o
246
-0.5
8 10 12
9
以
(n) m
(m1,2,L)表示
J
n
(
x
)
的非负零点,
则
lim
m
(n)
(n)
m1 m
.
1.0 J 0 ( x )
0.5
J1( x )
函数以为周期振荡
o
2 4 6 8 10 12
-0.5
10
方程 Jn R 0 的解为:
R m n , m 1 ,2 ,L
由 条 件 ( 8 ) 知 D 0.
29
二、求本征值、本征函数
再 由 条 件 ( 9) 得 ,
R(b)CJ0( b)0
即 , J 0 ( b ) 0, 由 此 可 知b是 J 0 (x )的 零 点 。
以 (0 ) m
表 示 J 0 (x )的 正 零 点 , 有
J0(m(0)) 0
从 而 , 得 到 方 程 ( 7 ) 在 条 件 ( 8 ) 、 ( 9 ) 下 的
由 条 件 (4) , 得
z 0
z h
u(,0)
m 1
(C mD m)J0(b m (0))0
于是得
C m D m 0 ( m 1 , 2 ,L )( 1 1 )
再 由 条 件 ( 5) 得
u b 0 (5)
(0)
mh
(0)
mh
(0)
u(,h) (C me m 1
D me )J0(b m
的 通 解 为 P ( r ) A J n (
r ) B Y n (
r ) 26
一、建立方程 方 程 ( 7 ) 为 零 阶 贝 塞 尔 方 程 , 其 通 解 为