(x ′,y ′)必在直线y =-x 上.由(x ,y )的任意性可知,直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程为y =-x .。
学案71 矩阵与变换 (一)二阶矩阵与变换导学目标: 1.了解矩阵的有关概念,理解二阶矩阵与平面列向量的乘法.2.了解几种常见的平面变换,理解矩阵对应的变换把平面上的直线变成直线(或者点).3.理解二阶矩阵的乘法及简单性质.自主梳理1.线性变换与二阶矩阵在平面直角坐标系xOy 中,由⎩⎪⎨⎪⎧x ′=ax +by ,y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表⎣⎢⎡⎦⎥⎤a b c d 称为________,其中a ,b ,c ,d称为矩阵的________,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列).2.矩阵的乘法行矩阵[a 11a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法规则为[a 11a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11b 11+a 12b 21],二阶矩阵⎣⎢⎡⎦⎥⎤a b c d 与列矩阵⎣⎢⎡⎦⎥⎤x y 的乘法规则为⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +by cx +dy .矩阵乘法满足结合律,不满足交换律和消去律.3.几种常见的线性变换(1)恒等变换矩阵M =⎣⎢⎡⎦⎥⎤1 00 1;(2)旋转变换R θ对应的矩阵是M =_____________________________________________; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=__________;若关于坐标原点对称,则变换对应矩阵M 3=____________;(4)伸压变换对应的二阶矩阵M =⎣⎢⎡⎦⎥⎤k 1 00 k 2,表示将每个点的横坐标变为原来的________倍,纵坐标变为原来的________倍,k 1,k 2均为非零常数;(5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =__________; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =__________,若沿y 轴平移|kx |个单位,则对应矩阵M =⎣⎢⎡⎦⎥⎤1 0k 1.(其中k 为非零常数).4.线性变换的基本性质设向量α=⎣⎢⎡⎦⎥⎤x y ,规定实数λ与向量α的乘积λα=__________;设向量α=⎣⎢⎡⎦⎥⎤x 1y 1,β=⎣⎢⎡⎦⎥⎤x 2y 2,规定向量α与β的和α+β=__________. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=__________,②M (α+β)=______________________________.(2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).自我检测1.点A (3,-6)在矩阵⎣⎢⎢⎡⎦⎥⎥⎤1 -10 12对应的变换作用下得到的点的坐标是________. 2.设⎣⎢⎡⎦⎥⎤4 -20 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ 0-1,则它表示的方程组为______________.3.设矩阵A =⎣⎢⎡⎦⎥⎤1 -10 1,矩阵A 所确定的变换将点P (x ,y )变换成点Q ,则Q 点的坐标为________.4.设△OAB 的三个点坐标为O (0,0),A (A 1,A 2),B (B 1,B 2),在矩阵M =⎣⎢⎡⎦⎥⎤1k 01对应的变换下作用后形成△OA ′B ′,则△OAB 与△OA ′B ′的面积之比为____________________.5.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变为点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在矩阵M 对应的变换作用下得到直线m :x -y -4=0,求l 的方程.探究点一 几种常见的变换例1 试讨论下列矩阵将所给图形变成了什么图形,并指出该变换是什么变换. (1)⎣⎢⎡⎦⎥⎤1 00 1,方程为y =2x +2; (2)⎣⎢⎡⎦⎥⎤-1 0 0 1,点A (2,5); (3)⎣⎢⎡⎦⎥⎤2 00 1,曲线方程为x 2+y 2=4.变式迁移1 将点(2,4)先经过矩阵⎣⎢⎡⎦⎥⎤1 00 2变换后,再绕原点逆时针旋转90°角所得的点坐标为________.探究点二 矩阵的乘法及几何意义例2 验证下列等式,并从几何变换的角度给予解释: ⎣⎢⎡⎦⎥⎤1 11 3=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 10 1.变式迁移2 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12和N =⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22,求证:MN =NM .探究点三 矩阵与变换的综合应用例3 已知两个城市甲与乙间的交通有陆路和航空两种,其陆路可用矩阵表示为M =错误!,航空可用矩阵表示为N =错误!.(1)试从NM 的结果中说明在这个网络里可以进行怎样的旅行?(2)请计算M 2,并据此矩阵说明网络里可以进行怎样的旅行? (3)请计算MNM ,并据此说明网络里可以做怎样的旅行?变式迁移3 已知A =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α,B =⎣⎢⎡⎦⎥⎤cos β -sin βsin β cos β,试求AB ,并对其几何意义给予解释.1.常见的变换矩阵(1)恒等变换矩阵为M =⎣⎢⎡⎦⎥⎤1 00 1;(2)伸压变换矩阵为M =⎣⎢⎡⎦⎥⎤k 00 1或M =⎣⎢⎡⎦⎥⎤1 00 k ;(3)反射变换矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 -1,M 2=⎣⎢⎡⎦⎥⎤-1 00 1,M 3=⎣⎢⎡⎦⎥⎤-1 0 0 -1;(4)旋转变换矩阵为M =⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ;(5)投影变换矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 0,M 2=⎣⎢⎡⎦⎥⎤1 01 0,M 3=⎣⎢⎡⎦⎥⎤0 00 1;(6)切变变换矩阵为M =⎣⎢⎡⎦⎥⎤1 k 0 1或M =⎣⎢⎡⎦⎥⎤1 0k 1.2.矩阵的乘法不满足交换律,不满足消去律,但满足结合律. 设A =⎣⎢⎡⎦⎥⎤a b c d ,B =⎣⎢⎡⎦⎥⎤u v s t ,则AB =⎣⎢⎡⎦⎥⎤au +bs av +bt cu +ds cv +dt .课后练习(满分:90分)一、填空题(每小题6分,共48分)1.矩阵⎣⎢⎡⎦⎥⎤a b c d (左)乘向量⎣⎢⎡⎦⎥⎤p q 的法则是________.2.在某个旋转变换中,顺时针旋转π3所对应的变换矩阵为________.3.直线2x +y -1=0经矩阵M =⎣⎢⎡⎦⎥⎤-1 00 -1的变换后得到的直线方程为________.4.设a ,b ∈R ,若矩阵A =⎣⎢⎡⎦⎥⎤a 10b 将直线l :x +y -1=0变为直线x -y -2=0,则a =________,b =________.5.已知A =⎣⎢⎡⎦⎥⎤ 2 -3-4 6,B =⎣⎢⎡⎦⎥⎤8 45 5,C =⎣⎢⎡⎦⎥⎤5 -23 1.则AB =________,AC =________.6.曲线y =sin x 在矩阵MN 变换下的函数解析式为________.(其中M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1.)7.在直角坐标系中,△OAB 的顶点坐标O (0,0),A (2,0),B (1,2),△OAB 在矩阵MN的作用下变换所得的图形的面积为________(其中矩阵M =⎣⎢⎡⎦⎥⎤1 00 -1,N =⎣⎢⎢⎡⎦⎥⎥⎤122022). 8.已知二阶矩阵M 满足M ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤10,M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22,则M 2⎣⎢⎡⎦⎥⎤1-1=________.二、解答题(共42分)9.(14分)已知矩阵A =⎝ ⎛⎭⎪⎫1 12 1,向量β=⎝ ⎛⎭⎪⎫12.求向量α,使得A 2α=β.10.(14分)(2010·江苏)在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎡⎦⎤k 00 1,N =⎣⎡⎦⎤0 11 0,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值.11.(14分)已知矩阵M =⎣⎡⎦⎤1b a 1,N =⎣⎡⎦⎤c 0 2d ,且MN =⎣⎡⎦⎤2-2 00.①求实数a ,b ,c ,d 的值;②求直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程.学案71 矩阵与变换 (一)二阶矩阵与变换答案自主梳理1.二阶矩阵 元素 3.(2)⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ(3)⎣⎢⎡⎦⎥⎤-1 0 0 1 ⎣⎢⎡⎦⎥⎤-1 0 0 -1 (4)k 1 k 2 (5)⎣⎢⎡⎦⎥⎤1 000 (6)⎣⎢⎡⎦⎥⎤1k 01 4.⎣⎢⎡⎦⎥⎤λx λy ⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2 (1)λM α M α+M β自我检测1.(9,-3) 2.⎩⎪⎨⎪⎧4x -2y =03y =-1 3.(x -y ,y )4.1∶1解析 由题意知T M 为切变变换,故变换前后图形面积大小不变.5.(1)⎣⎢⎡⎦⎥⎤1 23 4 (2)x +y +2=0解析 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2.∴⎩⎪⎨⎪⎧a -b =-1c -d =-1.①⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2.②由①②联立得a =1,b =2,c =3,d =4,故M =⎣⎢⎡⎦⎥⎤1 23 4.(2)设(x ′,y ′)为l 上任意一点,在经矩阵M 变换下对应的点为(x ,y ),则⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y ∴⎩⎪⎨⎪⎧x =x ′+2y ′y =3x ′+4y ′, 代入x -y -4=0得x ′+y ′+2=0, 即x +y +2=0. 课堂活动区例1 解题导引 对于已知变换前后的象和原象,要求变换矩阵这类问题,我们显然无法对所有的变换进行一一尝试,用待定系数法解题可起到事半功倍的效果.通过具体的矩阵对平面上给定图形 (如正方形、三角形)的变换,应充分地认识到矩阵可表示如下的线性变换:恒等、反射、伸压、旋转、切变、投影.解 (1)所给方程表示的是一条直线.设A (x ,y )为直线上的任意一点,经过变换后的点为A ′(x ′,y ′). ∵⎣⎢⎡⎦⎥⎤1 00 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴x =x ′,y =y ′.变换后的方程仍为y =2x +2. ∴该变换是恒等变换.(2)经过变化后变为(-2,5),它们关于y 轴对称,故该变换为关于y 轴的反射变换. (3)所给方程是以原点为圆心,2为半径的圆,设A (x ,y )为曲线上的任意一点,经过变换后的点为A 1(x 1,y 1),则⎣⎢⎡⎦⎥⎤2 00 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2x y =⎣⎢⎡⎦⎥⎤x 1y 1,∴2x =x 1,y =y 1.将之代入到x 2+y 2=4可得方程x 214+y 124=4,此方程表示椭圆,所给方程表示的是圆,该变换是伸压变换.变式迁移1 (-8,2) 解析 由题意知⎣⎢⎡⎦⎥⎤cos 90° -sin 90°sin 90° cos 90°⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤24 =⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤-8 2例2 解题导引 ①熟悉六种线性变换,方可理解矩阵乘法的几何意义.矩阵乘法MN 的几何意义为对向量连续依次实施的两次几何变换(先T N 后T M )的复合变换.②因为矩阵的乘法运算不满足变换律,对应地,对一个向量a 先实施变换f ,再实施变换g 与先实施变换g ,再实施变换f ,其结果通常也是不一样的.因而做题时必须认真审题.弄清题意,不能混淆f (g (a ))和g (f (a )).解 等式右边表示的是对点(x ,y )先作沿x 轴的切变变换得(x +y ,y ),再将所得的点进行保持横坐标不变,纵坐标变为原来的2倍的伸压变换得(x +y,2y ),最后将得到的点作沿y 轴的切变变换得(x +y ,x +3y ).等式左边表示的是将点(x ,y )作如下变换:⎣⎢⎡⎦⎥⎤1 11 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x +y x +3y ,即它也是将点(x ,y )变成了点(x +y ,x +3y ),因此,等式两边表示的变换相同,所以有⎣⎢⎡⎦⎥⎤1 11 3=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 10 1变式迁移2 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22=⎣⎢⎢⎡⎦⎥⎥⎤2+64 2-646-246+24, NM =⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12=⎣⎢⎢⎡⎦⎥⎥⎤2+64 2-646-246+24, 故MN =NM .例3 解题导引 M 的意义表示陆路的网络图为甲→乙;N 的意义表示航空的网络图为甲→乙.解 (1)NM =⎣⎢⎡⎦⎥⎤1 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤1 10 1,这说明,在此网络中可以选择先陆路后航空的旅行.(2)M 2=⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤1 00 1,这说明,在此网络中可以选择先陆路后再陆路的旅行.(3)MNM =⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎡⎦⎥⎤1 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤0 11 1,这说明,在此网络中可以选择先陆路,再航空,然后再陆路的旅行.变式迁移3 解 AB =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α⎣⎢⎡⎦⎥⎤cos β -sin βsin β cos β=⎣⎢⎡⎦⎥⎤cos αcos β-sin αsin β -cos αsin β-sin αcos βsin αcos β+cos αsin β -sin αsin β+cos αcos β=⎣⎢⎡⎦⎥⎤α+β -α+βα+β α+βAB 表示的变换为逆时针旋转α+β.A 表示逆时针旋转α,B 表示逆时针旋转β. 课后练习区1.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤p q =⎣⎢⎡⎦⎥⎤ap +bq cp +dq2.⎣⎢⎢⎡⎦⎥⎥⎤ 12 32-32 12解析 顺时针旋转π3即逆时针旋转53π,变换矩阵为⎣⎢⎢⎡⎦⎥⎥⎤cos 5π3 -sin 53πsin 5π3 cos5π3=⎣⎢⎢⎡⎦⎥⎥⎤ cos π3 sin π3-sin π3 cos π3=⎣⎢⎢⎡⎦⎥⎥⎤ 12 32-32 12.3.2x +y +1=0解析 由变换矩阵M 知坐标变换公式为⎩⎪⎨⎪⎧x ′=-x y ′=-y,即⎩⎪⎨⎪⎧x =-x ′y =-y ′,代入直线方程2x +y -1=0得2x ′+y ′+1=0.即2x +y +1=0. 4.2 -1解析 在直线l 上任取一点P (x ,y ),经矩阵变换后为点P ′(x ′,y ′),则由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 10 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +y by ,得⎩⎪⎨⎪⎧x ′=ax +y ,y ′=by . 所以ax +y -by -2=0,即ax +(1-b )y -2=0,于是由a 1=1-b 1=-2-1,解得a =2,b =-1.5.⎣⎢⎡⎦⎥⎤ 1 -7-2 14,⎣⎢⎡⎦⎥⎤ 1 -7-2 14 解析 AB =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤8 45 5=⎣⎢⎡⎦⎥⎤1 -7-2 14,AC =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤5 -23 1=⎣⎢⎡⎦⎥⎤ 1 -7-2 14.6.y =2sin 2x解析 MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 2, 即在矩阵MN 变换下⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤12x 2y , 则12y ′=sin 2x ′,即曲线y =sin x 在矩阵MN 变换下的函数解析式为y =2sin 2x . 7.1解析 MN =⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22,⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20,⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O ,A ,B 三点在矩阵MN 作用下变换所得的点分别为O ′(0,0),A ′(2,0),B ′(2,-1).可知△O ′A ′B ′的面积为1.8.⎣⎢⎡⎦⎥⎤-2-4 解析 设M =⎣⎢⎡⎦⎥⎤a b c d ,由M ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤10得,⎣⎢⎡⎦⎥⎤a c =⎣⎢⎡⎦⎥⎤10,所以a =1,c =0. 由M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22得,⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤22,所以b =1,d =2. 所以M =⎣⎢⎡⎦⎥⎤1 10 2. 所以M 2=⎣⎢⎡⎦⎥⎤1 10 2⎣⎢⎡⎦⎥⎤1 10 2=⎣⎢⎡⎦⎥⎤1 30 4. 所以M 2⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤1 30 4⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-2-4. 9.解 A 2=⎝ ⎛⎭⎪⎫1 12 1⎝ ⎛⎭⎪⎫1 12 1=⎝ ⎛⎭⎪⎫3 24 3.(4分) 设α=⎝ ⎛⎭⎪⎫x y ,由A 2α=β,得⎝ ⎛⎭⎪⎫3 24 3⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫12,(7分) 从而⎩⎪⎨⎪⎧ 3x +2y =1,4x +3y =2,解得⎩⎪⎨⎪⎧x =-1,y =2.所以α=⎝ ⎛⎭⎪⎫-12.(14分) 10.解 由题设得MN =⎣⎡⎦⎤k 00 1 ⎣⎡⎦⎤0 11 0=⎣⎡⎦⎤0 k 1 0.(4分)由⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤00=⎣⎡⎦⎤00,⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-20=⎣⎡⎦⎤ 0-2, ⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-21=⎣⎡⎦⎤k -2,可知A 1(0,0),B 1(0,-2),C 1(k ,-2).(10分) 计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,由题设知|k |=2×1=2,所以k 的值为-2或2.(14分)11.解 方法一 ①由题设得⎩⎪⎨⎪⎧ c +0=2,2+ad =0,bc +0=-2,2b +d =0,解得⎩⎪⎨⎪⎧ a =-1,b =-1,c =2,d =2.(6分)②因为矩阵M 对应的线性变换将直线变成直线(或点),所以可取直线y =3x 上的两点(0,0),(1,3).由⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤00=⎣⎡⎦⎤00, ⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤13=⎣⎡⎦⎤-22得 点(0,0),(1,3)在矩阵M 所对应的线性变换作用下的象分别是点(0,0),(-2,2).(12分) 从而直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程为y =-x .(14分) 方法二 ①同方法一.②设直线y =3x 上的任意点(x ,y )在矩阵M 所对应的线性变换作用下的象是点(x ′,y ′),由⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤x y =⎣⎡⎦⎤ x -y -x +y =⎣⎡⎦⎤-2x 2x 得y ′=-x ′,即点(x ′,y ′)必在直线y =-x 上.由(x ,y )的任意性可知,直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程为y =-x .。
《矩阵与变换》考试知识点一、151.已知矩阵111A a -⎡⎤=⎢⎥⎣⎦,其中a R ∈,若点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,求矩阵A 的两个特征值.【答案】矩阵A 的特征值为1-或3. 【解析】 【分析】根据点(1,1)P 在矩阵A 的变换下得到点(0,3)P '-,列出方程求出a ,从而可确定矩阵A ,再求出矩阵A 的特征多项式,令其等于0,即可求出矩阵A 的特征值. 【详解】由1110113a -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得13a +=-,所以4a =-, 故1141A -⎡⎤=⎢⎥-⎣⎦, 则矩阵A 的特征多项式为2211()(1)42341f x -==--=---λλλλλ,令()0f λ=,解得1λ=-或3λ=, 所以矩阵A 的特征值为1-或3. 【点睛】本题主要考查矩阵的特征多项式及特征值的求法,属于中档题.2.已知关于x 、y 的二元一次方程组()4360260x y kx k y +=⎧⎨++=⎩的解满足0x y >>,求实数k的取值范围. 【答案】5,42⎛⎫ ⎪⎝⎭【解析】 【分析】由题意得知0D ≠,求出x D 、y D 解出该方程组的解,然后由0x y D >>⎧⎨≠⎩列出关于k 的不等式组,解出即可. 【详解】由题意可得()4238D k k k =+-=+,()601x D k =-,()604y D k =-.由于方程组的解满足0x y >>,则0D ≠,该方程组的解为()()60186048x y k D x D k D k y D k ⎧-==⎪⎪+⎨-⎪==⎪+⎩,由于00D x y y ≠⎧⎪>⎨⎪>⎩,即()()()806016048860408k k k k k k k ⎧⎪+≠⎪--⎪>⎨++⎪⎪->⎪+⎩,整理得802508408k k k k k ⎧⎪+≠⎪-⎪>⎨+⎪-⎪<⎪+⎩,解得542k <<. 因此,实数k 的取值范围是5,42⎛⎫⎪⎝⎭. 【点睛】本题考查二元一次方程组的求解,同时也考查了分式不等式的求解,考查运算求解能力,属于中等题.3.解方程组()sin cos 2cos 0cos cos 2sin x y x y ααααπααα-=⎧≤≤⎨+=⎩.【答案】见解析. 【解析】 【分析】求出行列式D 、x D 、y D ,对D 分0D ≠和0D =两种情况分类讨论,利用方程组的解与行列式之间的关系求出方程组的解,或者将参数的值代入方程组进行求解,由此得出方程组的解. 【详解】由题意得()sin cos2cos cos2sin cos cos2D ααααααα=+=+,()cos cos2sin cos2sin cos cos2x D ααααααα=+=+, 22sin cos cos2y D ααα=-=-. 0απ≤≤Q ,022απ∴≤≤.①当0D ≠时,即当cos20α≠时,即当22πα≠且322πα≠时,即当4πα≠且34πα≠时,11sin cos x y D x DD y D αα⎧==⎪⎪⎨⎪==-⎪+⎩;②当4πα=时,方程组为2222x x =⎪⎪⎪=⎪⎩,则该方程组的解为1x y R =⎧⎨∈⎩;③当34πα=时,方程组为22x x =-⎪⎪⎨⎪=⎪⎩,该方程组的解为1x y R =-⎧⎨∈⎩. 【点睛】本题考查二元一次方程组的求解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力,属于中等题.4.利用行列式解关于x 、y 的二元一次方程组42mx y m x my m +=+⎧⎨+=⎩.【答案】见解析 【解析】 【分析】计算出系数行列式D ,以及x D 、y D ,然后分0D ≠和0D =两种情况讨论,在0D ≠时,直接利用行列式求出方程组的解,在0D =时,得出2m =±,结合行列式讨论原方程组解的情况. 【详解】 系数行列式为2441m D m m==-,()242x m D m m mm+==-,()()222211y m m D m m m m m+==--=-+.①当240D m =-≠时,即当2m ≠±时,原方程组有唯一解()()()2224221142x y m m D m x D m m D m m m y D m m ⎧-===⎪⎪-+⎨-++⎪===⎪-+⎩;②当240D m =-=时,2m =±.(i )当2m =-时,0D =,8x D =,4y D =,原方程组无解;(ii )当2m =时,0x yD D D ===,原方程为24422x y x y +=⎧⎨+=⎩,可化为22x y +=, 该方程组有无数组解,即12x R x y ∈⎧⎪⎨=-⎪⎩.【点睛】本题考查利用行列式求二元一次方程组的解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力与分类讨论思想的应用,属于中等题.5.用行列式方法解关于x y 、的方程组:()()1R 214ax y a x a y a-=⎧∈⎨--=⎩,并对解的情况进行讨论.【答案】1a =时无解;12a =-时无穷解;12a ≠-且1a ≠时有唯一解11211x aa y a ⎧=⎪⎪-⎨-⎪=⎪-⎩【解析】 【分析】本题先求出相关行列式D 、x D 、y D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,得到本题结论. 【详解】Q 关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩,()()1R 214ax y a x a y a -=⎧∈⎨--=⎩∴21||1(1)(1)1a D a a a a==-=+-,21||(12)121(1)(21)112a D a a a a a a a-==-+=-++=--+-211||(1)2x a D a a a a a a +==-=-,1||124124121x D a a a a a==-+=+-- 21||21(21)(1)12y a a D a a a a a +==--=+-,21||41(21)(21)14y a D a a a a==-=+-.(1)当12a ≠-且1a ≠时,有唯一解11211x aa y a ⎧=⎪⎪-⎨-⎪=⎪-⎩,(2)当1a =时,无解; (3)当12a =-,时无穷解. 【点睛】本题考查了用行列式法求方程组的解,本题难度不大,属于基础题.6.已知线性方程组5210258x y x y +=⎧⎨+=⎩.()1写出方程组的系数矩阵和增广矩阵; ()2运用矩阵变换求解方程组.【答案】(1)矩阵为5225⎛⎫ ⎪⎝⎭,增广矩阵为5210.258⎛⎫ ⎪⎝⎭ (2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】 【分析】()1由线性方程组5210258x y x y +=⎧⎨+=⎩,能写出方程组的系数矩阵和增广矩阵. ()2由170345010521052102121258102540202001012121⎛⎫⎛⎫⎪ ⎪⎛⎫⎛⎫→→→⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭,能求出方程组的解. 【详解】(1)Q 线性方程组5210258x y x y +=⎧⎨+=⎩.∴方程组的系数矩阵为5225⎛⎫⎪⎝⎭, 增广矩阵为5210.258⎛⎫ ⎪⎝⎭(2)因为5210258x y x y +=⎧⎨+=⎩,170345210501052105210521021212025810254002120202001010*******⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎛⎫ ⎪∴→→→→→ ⎪ ⎪ ⎪ ⎪ ⎪⎪----- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎝⎭,34212021x y ⎧=⎪⎪∴⎨⎪=⎪⎩.【点睛】本题考查方程组的系数矩阵和增广矩阵的求法,考查运用矩阵变换求解方程组,考查矩阵的初等变换等基础知识,考查运算求解能力,是基础题.7.用行列式解关于x 、y 的方程组3(31)484mx y m x my m -=⎧⎨+-=+⎩,并讨论说明解的情况.【答案】当1m =时,无穷解;当14m =-时,无解;当1m ≠且14m ≠-时,有唯一解,441x m =+,8341m y m +=-+. 【解析】 【分析】 先求出系数行列式D ,x D ,y D ,然后讨论m ,从而确定二元一次方程解的情况. 【详解】 解:3(31)484mx y m x my m -=⎧⎨+-=+⎩Q 21431(41)(1)431mm D m m m m m -∴+-==-+=+-++,4443148x D m mm -==--+,()()23853*******y m D m m m m m m ==--+++=-,①当1m ≠且14m ≠-时,0D ≠,原方程组有唯一解,即144(41)4(14)x D m x m D m m -===+++-,()()()()8318341141y D m m m y D m m m +-+===-+-++, ②当1m =时,0D =,0x D =,0y D =,原方程组有无穷解. ③当14m =-时,0D =,0x D ≠,原方程无解. 【点睛】本题主要考查了行列式,以及二元一次方程的解法,属于基础题.8.关于x 的不等式201x a x+<的解集为()1,b -.()1求实数a ,b 的值;()2若1z a bi =+,2z cos isin αα=+,且12z z 为纯虚数,求tan α的值.【答案】(1)1a =-,2b =(2)12- 【解析】 【分析】(1)由题意可得:1-,b 是方程220x ax +-=的两个实数根,利用根与系数的关系即可得出答案;(2)利用(1)的结果得()()1222z z cos sin cos sin i αααα=--+-为纯虚数,利用纯虚数的定义即可得出. 【详解】解:(1)不等式201x ax+<即()20x x a +-<的解集为()1,b -. 1∴-,b 是方程220x ax +-=的两个实数根,∴由1b a -+=-,2b -=-,解得1a =-,2b =. (2)由(1)知1,2a b =-=,()()()()121222z z i cos isin cos sin cos sin i αααααα∴=-++=--+-为纯虚数,20cos sin αα∴--=,20cos sin αα-≠,解得12tan α=-.【点睛】本题考查了行列式,复数的运算法则、纯虚数的定义、一元二次方程的根与系数的关系、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.9.解方程:23649x xx=.【答案】1x = 【解析】 【分析】根据行列式的运算性质,求得29346xx x ⨯-⨯=,转化为322()3()123xx⨯-⨯=,令3()2x t =,得到方程1231t t ⨯-⨯=,进而即可求解【详解】根据行列式的运算性质,可得23293449xx xx=⨯-⨯,即29346x x x ⨯-⨯=,方程两边同除6x,可得322()3()123xx ⨯-⨯=, 令3()2xt =,且0t >,则21()3xt =,可得1231t t⨯-⨯=,解32t =或1t =-(舍去), 即33()22x=,解得1x =. 故答案为:1x =.本题主要考查了行列式的运算性质,以及指数幂的运算和一元二次方程的应用,其中解答中熟记行列式的运算性质,结合指数幂的运算和一元二次方程的运算是解答的关键,着重考查了推理与运算能,属于基础题.10.在平面直角坐标系xOy 中,设点()1,2A -在矩阵1001M -⎡⎤=⎢⎥⎣⎦对应的变换作用下得到点A ',将点()3,4B 绕点A '逆时针旋转90o 得到点B ',求点B '的坐标. 【答案】()1,4- 【解析】试题分析:先根据矩阵运算确定()1,2A ',再利用向量旋转变换0110N -⎡⎤=⎢⎥⎣⎦确定:A B ''u u u u r.因为,所以1{4x y =-= 试题解析:解:设(),B x y ', 依题意,由10110122--⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得()1,2A ' 则.记旋转矩阵0110N -⎡⎤=⎢⎥⎣⎦,则01211022x y --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,即2122x y --⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,解得1{4x y =-=, 所以点B '的坐标为()1,4- 考点:矩阵运算,旋转矩阵11.已知向量102112A ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦u r ,求矩阵1A -u r 的特征值和属于该特征值的特征向量.【答案】特征值:1,2-;对应特征向量:12⎛⎫ ⎪-⎝⎭,11⎛⎫⎪⎝⎭. 【解析】 【分析】先求得1A -u r,以及其特征多项式()fλ,令()0f λ=解得特征值,最后根据特征向量的定义求解即可.设1A-u ra b c d ⎛⎫= ⎪⎝⎭,则由A u r 1A -u r E =r可得 10? 1?02 10? 1?1? 2a b c d ⎛⎫- ⎪⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭- ⎪⎝⎭,解得1,1,2,0a b c d =-=-=-=, 故得1A-u r 1? 12? 0--⎛⎫= ⎪-⎝⎭. 则其特征多项式()()1? 1?122? f λλλλλ+==+-,令()0fλ=,可得特征值为121,2λλ==-.设11λ=对应的一个特征向量为x y α⎛⎫= ⎪⎝⎭,则由11A λαα-=r,的2y x =-,令1x =,则2y =- 故矩阵1A -u r的一个特征值11λ=对应的一个特征向量为12⎛⎫⎪-⎝⎭; 同理可得矩阵1A -u r 的一个特征值22λ=-对应的一个特征向量为11⎛⎫ ⎪⎝⎭.【点睛】本题考查矩阵特征值和特征向量的求解,属中档题.12.设矩阵12M x y ⎡⎤=⎢⎥⎣⎦,2411N ⎡⎤=⎢⎥--⎣⎦,若02513MN ⎡⎤=⎢⎥⎣⎦,求矩阵M 的逆矩阵1M -.【答案】132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦【解析】 【分析】根据矩阵的乘法运算求出MN ,然后由02513MN ⎡⎤=⎢⎥⎣⎦列出方程组,即可求出4,3x y ==,从而确定矩阵M ,再利用求逆矩阵的公式,即可求出矩阵M 的逆矩阵1M -.解:因为02513MN ⎡⎤=⎢⎥⎣⎦ ,所以25,413.x y x y -=⎧⎨-=⎩ 所以4,3x y ==;矩阵1243M ⎡⎤=⎢⎥⎣⎦的逆矩阵132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【点睛】本题主要考查矩阵的乘法运算及逆矩阵的求解.13.已知二阶矩阵13a M b ⎡⎤=⎢⎥⎣⎦的特征值1λ=-所对应的一个特征向量为13-⎡⎤⎢⎥⎣⎦. (1)求矩阵M ;(2)设曲线C 在变换矩阵M 作用下得到的曲线C '的方程为2y x =,求曲线C 的方程.【答案】(1)2130M ⎡⎤=⎢⎥⎣⎦(2)292y x x =-【解析】 【分析】(1)根据特征值和特征向量的定义式写出相应的矩阵等式,转化成线性方程组可得,a b 的值,即可得到矩阵M ;(2)根据矩阵对应的变换写出对应的矩阵恒等式,通过坐标转化计算可得出曲线C 的方程. 【详解】解:(1)依题意得111333a b -⎡⎤⎡⎤⎡⎤⋅=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 即31333a b -+=⎧⎨-+=-⎩,解得20a b =⎧⎨=⎩,所以2130M ⎡⎤=⎢⎥⎣⎦; (2)设曲线C 上一点(,)P x y 在矩阵M 的作用下得到曲线2y x =上一点(),P x y ''',则2130x x y y ''⎡⎤⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x x y y x ''=+⎧⎨=⎩, 因为2y x ''=,所以292x x y =+, 所以曲线C 的方程为292y x x =-. 【点睛】本题主要考查特征值和特征向量的定义计算的能力,以及矩阵对应的变换得出变换前的曲线方程,本题属中档题.14.已知矩阵14a b ⎡⎤=⎢⎥-⎣⎦A ,A 的两个特征值为12λ=,2λ=3. (1)求a ,b 的值;(2)求属于2λ的一个特征向量α. 【答案】(1)1a =,2b =;(2)11α⎡⎤=⎢⎥⎣⎦u r. 【解析】 【分析】(1)利用特征多项式,结合韦达定理,即可求a ,b 的值; (2)利用求特征向量的一般步骤,可求出其对应的一个特征向量. 【详解】(1)令2()()(4)(4)4014a bf a b a a b λλλλλλλ--==--+=-+++=-, 于是124a λλ+=+,124a b λλ=+.解得1a =,2b =. (2)设x y α⎡⎤=⎢⎥⎣⎦u r,则122331443x x y x x A y x y y y α+⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦r, 故2343x y x x y y +=⎧⎨-+=⎩解得x y =.于是11α⎡⎤=⎢⎥⎣⎦r .【点睛】本题主要考查矩阵的特征值与特征向量等基础知识,考查运算求解能力及函数与方程思想,属于基础题.15.已知矩阵1001A ⎡⎤=⎢⎥-⎣⎦,4123B ⎡⎤=⎢⎥⎣⎦,若矩阵M BA =,求矩阵M 的逆矩阵1M -. 【答案】13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【解析】试题分析:411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,所以13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 试题解析:B .因为411041230123M BA -⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,所以13110101255M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦.16.已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.【答案】【解析】 【分析】运用矩阵定义列出方程组求解矩阵 【详解】由特征值、特征向量定义可知,,即,得同理可得解得,,,.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单17.已知a ,b R ∈,若M =13a b -⎡⎤⎢⎥⎣⎦所对应的变换T M 把直线2x-y=3变换成自身,试求实数a ,b .【答案】【解析】 【分析】 【详解】 设则即此直线即为则..18.(1)已知矩阵1202A ⎡⎤=⎢⎥-⎣⎦,矩阵B 的逆矩阵111202B -⎡⎤-⎢⎥=⎢⎥⎣⎦,求矩阵AB . (2)已知矩阵122M x ⎡⎤=⎢⎥⎣⎦的一个特征值为3,求10M . 【答案】(1)51401⎡⎤⎢⎥⎢⎥-⎣⎦;(2)29525295242952429525⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)依题意,利用矩阵变换求得11112124()221010222B B --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,再利用矩阵乘法的性质可求得答案.(2)根据特征多项式的一个零点为3,可得x 的值,即可求得矩阵M ,运用对角化矩阵,求得所求矩阵. 【详解】(1)解:111202B -⎡⎤-⎢⎥=⎢⎥⎣⎦Q ,11112124()221010222B B --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∴===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,又1202A ⎡⎤=⎢⎥-⎣⎦, 1202AB ⎡⎤∴=⎢⎥-⎣⎦151********⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦. (2)解:矩阵122M x ⎡⎤=⎢⎥⎣⎦的特征多项式为12()(1)()42f x x λλλλλ--==-----, 可得2(3)40x --=,解得1x =,即为1221M ⎡⎤=⎢⎥⎣⎦.由()0f λ=可得13λ=,21λ=-, 当13λ=时,由12321x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x y x +=,23x y y +=,即x y =,取1x =, 可得属于3的一个特征向量为11⎡⎤⎢⎥⎣⎦;当11λ=-时,由1221x x y y ⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即2x y x +=-,2x y y +=-,即x y =-,取1x =,可得属于1-的一个特征向量为11⎡⎤⎢⎥-⎣⎦.设1111P ⎡⎤=⎢⎥-⎣⎦,则111221122P -⎡⎤⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦,13001M P P -⎡⎤=⎢⎥-⎣⎦,101115904905904912952529524220159049111295242952522M P P -⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦. 【点睛】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,考查了特征值与特征向量,考查了矩阵的乘方的计算的知识.19.已知a ,b R ∈,点()1,1P -在矩阵13a A b ⎡⎤=⎢⎥⎣⎦对应的变换下得到点()1,3Q . (1)求a ,b 的值;(2)求矩阵A 的特征值和特征向量; (3)若向量59β⎡⎤=⎢⎥⎣⎦u r,求4A βu r.【答案】(1)20a b =⎧⎨=⎩;(2)矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦;(3)485489⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)直接利用矩阵的乘法运算即可; (2)利用特征多项式计算即可;(3)先计算出126βαα=-+u r u u ru u r ,再利用()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r 计算即可得到答案. 【详解】 (1)由题意知,11113133a a b b -⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦, 则1133a b -=⎧⎨-=⎩,解得2a b =⎧⎨=⎩.(2)由(1)知2130A ⎡⎤=⎢⎥⎣⎦,矩阵A 的特征多项式()()21233f λλλλλ--==---, 令()0f λ=,得到A 的特征值为11λ=-,13λ=. 将11λ=-代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得3y x =-,所以矩阵A 的属于特征值1-的一个特征向量为113α⎡⎤=⎢⎥-⎣⎦u u r.再将13λ=代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得y x =,所以矩阵A 的属于特征值3的一个特征向量为211α⎡⎤=⎢⎥⎣⎦u u r.综上,矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦.(3)设12m n βαα=+u ru u r u u r ,即5119313m n m n m n +⎡⎤⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦, 所以539m n m n +=⎧⎨-+=⎩,解得16m n =-⎧⎨=⎩,所以126βαα=-+u r u u r u u r ,所以()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r()441148516331489⎡⎤⎡⎤⎡⎤=--+⨯=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦. 【点睛】本题考查矩阵的乘法、特征值、特征向量,考查学生的基本计算能力,是一道中档题.20.给定矩阵,;求A 4B .【答案】【解析】试题分析:由题意已知矩阵A=,将其代入公式|λE ﹣A|=0,即可求出特征值λ1,λ2,然后解方程求出对应特征向量α1,α2,将矩阵B 用征向量α1,α2,表示出来,然后再代入A 4B 进行计算即可.解:设A 的一个特征值为λ,由题知=0(λ﹣2)(λ﹣3)=0 λ1=2,λ2=3当λ1=2时,由=2,得A的属于特征值2的特征向量α1=当λ1=3时,由=3,得A的属于特征值3的特征向量α2=由于B==2+=2α1+α2故A4B=A4(2α1+α2)=2(24α1)+(34α2)=32α1+81α2=+=点评:此部分是高中新增的内容,但不是很难,套用公式即可解答,主要考查学生的计算能力,属于中档题.。
数学《矩阵与变换》复习知识点(1)一、151.已知命题P :lim 0n n c →∞=,其中c 为常数,命题Q :把三阶行列式5236418x c x ⎛⎫ ⎪- ⎪ ⎪⎝⎭中第一行,第二列元素的代数余子式记为()f x ,且函数()f x 在1,4⎛⎤-∞ ⎥⎝⎦上单调递增,若命题P 是真命题,而命题Q 是假命题,求实数c 的取值范围.【答案】112c -<< 【解析】 【分析】先由已知命题P 是真命题,得:11c -<<,根据三阶行列式中第一行、第二列元素的代数余子式写出2()4f x x cx =-+-,结合函数()f x 在上单调递增.求得c 的取值范围,最后即可解决问题. 【详解】由已知命题:lim 0nn P c →∞=,其中c 为常数,是真命题,得:11c -<<。
三阶行列式5236418x cx-中第一行、第二列元素的代数余子式记为()f x ,则2()4f x x cx =-+-,且函数()f x 在上单调递增.∴函数()f x 在1(,]4-∞上单调递增,11242c c ⇒厖,Q 命题Q 是假命题,12c ∴<. ∴命题P 是真命题,而命题Q 是假命题,实数c 的取值范围是112c -<<. 【点睛】本题主要考查极限及其运算、三阶行列式的代数余子式,解答的关键是代数余子式的符号问题.2.计算:12131201221122120-⎛⎫⎛⎫⎛⎫⎛⎫- ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭【答案】91559124-⎛⎫⎪--⎝⎭【解析】 【分析】直接利用矩阵计算法则得到答案. 【详解】121312011213140222112212021122240-⎛⎫-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 123319155213629124----⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭【点睛】本题考查了矩阵的计算,意在考查学生的计算能力.3.解方程组()32021mx y x m y m+-=⎧⎨+-=⎩,并求使得x y >的实数m 的取值范围.【答案】()1,3 【解析】 【分析】计算出行列式D 、x D 、y D ,对D 分0D ≠和0D =两种情况分类讨论,求出方程组的解,再由x y >列出关于m 的不等式,解出即可. 【详解】 由题意可得()()2362321m D m m m m m ==--=+--,2321x D m m m ==---,()()224222y m D m m m m==-=-+.①当0D ≠时,即当260m m --≠时,即当2m ≠-且3m ≠时,1323x y D x D m D m y D m ⎧==⎪⎪-⎨-⎪==⎪-⎩.x y >Q ,则()()()2222133m m m ->--,即()22130m m ⎧-<⎪⎨-≠⎪⎩,解得13m <<; ②当2m =-时,方程组为2320232x y x y -+-=⎧⎨-=-⎩,则有232x y -=,该方程组有无穷多解,x y >不能总成立;③当3m =时,方程组为33202230x y x y +-=⎧⎨+-=⎩,即203302x y x y ⎧+-=⎪⎪⎨⎪+-=⎪⎩,该方程组无解.综上所述,实数m 的取值范围是()1,3. 【点睛】本题考查二元一次方程组的求解,同时也考查了分式不等式的求解,在解题时要注意对系数行列式是否为零进行分类讨论,考查运算求解能力,属于中等题.4.解方程组()sin cos 2cos 0cos cos 2sin x y x y ααααπααα-=⎧≤≤⎨+=⎩.【答案】见解析. 【解析】 【分析】求出行列式D 、x D 、y D ,对D 分0D ≠和0D =两种情况分类讨论,利用方程组的解与行列式之间的关系求出方程组的解,或者将参数的值代入方程组进行求解,由此得出方程组的解. 【详解】由题意得()sin cos2cos cos2sin cos cos2D ααααααα=+=+,()cos cos2sin cos2sin cos cos2x D ααααααα=+=+, 22sin cos cos2y D ααα=-=-. 0απ≤≤Q ,022απ∴≤≤.①当0D ≠时,即当cos20α≠时,即当22πα≠且322πα≠时,即当4πα≠且34πα≠时,11sin cos x y D x DD y D αα⎧==⎪⎪⎨⎪==-⎪+⎩; ②当4πα=时,方程组为==,则该方程组的解为1x y R =⎧⎨∈⎩;③当34πα=时,方程组为x x =⎨⎪=⎪⎩,该方程组的解为1x y R =-⎧⎨∈⎩.【点睛】本题考查二元一次方程组的求解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力,属于中等题.5.用行列式解方程组252,23,24 1.x y z y z x y z ++=-⎧⎪--=⎨⎪++=-⎩【答案】1337313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩【解析】 【分析】先根据方程组中x ,y ,z 的系数及常数项求得D ,x D ,y D ,z D ,再对a 的值进行分类讨论,并求出相应的解. 【详解】方程组可转化为:125202324111x y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎦--⎣,1912502241D =-=-, 13922532141x D --=-=-,12503221121y D --==--,1312203241z D ---==-,所以13,37,31.3x y z D x D D y D D z D ⎧==⎪⎪⎪==-⎨⎪⎪==-⎪⎩【点睛】本题考查三元一次方程组的矩阵形式、线性方程组的行列式求解,考查运算求解能力.6.不等式21101x xba xa ->-的解是12x <<,试求a ,b 的值. 【答案】12a =-,1b =-或1a =-,2b =- . 【解析】 【分析】将行列式展开,由行列式大于0,即ax 2+(1+ab )x +b >0,由1和2是方程ax 2+(1+ab )x +b =0的两个根,由韦达定理可知,列方程组即可求得a 和b 的值. 【详解】2111x xb a xa-=-x 2×(﹣a )×(﹣1)+x +abx ﹣x 2×(﹣a )﹣ax 2﹣(﹣1)×b =ax 2+(1+ab )x +b >0,∵不等式的解为1<x <2,∴a <0,且1,2为一元二次方程:ax 2+(1+ab )x +b =0的两个根,由韦达定理可知:11212ab ab a +⎧+=-⎪⎪⎨⎪⨯=⎪⎩,整理得:2a 2+3a +1=0,解得:12a b =-⎧⎨=-⎩或121a b ⎧=-⎪⎨⎪=-⎩,故a =﹣1,b =﹣2或a 12=-,b =﹣1. 【点睛】本题考查行列式的展开,考查一元二次不等式与一元二次方程的关系及韦达定理,考查计算能力,属于中档题.7.利用行列式解关于x 、y 的二元一次方程组42mx y m x my m+=+⎧⎨+=⎩.【答案】见解析 【解析】 【分析】计算出系数行列式D ,以及x D 、y D ,然后分0D ≠和0D =两种情况讨论,在0D ≠时,直接利用行列式求出方程组的解,在0D =时,得出2m =±,结合行列式讨论原方程组解的情况.【详解】 系数行列式为2441m D m m==-,()242x m D m m mm+==-,()()222211y m m D m m m m m+==--=-+.①当240D m =-≠时,即当2m ≠±时,原方程组有唯一解()()()2224221142x y m m D m x D m m D m m m y D m m ⎧-===⎪⎪-+⎨-++⎪===⎪-+⎩;②当240D m =-=时,2m =±.(i )当2m =-时,0D =,8x D =,4y D =,原方程组无解; (ii )当2m =时,0x y D D D ===,原方程为24422x y x y +=⎧⎨+=⎩,可化为22x y +=,该方程组有无数组解,即12x R x y ∈⎧⎪⎨=-⎪⎩.【点睛】本题考查利用行列式求二元一次方程组的解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力与分类讨论思想的应用,属于中等题.8.已知P :矩阵图5110x x ⎛⎫+⎪+ ⎪ ⎝的某个列向量的模不小于2;Q :行列式114203121mx ----中元素1-的代数余子式的值不大于2,若P 是Q 成立的充分条件,求实数m 的取值范围.【答案】[2,)+∞ 【解析】 【分析】先根据行列式中元素1-的代数余子式的值求出P ,再根据矩阵图某个列向量的模不小于2求出Q ,结合P 是Q 成立的充分条件可得实数m 的取值范围. 【详解】因为矩阵图5110x x ⎛⎫+⎪+ ⎪ ⎝的某个列向量的模不小于2,所以521x x +≥+,解得 13x -≤≤;因为行列式114203121mx ----中元素1-的代数余子式的值不大于2,所以2323211mm x x --=-+≤,即21m x ≤-; 因为P 是Q 成立的充分条件,所以213m -≥,解得2m ≥;故实数m 的取值范围是[2,)+∞.【点睛】本题主要考查矩阵和行列式的运算及充分条件,明确矩阵和行列式的运算规则是求解的关键,充分条件转化为集合的包含关系,侧重考查数学运算的核心素养.9.证明:(1)11122212a b a a a b b b =; (2)1212112222a kab kb a b a b a b ++=. 【答案】(1)证明见解析(2)证明见解析【解析】 【分析】(1)根据行列式的运算,分别化简得11121222a b a b b a a b =-,12122112a aa b a b b b =-,即可求解;(2)根据行列式的运算,分别化简得1212122122a ka b kb a b a b a b ++=-,11122122a b a b a b a b =-,即可求解. 【详解】(1)根据行列式的运算,可得11121222a b a b b a a b =-,12122112a aa b a b b b =-, 所以11122212a b a a a b b b =.(2)根据行列式的运算,可得121212212222()()a ka b kb a ka b b kb a a b ++=+-+ 122221221221()()a b ka b a b ka b a b a b =+-+=-,又由11122122a b a b a b a b =-,所以1212112222a kab kb a b a b a b ++=. 【点睛】本题主要考查了行列式的运算及其应用,其中解答中熟记行列式的运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.10.在ABC ∆中,角,,A B C 所对的边分别为,,a b c,且sincossin 222sincos 022sec12A A cBB B -=-求角C 的大小.【答案】2π 【解析】 【分析】先将三阶行列式化简,结合三角形内角和与诱导公式、辅助角公式化简即可求值 【详解】由sincossin 222sincos 0sin cos sin sin cos 2222222sec12A A cBB A BC B A B -=⇒++=-sin sin 22A B C +⎛⎫⇒+= ⎪⎝⎭又()C A B π=-+,∴ sin sin cos 222A B C C π+-⎛⎫==⎪⎝⎭,sin sin sin cos 2222A B C C C +⎛⎫+=⇔+= ⎪⎝⎭,sin 12424C C ππ⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭,又Q 3,2444C πππ⎛⎫+∈ ⎪⎝⎭,242C ππ+=∴, 解得2C π=【点睛】本题考查三阶行列式的化简求值,三角函数的诱导公式、辅助角公式的使用,属于中档题11.直线l 经矩阵M =cos sin sin cos θθθθ-⎡⎤⎢⎥⎣⎦(其中θ∈(0,π))作用变换后得到直线l ′:y =2x ,若直线l 与l ′垂直,求θ的值.【答案】2πθ=【解析】 【分析】在l 上任取一点P (x ,y ),设P 经矩阵M 变换后得到点P ′(x ′,y ′),根据矩阵变换运算得到x ′,y ′,代入直线l ′:y =2x ,得到直线l 方程,再由两直线垂直求解. 【详解】在l 上任取一点P (x ,y ),设P 经矩阵M 变换后得到点P ′(x ′,y ′)cos sin cos sin sin cos sin cos x x y x y x y y θθθθθθθθ''-⋅-⋅⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⋅+⋅⎣⎦⎣⎦⎣⎦⎣⎦故cos sin sin cos x x y y x y θθθθ=-'=+'⎧⎨⎩,又P ′在直线l ′:y =2x 上,即y ′=2x ′ 则sin cos 2cos 2sin x y x y θθθθ+=-即直线l :(sin 2cos )(2sin cos )0x y θθθθ-++=因为l 与l ′垂直,故sin 2cos 1=cos 02sin cos 2θθθθθ-⇒=+又(0,)θπ∈,故2πθ=.【点睛】本题主要考查矩阵变换研究两直线的位置关系,还考查了运算求解的能力,属于中档题.12.已知圆C 经矩阵332a M ⎡⎤=⎢⎥-⎣⎦变换后得到圆22:13C x y '+=,求实数a 的值.【答案】2a = 【解析】 【分析】设圆C 上任一点(,)x y ,经M 变换后得到(),x y '',则332x ax yy x y =+⎧⎨=-''⎩,代入计算得到答案.【详解】设圆C 上任一点(,)x y ,经M 变换后得到(),x y '',则332x a x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'-⎣⎦⎣⎦⎣⎦, 则332x ax yy x y=+⎧⎨=-''⎩,由(),x y ''在22:13C x y '+=上, 可得22(3)(32)13ax y x y ++-=,即()22292(36)1313a x a xy y ++-+=, 由方程表示圆,可得2913a +=,2(36)0a -=,则2a =. 【点睛】本题考查了圆的矩阵变换,意在考查学生的应用能力.13.设函数()271f x x ax =-++(a 为实数). (1)若1a =-,解不等式()0f x ≥; (2)若当01xx>-时,关于x 的不等式()1f x ≥成立,求a 的取值范围; (3)设21()1x g x ax +=--,若存在x 使不等式()()f x g x ≤成立,求a 的取值范围. 【答案】(1)8{|3x x ≤或6}x ≥;(2)[5,)-+∞;(3)[4,)-+∞ 【解析】 【分析】(1)代入1a =-直接解不等式即可; (2)由01xx>-解得01x <<,故可将()1f x ≥化为(2)70a x -+≥,从而求出a 的范围; (3)化简()g x ,故可将题设条件变为:存在x 使1|27||22|a x x -≥---成立,因此求出2722x x ---的最小值即可得出结论.【详解】(1)若1a =-,则()271f x x x =-+- 由()0f x ≥得|27|1x x -≥-, 即270271x x x ->⎧⎨-≥-⎩或270721x x x -≤⎧⎨-≥-⎩, 解得6x ≥或83x ≤, 故不等式的解集为8{|3x x ≤或6}x ≥; (2)由01xx>-解得01x <<, 由()1f x ≥得|27|0x ax -+≥,当01x <<时,该不等式即为(2)70a x -+≥,设()(2)7F x a x =-+,则有(0)70(1)50F F a =>⎧⎨=+≥⎩解得5a ≥-,因此实数a 的取值范围为[5,)-+∞; (3)21()1x g x ax +=--2|1|(1)x a x =-++, 若存在x 使不等式()()f x g x ≤成立,即存在x 使271x ax -++2|1|(1)x a x ≤-++成立, 即存在x 使1|27||22|a x x -≥---成立, 又272227(22)5x x x x ---≤---=, 所以527225x x -≤---≤, 所以15a -≥-,即4a ≥-, 所以a 的取值范围为:[4,)-+∞ 【点睛】本题主要考查了绝对值不等式,结合了恒成立,能成立等问题,属于综合应用题.解决恒成立,能成立问题时,常将其转化为最值问题求解.14.已知=是矩阵M=属于特征值λ1=2的一个特征向量.(Ⅰ)求矩阵M ; (Ⅱ)若,求M 10a .【答案】(Ⅰ)M=;(Ⅱ)M 10=.【解析】试题分析:(Ⅰ)依题意,M =,从而,由此能求出矩阵M .(Ⅱ)(方法一)由(Ⅰ)知矩阵M 的特征多项式为f (λ)=(λ﹣1)(λ﹣2),矩阵M 的另一个特征值为λ2=1,设=是矩阵M 属于特征值λ2=1的特征向量,由已知得=,由此能求出M 10.(Ⅱ)(方法二)M 2=MM=,,M 5=M 3M 2,M 10=M 5M 5,由此能求出M 10. 解:(Ⅰ)依题意,M=,,∴,解得a=1,b=2.∴矩阵M=.(Ⅱ)(方法一)由(Ⅰ)知矩阵M的特征多项式为f(λ)=(λ﹣1)(λ﹣2),∴矩阵M的另一个特征值为λ2=1,设=是矩阵M属于特征值λ2=1的特征向量,则,∴,取x=1,得=,∴,∴M10==.(Ⅱ)(方法二)M2=MM=,,M5=M3M2==,M10=M5M5==,∴M10=.点评:本题考查矩阵与变换、特殊性征向量及其特征值的综合应用等基本知识,考查运算求解能力.15.[选修4-2:矩阵与变换]已知矩阵A=0110⎡⎤⎢⎥⎣⎦,B=1002⎡⎤⎢⎥⎣⎦.求AB;若曲线C1;22y=182x+在矩阵AB对应的变换作用下得到另一曲线C2 ,求C2的方程.【答案】(1)0210⎡⎤⎢⎥⎣⎦(2)228x y+=【解析】试题分析:(1)直接由矩阵乘法可得;(2)先根据矩阵乘法可得坐标之间关系,代入原曲线方程可得曲线2C 的方程.试题解析:解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =01101002⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ 0110⎡⎤⎢⎥⎣⎦ 1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦ 0210⎡⎤⎢⎥⎣⎦. (2)设()00,Q x y 为曲线1C 上的任意一点, 它在矩阵AB 对应的变换作用下变为(),P x y ,则000210x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002y x x y =⎧⎨=⎩,所以002x yx y =⎧⎪⎨=⎪⎩. 因为()00,Q x y 在曲线1C 上,所以2200188x y +=,从而22188x y +=,即228x y +=.因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C : 228x y +=. 点睛:(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦; (2)矩阵变换:a b x x c d y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣'⎦⎦'表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y ''.16.已知向量11α-⎡⎤=⎢⎥⎣⎦v 是矩阵103a A ⎡⎤=⎢⎥⎣⎦的属于特征值λ的一个特征向量. (1)求实数a ,λ的值;(2)求2A .【答案】(1)4,3.a λ=⎧⎨=⎩(2)216709A ⎡⎤=⎢⎥⎣⎦ 【解析】 【分析】(1)根据特征值的定义可知A αλα=u r u r,利用待定系数法求得实数a ,λ的值。
【高中数学】高考数学《矩阵与变换》解析(1)一、151.已知命题P :lim 0n n c →∞=,其中c 为常数,命题Q :把三阶行列式5236418x c x ⎛⎫ ⎪- ⎪ ⎪⎝⎭中第一行,第二列元素的代数余子式记为()f x ,且函数()f x 在1,4⎛⎤-∞ ⎥⎝⎦上单调递增,若命题P 是真命题,而命题Q 是假命题,求实数c 的取值范围.【答案】112c -<< 【解析】 【分析】先由已知命题P 是真命题,得:11c -<<,根据三阶行列式中第一行、第二列元素的代数余子式写出2()4f x x cx =-+-,结合函数()f x 在上单调递增.求得c 的取值范围,最后即可解决问题. 【详解】由已知命题:lim 0nn P c →∞=,其中c 为常数,是真命题,得:11c -<<。
三阶行列式5236418x cx-中第一行、第二列元素的代数余子式记为()f x ,则2()4f x x cx =-+-,且函数()f x 在上单调递增.∴函数()f x 在1(,]4-∞上单调递增,11242c c ⇒厖,Q 命题Q 是假命题,12c ∴<. ∴命题P 是真命题,而命题Q 是假命题,实数c 的取值范围是112c -<<. 【点睛】本题主要考查极限及其运算、三阶行列式的代数余子式,解答的关键是代数余子式的符号问题.2.解方程:23649x xx=.【答案】1x = 【解析】【分析】根据行列式的运算性质,求得29346xx x ⨯-⨯=,转化为322()3()123xx⨯-⨯=,令3()2x t =,得到方程1231t t ⨯-⨯=,进而即可求解【详解】根据行列式的运算性质,可得23293449xx xx=⨯-⨯,即29346x x x ⨯-⨯=,方程两边同除6x ,可得322()3()123xx⨯-⨯=,令3()2xt =,且0t >,则21()3xt =,可得1231t t⨯-⨯=,解32t =或1t =-(舍去), 即33()22x=,解得1x =. 故答案为:1x =. 【点睛】本题主要考查了行列式的运算性质,以及指数幂的运算和一元二次方程的应用,其中解答中熟记行列式的运算性质,结合指数幂的运算和一元二次方程的运算是解答的关键,着重考查了推理与运算能,属于基础题.3.解关于x ,y 的方程组93x ay aax y +=⎧⎨+=⎩.【答案】分类讨论,详见解析 【解析】 【分析】分别计算得到29D a =-,6x D a =,23y D a =-,讨论得到答案.【详解】2199a D a a ==-,639x a a D a ==,2133y a D a a ==-.当3a ≠±时,0D ≠,此时方程有唯一解:2226939a x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩; 当3a =±时,0D =,0x D ≠,方程无解. 综上所述:3a ≠±,有唯一解;3a =±,无解. 【点睛】本题考查了通过行列式讨论方程组的解的情况,分类讨论是一个常用的方法,需要同学熟练掌握.4.(1)计算行列式34912,5111022,28728--的值;(2)你能否从(1)中的结论得出一个一般的结论?试证明你的结论; (3)你发现的(2)的结论,在三阶行列式中是否成立?【答案】(1)三个行列式的值都为0;(2)0a bka kb=或()0a ka k b kb =∈R ;证明见解析;(3)成立 【解析】 【分析】(1)分别进行化简计算即可求得;(2)观察可知对应行或列应成比例关系,化简求值即可证明; (3)可假设成立,再结合运算关系进行求证即可 【详解】 (1)3436360912=-=,51111011001022=-=,2856560728-=-=-;(2)由(1)可知0a bka kb=或()0a ka k b kb =∈R ,证明如下: 0a bkab kab ka kb =-=,0a ka kab kab b kb=-=,即0a bka kb=或()0a ka k b kb=∈R 成立;(3)假设三阶行列式中成立,即0ab ckakbkc na nb nc=或0a ka na b kb nb c kcnc=证明如下:0a b ckakbkc knabc knabc knabc knabc knabc knabc na nb nc =++---=0a ka nab kb nb knabc knabc knabc knabc knabc knabc c kcnc=++---= 得证,故三阶行列式也成立 【点睛】本题考查行列式的简单计算,结论的类比推理,属于基础题5.关于ϕ的矩阵()cos sin sin cos A ϕϕϕϕϕ-⎛⎫=⎪⎝⎭,列向量12x X x ⎛⎫= ⎪⎝⎭.(1)已知11x =,23x =,45ϕ=︒,计算()A X ϕ,并指出该算式表示的意义; (2)把反比例函数1xy =的图象绕坐标原点逆时针旋转45︒,求得到曲线的方程;(3)已知数列12n n a =,n *∈N ,猜想并计算()()()12n A a A a A a ⋅⋅⋅⋅⋅⋅. 【答案】(1)⎛⎝,表示把向量X 逆时针旋转45︒得到的向量;(2)22122y x -=; (3)cos1sin1sin1cos1-⎛⎫⎪⎝⎭.【解析】 【分析】(1)根据向量与矩阵的乘法可计算结果,由旋转变换的运算法则即可得到算式表示的意义;(2)由题意,得旋转变换矩阵cos sin4422sin cos 4422A ππππ⎛⎛⎫--⎪ ⎪==⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭,设xy =1上的任意点(),P x y '''在变换矩阵A 作用下为(,)P x y ,确定坐标之间的关系,即可求得曲线的方程;(3)分别求出n =1,n =2,n =3时矩阵相乘的结果,由此猜想算式关于n 的表达式,从而可求得所求算式的结果. 【详解】(1)()cos sin11442233sin cos 4422A X ππϕππ⎛⎛⎫--⎪⎛⎛⎫⎛⎫ ⎪===⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝ ⎪⎪⎝⎭⎝⎭, 该算式表示把向量X 逆时针旋转45︒得到的向量;(2)由题意,得旋转变换矩阵cos sin4422sin cos 4422A ππππ⎛⎛⎫--⎪ ⎪==⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭, 设xy =1上的任意点(),P x y '''在变换矩阵A 的作用下为(,)P x y ,则2222x x y y ⎛- ⎛⎫⎛⎫ ⎪= ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪''⎝⎭,2222x x y y x y ⎧=-⎪⎪∴⎨⎪=+'''⎩'⎪,则2222222222y x x y x y x y ⎛⎫⎛⎫''''''-=+--== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 将曲线xy =1绕坐标原点按逆时针方向旋转45︒,所得曲线的方程为22122y x -=;(3)当n =1时,()111cos sin2211sin cos 22n n n nA a ⎛⎫- ⎪=⎪ ⎪ ⎪⎝⎭; 当n =2时,()()2212221111cos sin cos sin 22221111sin cos sin cos 2222A a A a ⎛⎫⎛⎫-- ⎪⎪=⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭2222222211111111cos cos sin sin cos sin cos sin 2222222211111111sin cos sin cos cos cos sin sin 22222222⎛⎫--- ⎪=⎪ ⎪+- ⎪⎝⎭22221111cos()sin()22221111sin()cos()2222⎛⎫+-+ ⎪= ⎪ ⎪++ ⎪⎝⎭,当n =3时,()()()22331232233111111cos sin cos sincos sin222222111111sin cos sin cos sin cos 222222A a A a A a ⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪=⎪⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭23232323111111cos()sin()222222111111sin()cos()222222⎛⎫++-++ ⎪= ⎪ ⎪++++ ⎪⎝⎭,由此猜想:当n =k 时,()()()221222111111cos sin cos sincos sin222222111111sin cos sin cos sin cos 222222k k k kkA a A a A a ⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪=⎪⎪⎪ ⎪⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭L L222211111111cos()sin()cos(1)sin(1)2222222211111111sin()cos()sin(1)cos(1)22222222k k k k k k k k ⎛⎫⎛⎫+++-+++--- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪++++++-- ⎪ ⎪⎝⎭⎝⎭L L L L ,当k →+∞时,1112k-→, 所以()()()12cos1sin1sin1cos1n A a A a A a -⎛⎫⋅⋅⋅⋅⋅⋅= ⎪⎝⎭.【点睛】本题考查向量经矩阵变换后的向量求法,曲线的旋转变换和矩阵的乘法,关键掌握住变换的运算法则和矩阵的乘法公式,属中档题.6.求证:sin cos 1sin 2cos 21sin 22sin sin 3cos31xx xx x x xx =-. 【答案】证明见解析【解析】 【分析】先利用三阶矩阵的计算方法,化简等式的左边,再结合两角差的正弦公式化简即可证明. 【详解】sin cos 1sin 2cos 2sin cos sin cos sin 2cos 21sin 3cos3sin 3cos3sin 2cos 2sin 3cos31x x x x x x x xx x x x x x x xxx =-+=sin (-x )-sin(-2x )+sin (-x )=sin 2x -sin 2x . 【点睛】本题考查行列式的运算法则及性质的应用,变换的能力及数学分析能力,涉及两角和差的正弦公式,属于中档题.7.用行列式解关于的二元一次方程组:12(1)x y x k y k +=⎧⎨++=⎩.【答案】1k =时,方程组无解; 1k ≠时,12,11k x y k k -==-- 【解析】 【分析】由题方程组中x ,y 的系数及常数项求出D,D ,D X y ,然后再讨论k 的值进行求解方程组的解. 【详解】由题意可得:11D 21k =+= 1k -,11D 11X kk ==+,11 D 22y k k==-,∴当D ?10k =-≠即1k ≠时,方程组有唯一解即D 1D 1X x k ==-,D 2 D 1y k y k -==-; 当D ?10k =-=即1k =时,方程组无解.综上所述: 1k ≠时,方程组有唯一解1121x k k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩; 1k =时,方程组无解. 【点睛】本题考查了二元一次方程组的矩阵形式、线性方程组解得存在性、唯一性以及二元方程解法等基础知识,考查了学生的运算能力,属于中档题.8.已知线性方程组5210258x y x y +=⎧⎨+=⎩.()1写出方程组的系数矩阵和增广矩阵; ()2运用矩阵变换求解方程组.【答案】(1)矩阵为5225⎛⎫ ⎪⎝⎭,增广矩阵为5210.258⎛⎫ ⎪⎝⎭ (2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩【解析】 【分析】()1由线性方程组5210258x y x y +=⎧⎨+=⎩,能写出方程组的系数矩阵和增广矩阵.()2由170345010521052102121258102540202001012121⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫→→→⎪ ⎪ ⎪ ⎪--- ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭⎝⎭,能求出方程组的解. 【详解】(1)Q 线性方程组5210258x y x y +=⎧⎨+=⎩.∴方程组的系数矩阵为5225⎛⎫⎪⎝⎭,增广矩阵为5210.258⎛⎫⎪⎝⎭(2)因为5210258x y x y +=⎧⎨+=⎩,1703452105010521052105210212120258102540021202020010101212121⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎛⎫ ⎪∴→→→→→ ⎪ ⎪ ⎪ ⎪ ⎪⎪-----⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎝⎭,34212021x y ⎧=⎪⎪∴⎨⎪=⎪⎩.【点睛】本题考查方程组的系数矩阵和增广矩阵的求法,考查运用矩阵变换求解方程组,考查矩阵的初等变换等基础知识,考查运算求解能力,是基础题.9.证明:(1)11122212a b a a a b b b =; (2)1212112222a kab kb a b a b a b ++=. 【答案】(1)证明见解析(2)证明见解析 【解析】 【分析】(1)根据行列式的运算,分别化简得11121222a b a b b a a b =-,12122112a aa b a b b b =-,即可求解;(2)根据行列式的运算,分别化简得1212122122a ka b kb a b a b a b ++=-,11122122a b a b a b a b =-,即可求解. 【详解】(1)根据行列式的运算,可得11121222a b a b b a a b =-,12122112a aa b a b b b =-, 所以11122212a b a a a b b b =. (2)根据行列式的运算,可得121212212222()()a ka b kb a ka b b kb a a b ++=+-+122221221221()()a b ka b a b ka b a b a b =+-+=-,又由11122122a b a b a b a b =-,所以1212112222a kab kb a b a b a b ++=. 【点睛】本题主要考查了行列式的运算及其应用,其中解答中熟记行列式的运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.10.定义()111111n n n n x x n N y y +*+-⎛⎫⎛⎫⎛⎫=∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为向量()111,n n n OP x y +++=u u u u u v 的一个矩阵变换, (1)若()12,3P ,求2OP u u u v ,3OP u u u v; (2)设向量()11,0OP =u u u v ,O 为坐标原点,请计算9OP u u u v 并探究2017OP u u u u u u v的坐标. 【答案】(1)()21,5OP =-u u u v ,()36,4OP =-u u u v;(2)()25216,0. 【解析】 【分析】(1)根据递推关系可直接计算2OP uuu r ,3OP u u ur .(2)根据向量的递推关系可得816n n OP OP +=u u u u u r u u u r 对任意的*n N ∈恒成立,据此可求9OP u u u r、2017OP u u u u u u r的坐标.【详解】(1)因为()12,3P ,故123OP ⎛⎫= ⎪⎝⎭u u u r ,设2x OP y ⎛⎫= ⎪⎝⎭u u u r , 则11211135x y --⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以215OP -⎛⎫= ⎪⎝⎭u u u r 即()21,5OP =-u u u r ,同理()36,4OP =-u u u r . (2)因为111111n n n n x x y y ++-⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11n n n n nn x x y y x y ++-⎛⎫⎛⎫= ⎪ ⎪+⎝⎭⎝⎭, 故21121122n n n n n n n n x x y y y x y x ++++++--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,3223222222n n n n n n n n n n x x y y x y x y y x ++++++---⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭,43343344n n n n n n n n x x y x y x y y ++++++--⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭,所以44n n OP OP +=-u u u u u r u u u r ,故816n n OP OP +=u u u u u r u u u r . 又9811=⨯+,20174504182521=⨯+=⨯+,()911616,0OP OP ==u u u r u u u r所以()252252201711616,0OP OP ==u u u u u u r u u u r . 【点睛】本题考查向量的坐标计算及向量的递推关系,解题过程中注意根据已知的递推关系构建新的递推关系,此问题为中档题.11.直线l 经矩阵M =cos sin sin cos θθθθ-⎡⎤⎢⎥⎣⎦(其中θ∈(0,π))作用变换后得到直线l ′:y =2x ,若直线l 与l ′垂直,求θ的值.【答案】2πθ=【解析】 【分析】在l 上任取一点P (x ,y ),设P 经矩阵M 变换后得到点P ′(x ′,y ′),根据矩阵变换运算得到x ′,y ′,代入直线l ′:y =2x ,得到直线l 方程,再由两直线垂直求解. 【详解】在l 上任取一点P (x ,y ),设P 经矩阵M 变换后得到点P ′(x ′,y ′)cos sin cos sin sin cos sin cos x x y x y x y y θθθθθθθθ''-⋅-⋅⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⋅+⋅⎣⎦⎣⎦⎣⎦⎣⎦故cos sin sin cos x x y y x y θθθθ=-'=+'⎧⎨⎩,又P ′在直线l ′:y =2x 上,即y ′=2x ′ 则sin cos 2cos 2sin x y x y θθθθ+=-即直线l :(sin 2cos )(2sin cos )0x y θθθθ-++= 因为l 与l ′垂直,故sin 2cos 1=cos 02sin cos 2θθθθθ-⇒=+又(0,)θπ∈,故2πθ=.【点睛】本题主要考查矩阵变换研究两直线的位置关系,还考查了运算求解的能力,属于中档题.12.已知,,x y z 是关于的方程组000ax by cz cx ay bz bx cy az ++=⎧⎪++=⎨⎪++=⎩的解.(1)求证:()111a bc a b ca b a b c c a bcabc =++; (2)设01,,,z a b c =分别为ABC ∆三边长,试判断ABC ∆的形状,并说明理由;(3)设,,a b c 为不全相等的实数,试判断"0"a b c ++=是“222000o x y z ++>”的 条件,并证明.①充分非必要;②必要非充分;③充分且必要;④非充分非必要. 【答案】(1)见解析(2)等边,见解析(3)④,见解析【解析】【分析】(1)将行列式的前两列加到第三列上即可得出结论;(2)由方程组有非零解得出a b cc a bb c a=0,即111a bc ab c=0,将行列式展开化简即可得出a=b=c;(3)利用(1),(2)的结论即可答案.【详解】(1)证明:将行列式的前两列加到第三列上,得:a b c a b a b cc a b c a a b cb c a b c a b c++=++=++(a+b+c)•111a bc ab c.(2)∵z0=1,∴方程组有非零解,∴a b cc a bb c a=0,由(1)可知(a+b+c)•111a bc ab c=0.∵a、b、c分别为△ABC三边长,∴a+b+c≠0,∴111a bc ab c=0,即a2+b2+c2﹣ab﹣bc﹣ac=0,∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0,∴a=b=c,∴△ABC是等边三角形.(3)若a+b+c=0,显然(0,0,0)是方程组的一组解,即x02+y02+z02=0,∴a+b+c=0”不是“x02+y02+z02>0”的充分条件;若x02+y02+z02>0,则方程组有非零解,∴a b cc a bb c a=(a+b+c)•111a bc ab c=0.∴a+b+c=0或111a bc ab c=0.由(2)可知a+b+c=0或a=b=c.∴a+b+c=0”不是“x02+y02+z02>0”的必要条件.故答案为④.【点睛】本题考查了行列式变换,齐次线性方程组的解与系数行列式的关系,属于中档题.13.已知矩阵13m P m m ⎛⎫= ⎪-⎝⎭,x Q y ⎛⎫= ⎪⎝⎭,2M m -⎛⎫= ⎪⎝⎭,13N m ⎛⎫= ⎪+⎝⎭,若PQ =M +N .(1) 写出PQ =M +N 所表示的关于x 、y 的二元一次方程组; (2) 用行列式解上述二元一次方程组.【答案】(1) 1323mx y mx my m +=-⎧⎨-=+⎩;(2) 见解析【解析】 【分析】(1)利用矩阵的乘法和加法的运算法则直接计算并化简即可得出答案;(2)先由二元一次方程组中的系数和常数项计算出D ,D x ,D y ,然后再讨论m 的取值范围,①当m ≠0,且m ≠-3时,②当m =0时,③当m =-3时,分别求出方程组的解即可得出答案. 【详解】解:(1) 由题意可得PQ=13mm m ⎛⎫ ⎪-⎝⎭x y ⎛⎫ ⎪⎝⎭=3mx y mx my +⎛⎫ ⎪-⎝⎭,M+N=213m m -⎛⎫⎛⎫+ ⎪ ⎪+⎝⎭⎝⎭=123m -⎛⎫ ⎪+⎝⎭,所以由PQ= M+N ,可得3mx y mx my +⎛⎫ ⎪-⎝⎭=123m -⎛⎫⎪+⎝⎭,即得1323mx y mx my m +=-⎧⎨-=+⎩; (2) 由题意可得行列式1(3)3m D m m m m==-+-,1(3)231x D m m m==--++- ,12(3)323y mD m m m m -==++①当m ≠0,且m ≠-3时,D ≠0,方程组有唯一解12x m y ⎧=⎪⎨⎪=-⎩;②当m =0时,D =0,但D x ≠0,方程组无解; ③当m =-3时,D =D x =D y =0,方程组有无穷多解31x ty t =⎧⎨=-⎩(t ∈R ).【点睛】本题考查了矩阵的乘法加法运算法则的应用,考查了用行列式求解二元一次方程组方法的应用,对参数的讨论是用行列式解二元一次方程组的关键,考查了运算能力,属于一般难度的题.14.定义“矩阵”的一种运算()x a b ax by cx dy c y d ⎡⎤⎛⎫⋅=++ ⎪⎢⎥⎣⎦⎝⎭,,该运算的意义为点(),x y 在矩阵a b c d ⎛⎫⎪⎝⎭的变换下成点()ax by cx dy ++,,设矩阵11A ⎛=-⎭()1已知点P 在矩阵A 的变换后得到的点Q的坐标为)2,试求点P 的坐标;()2是否存在这样的直线:它上面的任一点经矩阵A 变换后得到的点仍在该直线上?若存在,试求出所有这样的直线;若不存在,则说明理由. 【答案】(1)14⎫⎪⎭(2)存在,直线方程为:y x =或y = 【解析】 【分析】()1设(),P x y ,由题意,得出关于x 、y 的方程,解之即得P 点的坐标;()2对于存在性问题,可先假设存在,即假设存在这样的直线,设直线方程为:()0y kx b k =+≠,该直线上的任一点(),M x y,经变换后得到的点()N x y +-仍在该直线上,再结合求方程的解,即可求得k ,b 值,若出现矛盾,则说明假设不成立,即不存在;否则存在. 【详解】()1设(),P x y由题意,有124x x y y ⎧=⎧⎪+=⎪⎪⎨⎨-=⎪⎪⎩=⎪⎩,即P点的坐标为14⎫⎪⎭. ()2假设存在这样的直线,因为平行坐标轴的直线显然不满足条件,所以设直线方程为:()0y kx b k =+≠因为该直线上的任一点(),M x y,经变换后得到的点()N x y +-仍在该直线上()-=++y k x b即)()10k x y b --=,其中()0y kx b k =+≠代入得()2220k x b +++=对任意的x ∈R恒成立()22020k b +=+=⎪⎩解之得0k b ⎧=⎪⎨⎪=⎩0k b ⎧=⎪⎨=⎪⎩故直线方程为y x =或y =. 【点睛】此题主要考查矩阵变换的问题,其中涉及到矩阵的求法等基础知识,考查运算求解能力与转化思想,属于中档题.15.已知二阶矩阵13a M b ⎡⎤=⎢⎥⎣⎦的特征值1λ=-所对应的一个特征向量为13-⎡⎤⎢⎥⎣⎦.(1)求矩阵M ;(2)设曲线C 在变换矩阵M 作用下得到的曲线C '的方程为2y x =,求曲线C 的方程. 【答案】(1)2130M ⎡⎤=⎢⎥⎣⎦(2)292y x x =- 【解析】 【分析】(1)根据特征值和特征向量的定义式写出相应的矩阵等式,转化成线性方程组可得,a b 的值,即可得到矩阵M ;(2)根据矩阵对应的变换写出对应的矩阵恒等式,通过坐标转化计算可得出曲线C 的方程. 【详解】解:(1)依题意得111333a b -⎡⎤⎡⎤⎡⎤⋅=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 即31333a b -+=⎧⎨-+=-⎩,解得20a b =⎧⎨=⎩,所以2130M ⎡⎤=⎢⎥⎣⎦; (2)设曲线C 上一点(,)P x y 在矩阵M 的作用下得到曲线2y x =上一点(),P x y ''',则2130x x y y ''⎡⎤⎡⎤⎡⎤=⋅⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x x y y x ''=+⎧⎨=⎩, 因为2y x ''=,所以292x x y =+, 所以曲线C 的方程为292y x x =-. 【点睛】本题主要考查特征值和特征向量的定义计算的能力,以及矩阵对应的变换得出变换前的曲线方程,本题属中档题.16.已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.【答案】【解析】 【分析】运用矩阵定义列出方程组求解矩阵 【详解】由特征值、特征向量定义可知,,即,得同理可得解得,,,.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单17.已知直线l :0ax y -=在矩阵0112A ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到直线l ',若直线l '过点()1,1,求实数a 的值. 【答案】1a =- 【解析】 【分析】根据矩阵变换得到()210a x ay ''-++=,将点()1,1代入方程,计算得到答案. 【详解】设(),P x y 为直线l 上任意一点,在矩阵A 对应的变换下变为直线l '上点、(),P x y ''',则0112x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,化简,得2x x y y x =-+⎧⎨='''⎩, 代入0ax y -=,整理得()210a x ay ''-++=.将点()1,1代入上述方程,解得1a =-. 【点睛】本题考查了矩阵变换,意在考查学生的计计算能力和转化能力.18.(1)已知矩阵1202A ⎡⎤=⎢⎥-⎣⎦,矩阵B 的逆矩阵111202B -⎡⎤-⎢⎥=⎢⎥⎣⎦,求矩阵AB .(2)已知矩阵122M x ⎡⎤=⎢⎥⎣⎦的一个特征值为3,求10M . 【答案】(1)51401⎡⎤⎢⎥⎢⎥-⎣⎦;(2)29525295242952429525⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)依题意,利用矩阵变换求得11112124()221010222B B --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,再利用矩阵乘法的性质可求得答案.(2)根据特征多项式的一个零点为3,可得x 的值,即可求得矩阵M ,运用对角化矩阵,求得所求矩阵. 【详解】(1)解:111202B -⎡⎤-⎢⎥=⎢⎥⎣⎦Q ,11112124()221010222B B --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥∴===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,又1202A ⎡⎤=⎢⎥-⎣⎦,1202AB ⎡⎤∴=⎢⎥-⎣⎦15114410102⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦. (2)解:矩阵122M x ⎡⎤=⎢⎥⎣⎦的特征多项式为12()(1)()42f x x λλλλλ--==-----, 可得2(3)40x --=,解得1x =,即为1221M ⎡⎤=⎢⎥⎣⎦.由()0f λ=可得13λ=,21λ=-, 当13λ=时,由12321x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即23x y x +=,23x y y +=,即x y =,取1x =, 可得属于3的一个特征向量为11⎡⎤⎢⎥⎣⎦;当11λ=-时,由1221x x y y ⎡⎤⎡⎤⎡⎤=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即2x y x +=-,2x y y +=-,即x y =-,取1x =,可得属于1-的一个特征向量为11⎡⎤⎢⎥-⎣⎦.设1111P ⎡⎤=⎢⎥-⎣⎦,则111221122P -⎡⎤⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦,13001M P P -⎡⎤=⎢⎥-⎣⎦, 101115904905904912952529524220159049111295242952522M P P -⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦. 【点睛】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,考查了特征值与特征向量,考查了矩阵的乘方的计算的知识.19.已知a ,b R ∈,点()1,1P -在矩阵13a A b ⎡⎤=⎢⎥⎣⎦对应的变换下得到点()1,3Q . (1)求a ,b 的值;(2)求矩阵A 的特征值和特征向量;(3)若向量59β⎡⎤=⎢⎥⎣⎦u r,求4A βu r .【答案】(1)20a b =⎧⎨=⎩;(2)矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦;(3)485489⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)直接利用矩阵的乘法运算即可; (2)利用特征多项式计算即可;(3)先计算出126βαα=-+u r u u ru u r ,再利用()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r 计算即可得到答案. 【详解】 (1)由题意知,11113133a a b b -⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦, 则1133a b -=⎧⎨-=⎩,解得2a b =⎧⎨=⎩. (2)由(1)知2130A ⎡⎤=⎢⎥⎣⎦,矩阵A 的特征多项式()()21233f λλλλλ--==---, 令()0f λ=,得到A 的特征值为11λ=-,13λ=. 将11λ=-代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得3y x =-,所以矩阵A 的属于特征值1-的一个特征向量为113α⎡⎤=⎢⎥-⎣⎦u u r.再将13λ=代入方程组()2030x y x y λλ⎧--=⎨-+=⎩,解得y x =,所以矩阵A 的属于特征值3的一个特征向量为211α⎡⎤=⎢⎥⎣⎦u u r.综上,矩阵A 的特征值为1-,3,分别对应的一个特征值为13⎡⎤⎢⎥-⎣⎦,11⎡⎤⎢⎥⎣⎦.(3)设12m n βαα=+u ru u r u u r ,即5119313m n m n m n +⎡⎤⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦⎣⎦⎣⎦, 所以539m n m n +=⎧⎨-+=⎩,解得16m n =-⎧⎨=⎩,所以126βαα=-+u r u u r u u r ,所以()4444121266A A A A βαααα=-+=-+u r u u r u u r u u r u u r()441148516331489⎡⎤⎡⎤⎡⎤=--+⨯=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦. 【点睛】本题考查矩阵的乘法、特征值、特征向量,考查学生的基本计算能力,是一道中档题.20.在ABC ∆中,角,,A B C 所对的边分别为,,a b c,且sincossin 222sincos 022sec12A A cBB B -=-求角C 的大小.【答案】2π 【解析】 【分析】先将三阶行列式化简,结合三角形内角和与诱导公式、辅助角公式化简即可求值 【详解】由sincossin 222sincos 0sin cos sin sin cos 2222222sec12A A cBB A BC B A B -=⇒++=-sin sin 22A B C +⎛⎫⇒+= ⎪⎝⎭又()C A B π=-+,∴ sin sin cos 222A B C C π+-⎛⎫==⎪⎝⎭,sin sin sin cos 2222A B C C C +⎛⎫+=⇔+= ⎪⎝⎭,sin 12424C C ππ⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭,又Q 3,2444C πππ⎛⎫+∈ ⎪⎝⎭,242C ππ+=∴, 解得2C π=【点睛】本题考查三阶行列式的化简求值,三角函数的诱导公式、辅助角公式的使用,属于中档题。
专题八选考系列第1讲矩阵与变换1. 计算:(1) ; (2) .2. 若直线y=kx在矩阵对应的变换作用下得到的直线过点P(4,1),求实数k的值.3. (2013·连云港模拟)已知矩阵M=,点A(1,0)在矩阵M对应变换作用下变为A'(1,2),求矩阵M 的逆矩阵M-1.4. 设A=,B=,X=,试解方程AX=B.5. 设数列,满足a n+1=3a n+2b n,b n+1=2b n,且满足=M,求二阶矩阵M.6. (2012·高淳模拟)在平面直角坐标系xOy中,设椭圆4x2+y2=1在矩阵A=对应的变换作用下得到曲线F,求曲线F的方程.7. (2013·海安模拟)已知矩阵A=,向量α=.(1) 求A的逆矩阵;(2) 计算A5α的值.8. (2013·扬州期末)若矩阵A有特征值λ1=3,λ2=-1,它们所对应的特征向量分别为e1=和e2=,求矩阵A.9. 已知矩阵M=,N=.(1) 求矩阵MN;(2) 若点P在矩阵MN对应的变换作用下得到点Q(0,1),求点P的坐标.10. (2013·苏、锡、常、镇四市调研)已知点A(0,0),B(2,0),C(2,2)在矩阵M=对应的变换作用下得到的对应点分别为A'(0,0),B'(,1),C'(0,2),求矩阵M.【高考押题】11.已知矩阵M=对应的变换将点A(1,1)变为A'(0,2),将曲线C:xy=1变为曲线C',求:(1) 实数a,b的值;(2) 曲线C'的方程.专题八选考系列第1讲矩阵与变换1. (1) 原式==.(2) 原式==.2. 设变换T:→,则==,即代入直线y=kx,得x'=ky',将点P(4,1)代入得k=4.3. 因为=,所以a=1,b=2,所以M=,所以M-1=.4. 由已知可得A-1=,X=A-1B==,即5. 由题知=,所以=,所以M==.6. 设P(x0,y0)是椭圆上任意一点,点P(x0,y0)在矩阵A对应的变换下变为点P'(x'0,y'0),则有=,即所以又因为点P在椭圆上,故4+=1,从而(x'0)2+(y'0)2=1,所以曲线F的方程是x2+y2=1.7. (1) 因为|A|==6≠0,故A-1==.(2) 矩阵A的特征多项式为f (λ)==λ2-5λ+6,由f(λ)=0,解得λ1=2,λ2=3.当λ1=2时,解得a1=;当λ2=3时,解得a2=,设α=ma1+na2,得解得m=3,n=1.则A5α=A5(3a1+a2)=3(A5a1)+A5a2=3(a1)+a2=3×25+35=.8. 设A=,由得即解得所以A=.9. (1) MN==.(2) 方法一:设点P(x,y),则=,即解得即点P.方法二:设点P(x,y),因为=,所以==,即点P.10. 由题意得=,所以则a=,c=.又=,所以则b=-,d=,所以矩阵M=.11. (1) 由题意知=,即解得(2) 设P'(x,y)是曲线C'上任意一点,则由题意得=,即解得因为x0y0=1,所以·=1,即-=1, 故曲线C'的方程为-=1.。
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵⎣⎢⎡⎦⎥⎤1 00-2对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4.3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2, ∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011 对应的变换作用下得到的图形.解:设点(x ,y)是直线x +y =5上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0011的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0011⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y )→(x′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′. 一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y (a 、b 、c 、d∈R )的矩阵形式,反之亦然.2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k(k>0)确定的变换T M 称为(垂直)伸压变换. (3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律. [备课札记]题型1 求变换前后的曲线方程例1 设椭圆F :x 22+y24=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.解:变换矩阵为⎣⎢⎡⎦⎥⎤1201,任取椭圆上一点(x 0,y 0),则⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0+2y 0y 0,令⎩⎪⎨⎪⎧x′=x 0+2y 0,y ′=y 0, 则⎩⎪⎨⎪⎧x 0=x′-2y′,y 0=y′. 又点(x 0,y 0)在椭圆F 上,故(x′-2y′)22+y′24=1,所以2x′2-8x′y′+9y′2-4=0,即F′的解析式为2x 2-8xy +9y 2-4=0. 变式训练设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sinx 在矩阵MN 变换下的曲线方程. 解:MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y ′). 则⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sinx 得12y ′=sin2x ′,即y′=2sin2x ′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1a b 4对应的变换作用下得到直线m :x -y -4=0,求实数a 、b 的值.解:(解法1)在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A 、B 在矩阵M 对应的变换作用下分别对应于点A′、B′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b ,所以A′的坐标为(-2,-2b); ⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B′的坐标为(-2a ,-8).由题意A′、B′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0,(-2a )-(-8)-4=0,解得a =2,b =3.(解法2)设直线l :x +y +2=0上任意一点(x ,y)在矩阵M 对应的变换作用下对应于点(x′,y ′).因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以x′=x +ay ,y ′=bx +4y.因为(x′,y ′)在直线m 上,所以(x +ay)-(bx +4y)-4=0,即(1-b)x +(a -4)y -4=0.又点(x ,y)在直线x +y +2=0上,所以1-b 1=a -41=-42,解得a =2,b =3.题型3 平面变换的综合应用例3 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34. (1) 验证:(MN )α=M (N α);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012,所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为N α=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (N α)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (N α).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012, 所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤100-1,N =⎣⎢⎢⎡⎦⎥⎥⎤12222. 解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1220-22,∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2013·福建)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y , 得⎩⎪⎨⎪⎧x′=x +2y ,y ′=y. 又点M′(x′,y ′)在l′上, 所以x′+by′=1,即x +(b +2)y =1.依题意⎩⎪⎨⎪⎧a =1.b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1. (2) 由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0.又点P(x 0,y 0)在直线l 上,所以x 0=1,故点P 的坐标为(1,0). 4. 在线性变换⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x′=x +y ,y ′=2x +2y ,而x +y =k ,所以⎩⎪⎨⎪⎧x′=k ,y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→MC ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤-1-2-34,向量α=⎣⎢⎡⎦⎥⎤57,β=⎣⎢⎡⎦⎥⎤68.(1) 求向量3α+12β在T M 作用下的象;(2) 求向量4M α-5M β.解:(1) 因为3α+12β=3⎣⎢⎡⎦⎥⎤57+12⎣⎢⎡⎦⎥⎤68=⎣⎢⎡⎦⎥⎤1521+⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1825,所以M ⎝ ⎛⎭⎪⎫3α+12β=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤1825=⎣⎢⎡⎦⎥⎤-6846.(2) 4M α-5M β=M (4α-5β)=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤-10-12=⎣⎢⎡⎦⎥⎤34-18. 3. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,∴ ⎩⎪⎨⎪⎧a -b =-1c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2和⎩⎪⎨⎪⎧c =3d =4 ,∴ M =⎣⎢⎡⎦⎥⎤1234, ∵ ⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,且m :2x′-y′=4, ∴ 2(x +2y)-(3x +4y)=4,即x +4 =0,∴ 直线l 的方程为x +4 =0.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换:反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称;M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝⎛⎭⎪⎫x +y 2,x +y 2.请使用课时训练(A )第1课时(见活页).。