数学建模与数学实验(4版) 模糊综合评判
- 格式:ppt
- 大小:1.99 MB
- 文档页数:53
实验四 综合实验一、 实验目的:通过实验小结,布置小型研究问题(经过数学处理),使学生在练习过程中进一步熟悉MATLAB的使用,以及深入理解数学模型的建模思想。
为后续课程设计教学环节构筑基础。
二、 预备知识:1.具备数学分析、常微分方程、运筹学和概率论的学科知识基础;2.相关学科知识的简单求解方法以及辅助MATLAB求解相关问题。
三、 实验内容及要求(任选一题完成):1、黄河小浪底调水调沙问题2004 年6 月至7 月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功。
整个试验期为20 多天,小浪底从6 月19 日开始预泄放水,直到7 月13 日恢复正常供水结束。
小浪底水利工程按设计拦沙量为75.5 亿m3,在这之前,小浪底共积泥沙达14.15 亿t。
这次调水调沙试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙,在小浪底水库开闸泄洪以后,从6 月27 日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7 月3 日达到最大流量2700m3/s,使小浪底水库的排沙量也不断地增加。
表7 是由小浪底观测站从6 月29 日到7 月10 检测到的试验数据。
现在,根据试验数据建立数学模型研究下面的问题:(1)给出估计任意时刻的排沙量及总排沙量的方法;(2)确定排沙量与水流量的关系。
2、炼油厂将A, B, C三种原油加工成甲、乙、丙三种汽油。
一桶原油加工成一桶汽油的费用为4元,每天至多能加工汽油14000桶。
原油的买入价、买入量、辛烷值、硫含量,及汽油的卖出价、需求量、辛烷值、硫含量由下表给出。
问如何安排生产计划,在满足需求的条件下使利润最大?一般说来,作广告可以增加销售,估计一天向一种汽油投入一元广告费,可使这种汽油日销量增加10桶,问如何安排生产和广告计划使利润最大?原油类别 买入价(元/桶) 买入量(桶/天)辛烷值硫含量(%)A 45 ≤5000 12 0.5B 35 ≤5000 6 2.0 C25≤50008 3.0汽油类别 卖出价(元/桶) 需求量(桶/天)辛烷值硫含量(%)甲 70 3000 ≥10 ≤1.0 乙 60 2000 ≥8 ≤2.0 丙501000≥6≤1.03、合金的强度y 与其中的碳含量x 有比较密切的关系,今从生产中收集了一批 数据如下表1。
模糊综合评价方法及其应用研究一、本文概述本文旨在探讨模糊综合评价方法及其应用研究。
我们将对模糊综合评价方法进行概述,阐述其基本原理和特点。
接着,我们将深入探讨模糊综合评价方法在各种领域中的应用,包括但不限于企业管理、环境评估、医疗卫生等。
通过对实际案例的分析,我们将展示模糊综合评价方法在解决实际问题中的有效性和实用性。
我们还将对模糊综合评价方法的未来发展进行展望,以期为其在更多领域的应用提供参考和借鉴。
通过本文的研究,我们希望能够为相关领域的研究者和实践者提供有益的启示和帮助。
二、模糊综合评价方法理论基础模糊综合评价方法(Fuzzy Comprehensive Evaluation,简称FCE)是一种基于模糊数学理论的评价方法,旨在解决那些难以用精确数学语言描述的问题。
这种方法最早由我国学者汪培庄于1983年提出,现已在多个领域得到了广泛应用。
模糊综合评价方法理论基础主要包括模糊集合理论、模糊运算规则和模糊关系矩阵。
其中,模糊集合理论是该方法的核心。
它允许在元素对集合的隶属程度不唯不精确的情况下进行定量描述,从而突破了传统集合理论中元素对集合的隶属关系必须明确的限制。
在模糊综合评价中,评价对象通常被视为一个模糊集合,而评价因素则构成该集合的多个子集。
每个子集都有一个隶属函数,该函数描述了评价对象在不同因素下的隶属程度。
通过对隶属函数进行计算和分析,可以得出评价对象在各个因素上的综合评价结果。
模糊运算规则是模糊综合评价方法的另一个重要组成部分。
它定义了模糊集合之间的运算方式,如并、交、补、差等,使得我们能够根据实际需求进行模糊集合的组合和转换。
模糊关系矩阵则用于描述评价对象与评价因素之间的模糊关系。
该矩阵中的元素表示评价对象在不同因素上的隶属度,是进行模糊综合评价的重要依据。
模糊综合评价方法理论基础包括模糊集合理论、模糊运算规则和模糊关系矩阵。
这些理论和方法为我们在复杂系统中进行综合评价提供了有效的工具。
§2 小麦品种的模糊模式识别把一批来自同一品种的小麦称为一个小麦亲本。
小麦有各种不同的品种,某一品种的小麦有它自己的很多特性,如抽穗期、株高、有效穗数、主穗粒数和百粒重量等数量性质。
然而对于小麦的一个亲本,我们不能凭其中某一粒或某一株小麦去鉴定它的品种。
实际上,同一品种的小麦中,各株小麦的抽穗期显然是不完全相同的。
在同一种小麦中,百粒重量的每一次样本也是不完全相同的,但总是在各自的均值附近摆动。
这样我们就可以把某一品种的小麦看成是一个模糊集。
不同品种的小麦就对应着不同的模糊集。
如果能肯定待识别小麦亲本的模糊集与某一已知品种小麦的模糊集最贴近,那就可以断言它属于该种小麦了。
由于模糊集合是用隶属函数来表示的,而隶属函数又不同于普通的函数,怎样来度量模糊集的模糊性以及怎样比较两个模糊集是否相贴近还是差别很大,这就要引入一些有关模糊集度量的概念。
一、单个模糊集度量 1、模糊度在论域U 上的任意模糊子集~A 的模糊度)(~A D 应满足:(ⅰ)对任意的U x ∈,当且仅当x 对~A 的隶属度)(~x A μ只取0和1时,)(~A D =0 ;(ⅱ)当)(~x A μ=0.5时,)(~A D 应取最大值,即)(~A D =1;(ⅲ)对任意的U x ∈,设U 的两个模糊子集~A 和~B ,若5.0)()(~~≥≥x x B A μμ或5.0)()(~~≤≤x x B A μμ,则有)()(~~A D B D ≥。
2、模糊熵在模糊数学中,用模糊熵描述模糊度,是模糊集合所含模糊性大小的一种度量,这里仅介绍较其它方法为好的仙农函数引出的模糊熵定义。
设~A 是论域U 上的任意模糊子集,当U x ∈时,记))((2ln 1)(~1~i Ai x S n A H μ∑∞==叫做模糊集~A 的熵,此处)1ln()1(ln )(x x x x x S ----=。
容易验证,上述模糊熵满足模糊度的三个条件。
二、多个模糊集度量 1、海明距离设论域U 上的两个模糊子集~A 和~B ,它们之间的海明距离定义为∑=-=ni i B i A x x B A d 1~~)()(),(~~μμ这个定义适用于论域为有限集时,n 是论域中元素的个数,它又称为绝对海明距离。
所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任何—个指标都反映和刻画事物的—个侧面.从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值•例如,旅游景区质量等级有5A、4A、3A、2A 和1A之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值的变化对评价目的的影响来看,可以将指标分为以下四类:(1)极大型指标(又称为效益型指标)是指标值越大越好的指标;(2)极小型指标(又称为成本型指标)是指标值越小越好的指标;(3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标;(4)区间型指标是指标值取在某个区间为最好的指标.例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化围一般是(-10%,+5%)x标的价,超过此围的都将被淘汰,因此投标报价为区间型指标•投标工期既不能太长又不能太短,就是居中型指标.在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换8.2.4评价指标的预处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.1.指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷 等极小型指标则是希望取值越小越好;对于室温度、空气湿度等居中型指标是既不期望 取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必 须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同 的指标权重确定方法和评价模型中,指标一致化处理也有差异.(1) 极小型指标化为极大型指标,将其转化为极大型指标时,只需对指标x 取倒数:jx'二丄,jxjx =M -x ,jjj其中M =max{x},即n 个评价对象第j 项指标值x..最大者.j 1<i<n 可IJ(2) 居中型指标化为极大型指标jj就可以将x 转化为极大型指标.j(3) 区间型指标化为极大型指标对区间型指标x ,x 是取值介于区间[a,b ]时为最好,指标值离该区间越远就越jjjj差.令M =max{x},m =min{x},c =max{a -m,M -b},取j1<i<n ijj1<i<n ijjjjjj对极小型指标xj或做平移变换:对居中型指标xj,令M =max{x}j1<i<n ij 2(x -m)jj —, M -m =V jj2(M -x)j—,M -m,m =min{x},取j1<i<n ijM +mm <x <—J j ;j J2M +m —J j <x <M.2jj就可以将区间型指标x 转化为极大型指标.j类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指标.2.指标的无量纲化处理所谓无量纲化,也称为指标的规化,是通过数学变换来消除原始指标的单位及其数 值数量级影响的过程.因此,就有指标的实际值和评价值之分.—般地,将指标无量纲化处理以后的值称为指标评价值.无量纲化过程就是将指标实际值转化为指标评价值的过程.对于n个评价对象S,S,,S ,每个评价对象有m 个指标,其观测值分别为12nx(i=1,2,,n;j —1,2,,m).ij⑴标准样本变换法令••••••x —xx *—j (1<i <n ,1<j <m ).ijsj其中样本均值x -丄2x ,样本均方差s -£(x —x )2,x *称为标准观测值.jn ij j Vn ijjiji —11i —1特点:样本均值为0,方差为1;区间不确定,处理后各指标的最大值、最小值不相同;对于指标值恒定(s —0)的情况不适用;对于要求指标评价值x *>0的评价方法(如jij 熵值法、几何加权平均法等)不适用.(2)线性比例变换法对于极大型指标,令xx *—j (max x 丰0,1<i<n ,1<j<m ). ijmax x 1<i<nij1对极小型指标,令minxx *—j(1<i <n,1<j <m). ij x或xx *=1-j —(maxx 丰0,1<i <n,1<j <m ).a -x 1——jjc j1,x —b 1——j jx <a;jja <x <b; jjjx >b.jj©maxx 1<i <n ij1<i <nij该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例.但对任一指标来说,变换后的x *=1和x *=0不一定同时出现.ijij特点:当x >0时,x *e[0,1];计算简便,并保留了相对排序关系.ijij(3)向量归一化法对于极大型指标,令优点:当x >0时,x *e[0,1],即£(x *)2=1•该方法使0<x *<1,且变换前ijij ij ij i =1后正逆方向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同.(4) 极差变换法对于极大型指标,令x -minxx *=ij ——1<i <n ij ——(1<i <n,1<j <m). ijmaxx -minx1<i <n ij 1<i <n ij对于极小型指标,令maxx -xx *=——_ij ij ——(1<i <m,1<j <n). ijmaxx -minx1<i <n ij 1<i <n ij其优点为经过极差变换后,均有0<x *<1,且最优指标值x *=1,最劣指标值ijijx *=0•该方法的缺点是变换前后的各指标值不成比例,对于指标值恒定(s =0)的情况ijj不适用.(5) 功效系数法令x -minxx *=c +—ij_i <i <n ij —x d (1<i <n ,1<j <m ). ijmax x -min x1<i <nij1<i <n ij其中c ,d 均为确定的常数.C 表示"平移量”,表示指标实际基础值,d 表示"旋转量”,即表示"放大”或“缩小”倍数,则x *e[c,c+d].ij通常取c =60,d =40,即xx对于极小型指标,令x *ijx-minxx*=60+—j_i<i<n j—x40(1<i<n,1<j<m).ij maxx-minx1<i<n ij1<i<n ij则x*实际基础值为60,最大值为100,即x*e[60,100].ijij特点:该方法可以看成更普遍意义下的一种极值处理法,取值围确定,最小值为c,最大值为c+d•3.定性指标的定量化在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:质量很好、性能一般、可靠性高、态度恶劣等•对于这些指标,在进行综合评价时,必须先通过适当的方式进行赋值,使其量化•一般来说,对于指标最优值可赋值10.0,对于指标最劣值可赋值为0.0•对极大型和极小型定性指标常按以下方式赋值.(1)极大型定性指标量化方法对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.030,5.0,7.0和9.0,对应关系如图8-2所示•介于两个等级之间的可以取两个分值之间的适当数值作为量化值.很低低一般高很高01.03.05.07.09.010.0图8-2极大型定性指标量化方法(2)极小型定性指标量化方法对于极小型定性指标而言,如果指标能够分为很高、高、一般、低和很低等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.很高高一般低很低IIIIII I101.03.05.07.09.010.0模糊综合评价方法在客观世界中,存在着许多不确定性现象,这种不确定性有两大类:一类是随机性现象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到客观实际所造成的,而是事物的一种在结构的不确定属性,称为模糊性现象.模糊数学就是用数学方法研究和处理具有“模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,进行综合评价的一种方法..隶属度函数的确定方法隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学方法建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶属函数的方法.⑴模糊统计法模糊统计法是利用概率统计思想确定隶属度函数的一种客观方法,是在模糊统计的基础上根据隶属度的客观存在性来确定的.下面以确定青年人的隶属函数为例来介绍其主要过程.①以年龄为论域X,在论域X中取一固定样本点x=27.②设A*为论域X上随机变动的普通集合,A是青年人在X上以A*为弹性边界的模糊集,对A*的变动具有制约作用.其中xeA,或x电A,使得x对A的隶属关系000具有不确定性•然后进行模糊统计试验,若n次试验中覆盖x的次数为m,则称m为0n nx对于A的隶属频率.由于当试验次数n不断增大时,隶属频率趋于某一确定的常数,o该常数就是x属于A的隶属度,即m卩(x)=lim--.A0n*n比如在论域X中取x=27,选择若干合适人选,请他们写出各自认为青年人最适0宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若n次试验中覆盖27岁的年龄区间的次数为m,则称m为27岁对于青年人的隶属频率,表8-4是抽样调查n统计的结果.由于27岁对于青年人的隶属频率稳定在0.78附近,因此可得到x=27o属于模糊集A的隶属度卩(27)=0.78.A③在论域X中适当的取若干个样本点x,x,,x,分别确定出其隶属度12n卩(x)(i=1,2,,n),建立适当坐标系,描点连线即可得到模糊集A的隶属函数曲线.Ai将论域X分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到•••青年人的隶属函数曲线,见表8-5与图8-5所示.确定模糊集合隶属函数的模糊统计方法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效方法.特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.16.5~17.5670.51928.5~29.5800.62017.5~18.51240.96129.5~30.5770.59718.5~19.5125 1.0030.5~31.5270.20919.5~20.5129 1.0031.5~32.5270.20920.5~21.5129 1.0032.5~33.5260.20221.5~22.5129 1.0033.5~34.5260.20222.5~23.5129 1.0034.5~35.5260.20223.5~24.5129 1.0035.5~36.510.00824.5~25.51280.992⑵三分法三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观方法•例如建立矮个子A1,中等个子A2,高个子A3三个模糊概念的隶属函数•设P3={矮个子,中等个子,高个子},论域X为身高的集合,取X=(0,3)(单位:m).每次模糊试验确定X的一次划分,每次划分确定一对数(g,n),其中匕为矮个子与中等个子的分界点,耳为中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:即将(g,n)看作二维随机变量,进行抽样调查,求得g、n的概率分布p(x)、P(x)后,再分别导出A1、A?和A3的隶属函数卩(X)、R(X)和g_H_A1A2卩(x),相应的示意图如图8-6所示.A3图8-5年轻人的隶属函数曲线图8-6由概率分布确定模糊集隶属函数通常E 和耳分别服从正态分布N (a ,G 2)和N(a11分别为_gv⑶模糊分布法根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数(论域为实数域),然后再通过实验确定参数.在客观事物中,最常见的是以实数集作论域的情形•若模糊集定义在实数域R 上,则模糊集的隶属函数便称为模糊分布.下面给出几种常用的模糊分布,在以后确定隶属函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求出分布中所含的参数,从而就可以确定出隶属函数了.为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致方向.偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色的“淡”等偏向小的一方的模糊现象,其隶属函数的一般形式为「1,x <a; 卩(x)斗A [f (x),x >a.偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色的“浓”等偏向大的一方的模糊现象,其隶属函数的一般形式为f0,x <a ;卩(x )=\A [f (x ),x >a .中间型模糊分布适合描述像“中”、“暖和“、“中年”等处于中间状态的模糊现象,其隶属面数可以通过中间型模糊分布表示.① 矩形(或半矩形)分布2,G2),则A 1、A 2和A3的隶属函数其中Q (x)二i卩(x)=1—① A1卩(x )=①A21气—e 2dt .(、 x 一a 1丿/ 1GiC\x 一a 2(G 丿2—① 卩(x)=1一① A3x 一a 、Gi丿、x 一ac 2G丿(c)中间型0,x <a ;1,a <x <b ; 0,x >b .卩A x )=<此类分布是用于确切概念.矩形(或半矩形)分布相应的示意图如图8-7所示.图8-7矩形(或半矩形)分布示意图② 梯形(或半梯形)分布梯形(或半梯形)分布的示意图如图8-8所示.③ 抛物形分布(a)偏小型 (b)偏大型 (c)中间型(a)偏小型 (b)偏大型 (c)中间型1,x<a; b —x<<, b —a 0,x>b.卩A(x )=10,x <a;x —a,a <x <b;b —a 1,x >b.0,x <a ,x >d ; ,a <x <b ;b -a 1,b <x <c ;d —x,c <x <d ;d —c(a)偏小型(b)偏大型(c)中间型 图8-8梯形(或半梯形)分布示意图抛物形分布的示意图如图8-9所示.(a)偏小型(b)偏大型(c)中间型图8-9抛物形分布示意图④正态分布(a)偏小型(b)偏大型1,x<a;0,x<a;卩(x)=<(x—a]2卩(x)=<(T—a J2、e〔b,x>a. 1—e—l b丿,x>a.(c)中间型⑤柯西分布(a)偏小型(b)偏大型(c)中间型⑥r 型分布(a)偏小型 (b)偏大型 (c)中间型f l,x <a ; [e _k (x _a ),x >a .f 0,x <a ;卩(x)=kA[1一e _k (x _a ),x >a .卩(x)=<Ae _k (x _a ),x <a; 1,a <x <b; e _k (b _x ),x >b.1,1 x <a; 1+a (x -a)P (a >0,B >0)x >a.0, 1x <a ; Q ,x >a .1+a (x 一a )_P叮x)=1+a (x -a )B'(a >0,B 为正偶数).(a >0,B>0)。
E题数学建模竞赛成绩评价与预测摘要本体是关于评价比较与预测问题,是对数学建模开展以来各高校建模水平的评价和比较以及预测。
第一,分析给出的各高校的获奖数据,统计,进行综合量化评价,运用的方法是层次分析法,综合评判和线性分析。
最后,以学校的建模水平进评比。
对于四个问题,对各高校建模获奖数据进行了统计分析。
在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的一级评判模型把所给学校的国家一等奖、国家二等奖,省一等奖、省二等奖,省三等奖,成功参赛奖作为因素集。
在用模糊综合评判方法时,确定评判矩阵和权重分配是两项关键性的工作,求权重分配时,通过往年评分标准确定数据后用层次分析法计算权重;对于评判矩阵,通过对整理的各高校每个等级奖项数目对各高校获奖总数的比重建立评价矩阵。
通过C语言编程处理得出的各高校建模水平,通过线性回归,预测十二五期间的建模水平,从而解决问题。
关键字:综合评判;层次分析法;统计分析;线性回归;C语言编程;画图软件;一、问题的重述近20年来,CUMCM的规模平均每年以20%以上的增长速度健康发展,是目前全国高校中规模最大的课外科技活动之一。
2011 年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1251所院校、19490个队(其中本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。
在数学建模活动开展20周年之际,有必要对以往的数学建模工作进行总结及对未来的发展进行预测。
通过某高校2006-2011年数学建模成绩,建立合理的评价模型,对该校十一五期间数学建模工作进行评价,并对该校十二五期间的数学建模成绩进行预测;试建立评价模型,给出吉林赛区十一五期间各校建模成绩的科学、合理的排序;并给出吉林赛区各院校十二五期间的建模成绩进行预测;给出全国各院校的自建模竞赛活动开展以来建模成绩的科学、合理的排序;并对全国各院校十二五期间的建模成绩进行预测;你认为如果科学、合理地进行评价和预测,除全国竞赛成绩、赛区成绩外,还需要考虑那些因素?二、模型假设1、假设附表中的信息基本准确没有异常值并且数据是真实合理的。
模糊综合评价法模糊综合评价法是一种基于模糊数学的综合评价方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
中文名模糊综合评价法理论依据模糊数学属性综合评标方法提出人查德模糊集合理论(fuzzy sets)的概念于1965 年由美国自动控制专家查德(L.A.Zadeh)教授提出,用以表达事物的不确定性。
术语定义为了便于描述,依据模糊数学的基本概念,对模糊综合评价法中的有关术语定义如下:1.评价因素(F):是指对招标项目评议的具体内容(例如,价格、各种指标、参数、规范、性能、状况,等等)。
为便于权重分配和评议,可以按评价因素的属性将评价因素分成若干类(例如,商务、技术、价格、伴随服务,等),把每一类都视为单一评价因素,并称之为第一级评价因素(F1)。
第一级评价因素可以设置下属的第二级评价因素(例如,第一级评价因素“商务”可以有下属的第二级评价因素:交货期、付款条件和付款方式,等)。
第二级评价因素可以设置下属的第三级评价因素(F3)。
依此类推。
2.评价因素值(Fv):是指评价因素的具体值。
例如,某投标人的某技术参数为120,那么,该投标人的该评价因素值为120。
3.评价值(E):是指评价因素的优劣程度。
评价因素最优的评价值为1(采用百分制时为100分);欠优的评价因素,依据欠优的程度,其评价值大于或等于零、小于或等于1(采用百分制时为100分),即0≤E≤1(采用百分制时0≤E≤100)。
4.平均评价值(Ep):是指评标委员会成员对某评价因素评价的平均值。
平均评价值(Ep)=全体评标委员会成员的评价值之和÷评委数5.权重(W):是指评价因素的地位和重要程度。
第一级评价因素的权重之和为1;每一个评价因素的下一级评价因素的权重之和为1 。
模糊数学综合评价法
模糊数学综合评价法(FMEA)是一种多维度考量的前瞻性评价技术,它不仅可以预测未来可能发生的错误,也可以提出合理的解决方案以有效地解决这些错误。
模糊数学综合评价法是一种风险管理技术,它能够帮助企业评估可能出现的风险和潜在问题,并有效地将有关活动纳入企业框架中。
模糊数学综合评价法通常以一种金融机构的行为或作为起点,并将其中的多种可能的影响加以分析。
该方法是使用模糊数学原理来评估某项活动可能产生的风险。
它可以比较和综合多种不同方面的各种因素,考虑不确定性的影响。
模糊数学综合评价法是一个复杂的概念,它不仅需要对模糊数学理论进行深入的研究,而且还需要在特定情况下使用更加细节化的分析技术来识别可能存在的风险。
模糊数学综合评价法可以帮助企业以多维度考量可能存在的风险。
它可以从多个不同的角度考虑问题,以识别和评估与其相关的风险。
模糊数学综合评价法还可以帮助企业对未来可能发生的问题进行预测,并为解决这些问题提供合理的解决方案。
此外,模糊数学综合评价法还可以帮助企业制定有效的风险管理战略,采取有效的措施来降低风险,并尽快解决可能出现的问题。
总结而言,模糊数学综合评价法是一种有效的前瞻性评价方法,它可以识别和评估可能存在的风险,并有效地将有关活动纳入整个企业框架中。
当企业运用这种方法来管理风险时,可以有效地
提高效率,减少由风险引起的损失,从而促进企业的可持续发展。
技术创新43本文利用多级模湖综合评判法,结合物流中心选址的影响因素,建立物流中心选址的数学模型。
通过实例阐述模型的建立过程,并利用MATLAB软件进行求解。
基于模糊综合评价法的物流中心选址问题分析◊成都师范学院数学学院舒孝珍1引言随着电商行业的迅速发展,人们足不出户的购物需求得到了极大的满足。
在人们对所购商品评价的众多因素中,有一^重要的评价因素,便是物流服务评价。
因而,物流中心作为f商品周转、分拣、保管、在库管理和流通加工的重要据点,其在提高物流服务质量上具有极其深远的影响。
为了保证顾客所购商品最快、最好地流入顾客手中,物流中心的选址成为优化物流系统的一个具有战略意义的问题。
对物流中心选址问题的分析研究,国内夕FCT究学者提出了重心法、Baumol-Wolfe模型、混合整数规划模型、Delphi专家咨询法、层次分析法、遗传算法、混沌化算法、爛权法、模糊综合评价法“」。
以上各种方法都有各自的适用性与不足之处,笔者考虑到物流中心选址的诸多影响因素,根据因素特点划分层次模块,利用多级模糊综合评价法来分析物流中心选址问题。
2物流中心选址分析2.1影响评判对象因素集的选取图1物流中心的评列因素集假设某个地区备选的物流中心地址有6个,下面从自然环境、交通运输、经营环境、候选地、公共设施这5个方面来考虑物流中心的选址,建立了金-级指标,12个二级指标,5个三级指标。
其中,一级指标层的5个评判因素分别记为他,"2,吗,"4,坷},权重分配记为{4,&,4,4,4}。
对坷划分的仆二级指标评判因素记为亦,如,"13,址}权®分配记为{41,42,人3,4』。
对“4划分的"卜N指标评判因素记为{“41,“42,"43,"44}‘遊分配记为{4»,&2,&3,43}°对“5划分的4个N指标评判因素记为{m51,m52,m53,m54},权1:分配记为{41,為入厶}。
数学建模中的多目标决策与多准则决策在数学建模中,决策问题一直是一个重要而复杂的研究领域。
在实际应用中,我们常常会面临多个目标和多个准则的抉择,这就需要采用多目标决策和多准则决策的方法来解决。
本文将讨论数学建模中的多目标决策与多准则决策的应用和方法。
一、多目标决策多目标决策是指在决策问题中,存在多个相互联系但又有所独立的目标,我们需要在这些目标之间进行权衡和取舍。
多目标决策的核心是建立一个评价指标体系,将多个目标统一地考虑在内,并找到一个最优化的结果。
在多目标决策中,我们可以采用多种方法来求解最优解。
其中比较常用的方法有以下几种:1.加权法:加权法是将每个指标的重要性进行加权后进行综合评价,得到一个加权和最大的方案作为最优解。
这种方法简单直观,但也存在一定的主观性。
2.约束法:约束法是在满足一定约束条件的前提下,使目标函数最小化或最大化。
通过对各个目标进行约束,可以有效避免因为某个目标过分追求而导致其他目标的损失。
3.非支配排序遗传算法:非支配排序遗传算法是一种基于进化计算的多目标优化算法。
通过对候选解进行非支配排序,并根据解的适应度进行遗传操作,最终得到一组非劣解。
二、多准则决策多准则决策是指在决策问题中,存在多个相互独立但又有一定重叠性的准则,我们需要在这些准则之间进行权衡和衡量,找到最优的方案。
多准则决策通常需要考虑到几个关键因素:准则权重、准则的计算方法和准则的分值范围等。
在多准则决策的过程中,我们可以采用以下几种方法:1.正交实验设计法:正交实验设计法是一种常用的多准则决策方法。
通过合理选择实验设计方案,对多个准则进行全面而又系统地评估,得到最终的决策结果。
2.层次分析法:层次分析法是一种定量分析问题的层次结构的方法。
通过构建层次结构模型,并通过对每个层次的准则进行权重赋值,最终得到一个最优方案。
3.模糊综合评判法:模糊综合评判法是一种基于模糊数学的多准则决策方法。
通过将准则的评价结果转化为模糊数,并进行模糊集的运算,最终得到一个最优的决策方案。
《数据分析与建模》课程教学大纲课程代码:030032126课程英文名称:Data Analysis and Modeling课程总学时:32 讲课:32 实验:0 上机:0适用专业:信息科学与工程学院各专业大纲编写(修订)时间:2017.5一、大纲使用说明(一)课程的地位及教学目标数据分析与建模是一门综合运用分析、试验、量化的手段对生产实践、科学研究、军事工程等各种实际问题建立数学模型并进行求解的应用数学。
它系统地介绍数学模型、数学建模和建模过程中的常用方法与实例,为学生今后各专业课程的学习和工作时间打下必不可缺的专业基础。
通过本课程的学习,学生将达到以下要求:1.掌握数学模型的基本思想、方法与技巧。
2.学会正确的分析、归纳的思维方式和思考习惯,能够根据各种实际问题的不同情况采取不同方法建立数学模型。
3.运用所学的知识和技巧进行数学模型的求解、分析、检验与评价。
4.掌握有关计算机软件的使用,提高解决复杂问题的能力。
(二)知识、能力及技能方面的基本要求1.基本知识:学生应掌握与建模相关的数学和计算机软件知识。
2.基本理论和方法:掌握线性规划与非线性规划、无约束最优化、微分方程、最短路问题、数据统计描述与分析、回归分析、计算机模拟以及插值与拟合等建模与求解的基本理论和方法。
3.基本技能: 掌握一定的解决实际建模问题的能力,能熟练运用计算机与相关软件并具备相关的编程计算技能,掌握撰写数据分析与建模论文或报告的能力。
(三)实施说明1.教学方法:课堂讲授中要重点对基本概念、基本方法和解题思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加讨论课,调动学生学习的主观能动性;注意培养学生提高利用各种媒体获取技术资料的能力。
讲课要联系实际并注重培养学生的创新能力。
2.教学手段:在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。