车联网技术体系框架
- 格式:vsd
- 大小:66.00 KB
- 文档页数:1
贝尔信“三网四屏”智能视觉车联网系统的体系和架构文/周世咏智慧城市研究院研究室主任深圳市贝尔信智能系统有限公司摘要:经历了2012年双节高速公路拥堵之痛,让有识之士呼唤利用车联网技术解决城市交通拥堵问题。
本文介绍基于贝尔信智慧城市4+1技术体系的智能视觉车联网架构、基于智能视觉分析的一杆一系统以及云计算-云存储-云分析-云控制主机在车联网中的应用,指出了智慧信息技术IICT、智能交通以及安防行业在发展城市智能视觉车联网中面临的巨大商机。
一、智慧城市“4+1技术体系”和智能视觉物联网贝尔信构建的智慧城市体系可以概括为一句话:“以VIDC为基础,实现智能感知、互联互通、协调共享和城市运营”,简称“智慧城市4+1体系”。
智能感知、互联互通、协同共享、城市运营,具体含义是:(1)以IVS智能视觉技术及产品为核心构建的智能视觉物联网实现智能感知;(2)通过电信、移动、联通、广电等运营商构建的三网融合基础设施以及多屏融合技术实现信息的互联互通;(3)以3DGIS城市引擎为核心构建的三维空间地理信息系统平台实现政府、企业、公众在管理和处理各类事件过程中的精准协同共享;(4)以VIDC云计算-云存储-云分析-云控制主机构建的智慧城市管理和运营平台实现城市运营。
图1:贝尔信智慧城市4+1技术体系贝尔信智能视觉车联网的概念是:通过各种信息传感设备,利用智能视觉技术、RFID、GPS、移动通信和无线网络等接入技术和网络服务支撑技术构建智慧信息通信技术(IICT),利用智能视觉物联网来实现人、车、路、环境之间的智能协同,从而达到“人-车-路-环境”的和谐统一,实现在信息网络平台上对所有车辆属性信息和静、动态信息进行提取利用并为公众提供综合服务,实现城市交通的顺畅、安全、快捷、经济、智慧,简称之为智能视觉物联网。
随着对被盗车辆的找回、保险信息通讯业务和娱乐等服务的需求的增加,车联网设备将日益成为一种必需品,Machina Research 预计,2020年将有90%的新车搭载车联网设备,从而为连接设备市场带来6000亿美元的价值,因此,车联网是智慧城市建设的一个重要领域。
车联网体系结构及其关键技术
汽车联网体系结构及其关键技术:
一、汽车联网体系的基本架构
1. 传感层:包含车载传感器、物联网节点等,可实时监控车辆状态,
并传输信息实时更新。
2. 运输层:采用移动通信网络,包括GSM、CDMA等,为汽车联网提
供固定可靠的交通保障。
3. 网络层:网络架构综合多种网络技术标准,如MS Exchange、HTTP、UDP 等协议,保证汽车联网安全可靠。
4. 应用层:软件设计技术,实现车辆诊断、控制、保养和维修等功能,为智能汽车的发展提供支撑。
二、汽车联网关键技术
1. 无线感知:通过建网和协调信息合作,实现高性能的路由模型,实
现无线访问网络,改善基础设施。
2. 车辆控制:通过精密定位系统以及传输和交互,实现车辆远程控制
功能,保证汽车的安全准确性。
3. 汽车数据集成:通过实时传输和处理数据,可以实现数据的集成、
管理和分析,实现数据的各项分析功能。
4. 服务发现:基于GSM/GPRS和Wifi的收发及车辆智能物联网技术,
实时监控、收集和识别车辆状态,使用精确服务路径、延迟优化等技
术,保证汽车联网系统实时可用性。
5. 安全管理:基于安全网络服务,采用静态分析、动态分析等手段,实现汽车联网系统的安全和有效管理,并保护数据安全。
车辆网络安全体系建设方案一、前言随着车联网技术的飞速发展,越来越多的车辆上线了互联网,不仅大大提高了车辆的智能化水平,同时也带来了一系列的安全风险。
近年来,车辆网络安全问题屡见不鲜,不仅影响了车主的用车体验,也给车辆制造商带来了不良的影响。
因此,建立完善的车辆网络安全体系已经成为了当务之急。
本文将从安全威胁分析、安全防护、事件管理等方面,提出车辆网络安全体系的建设方案。
二、安全威胁分析车辆网络安全体系建设前,首先需要对车辆网络安全威胁进行深入分析,以明确车辆面临的安全风险。
1. 网络攻击网络攻击是车辆网络安全最常见的威胁之一,主要表现为远程入侵、恶意代码感染、数据窃取、信息篡改等。
攻击者利用漏洞,分析车辆系统和数据结构,制定攻击策略,以达到获取车辆控制权或窃取车辆数据等目的。
2. 蓝牙攻击蓝牙技术的广泛应用,也使得蓝牙攻击成为了当前车辆安全领域最突出的问题之一。
攻击者可以通过蓝牙通信连接到车辆系统,控制车辆行驶、篡改车辆控制信息,甚至释放恶意代码,影响车辆控制系统正常运行。
3. 身份伪造身份伪造是一种网络攻击方式,攻击者在车辆系统中伪造身份信息,以获取车辆系统中的数据、资源等,进而实现对车辆的控制和操作。
三、安全防护建立完善的安全防护体系是车辆网络安全体系建设的基础。
以下是车辆网络安全防护的几个方面:1.网络安全防护车辆互联网网络系统应构建更严谨的安全防护体系,包括使用高强度、复杂化密码学技术,采用多层次的安全网络架构,增加入侵检测系统等措施。
2. 软件安全防护车辆需要采用软件安全方案,防范软件漏洞、恶意代码、隐私数据被搞乱、木马等各类安全风险,同时开发者需要对常用软件进行漏洞测试。
3.硬件安全防护车辆网络体系的硬件设备是车辆所依赖的重要一环,应采取严格的安全防护措施。
针对车载设备,要采用防水、抗冲击、防盗等高强度的硬件材料,车辆数据采集装置要集成密码学技术,保护车辆采集的数据信息。
四、事件管理建立完善的事件管理流程,是应对安全风险的关键。
车联网的布局车联网是指利用信息通信技术将车辆和交通设施连接起来,实现车辆之间、车辆与道路设施之间以及车辆与交通管理中心之间的信息交互,从而提高道路交通的安全性、效率和便利性。
车联网的布局是指车联网技术在整个交通系统中的应用和建设规划。
下面就车联网的布局进行详细分析。
一、在车辆端的布局在车辆端,车联网布局主要包括智能交通设备、车载通信设备和车联网应用程序。
首先是智能交通设备,包括车载传感器、摄像头、雷达等,这些设备可以实时监测车辆周围的交通情况和道路状况,提供给驾驶员和车联网系统。
其次是车载通信设备,包括车载通信模块和天线等,用于车辆与道路设施和其他车辆进行信息交换。
最后是车联网应用程序,这些应用程序可以通过车载终端设备展示交通信息、提供导航、智能驾驶辅助等功能。
二、在交通设施端的布局三、在数据平台的布局数据平台是车联网系统的数据中心,主要包括车辆数据、道路数据、交通数据和用户数据等。
对于车辆数据,包括车辆的实时位置、车辆状态、行驶轨迹等信息;对于道路数据,包括道路状况、限速信息、路况预警等;对于交通数据,包括交通流量、拥堵状况、事故信息等;对于用户数据,包括用户行为、出行偏好、需求预测等。
这些数据通过车联网系统进行采集、传输、存储和分析,为交通管理和服务提供数据支持。
四、在信息安全的布局车联网系统涉及大量的车辆和用户数据,信息安全是至关重要的。
在车联网的布局中,需要加强对数据传输、存储和处理过程中的安全保护措施,包括加密传输、数据备份、权限控制等。
还需要建立完善的信息安全管理系统,包括安全审计、风险评估、事件监控等,及时发现和应对信息安全问题。
五、在标准规范的布局车联网系统涉及到多个领域的技术和设备,需要统一的标准和规范进行统一管理和协调。
在车联网的布局中,需要制定相关的标准体系,包括通信协议、数据格式、设备规范等,促进不同设备和系统的互联互通,实现车联网系统的整合和统一管理。
六、在用户体验的布局用户体验是车联网系统的重要组成部分,需要从用户的角度出发,设计和布局系统。
汽车行业智能网联汽车技术实施方案第一章概述 (2)1.1 技术背景 (2)1.2 实施目标 (2)第二章智能网联汽车技术框架 (3)2.1 技术体系 (3)2.1.1 感知层 (3)2.1.2 网络层 (3)2.1.3 平台层 (3)2.1.4 应用层 (4)2.2 关键技术 (4)2.2.1 感知技术 (4)2.2.2 通信技术 (4)2.2.3 计算技术 (4)2.2.4 控制技术 (4)2.2.5 安全技术 (4)2.2.6 人工智能技术 (4)第三章车载感知系统 (5)3.1 感知技术概述 (5)3.2 感知硬件配置 (5)3.3 感知数据处理 (5)第四章车载通信系统 (6)4.1 通信技术概述 (6)4.2 通信协议与标准 (6)4.3 通信设备配置 (7)第五章车载计算平台 (7)5.1 计算平台架构 (7)5.2 硬件配置 (8)5.3 软件系统 (8)第六章智能决策与控制系统 (9)6.1 决策与控制技术概述 (9)6.2 控制算法 (9)6.2.1 预测控制算法 (9)6.2.2 优化控制算法 (9)6.2.3 适应控制算法 (9)6.2.4 智能控制算法 (9)6.3 系统集成 (10)6.3.1 硬件集成 (10)6.3.2 软件集成 (10)6.3.3 通信集成 (10)6.3.4 功能优化与调试 (10)第七章安全与隐私保护 (10)7.1 安全技术概述 (10)7.2 数据加密与认证 (11)7.3 隐私保护策略 (11)第八章测试与验证 (12)8.1 测试方法与标准 (12)8.1.1 测试方法 (12)8.1.2 测试标准 (12)8.2 测试场景设计 (12)8.2.1 常规场景 (12)8.2.2 复杂场景 (13)8.2.3 极限场景 (13)8.3 测试数据分析 (13)8.3.1 数据采集 (13)8.3.2 数据处理 (13)8.3.3 数据分析 (13)第九章产业化与推广 (13)9.1 产业化路径 (13)9.2 政策法规支持 (14)9.3 市场推广策略 (14)第十章持续优化与迭代 (15)10.1 技术跟踪与升级 (15)10.2 用户反馈与改进 (15)10.3 产业链协同发展 (15)第一章概述1.1 技术背景信息技术的飞速发展,智能网联汽车技术逐渐成为汽车行业发展的新趋势。
车联网系统架构及其关键技术研究一、概述随着信息技术的飞速发展,车联网(Internet of Vehicles, IoV)作为物联网的重要组成部分,已经成为智能交通系统、智慧城市等领域的研究热点。
车联网系统架构是实现车与车、车与路、车与人、车与互联网之间全面信息交互的关键基础设施,其研究和发展对于提高道路交通效率、保障行车安全、推动汽车产业智能化升级具有重要意义。
车联网系统架构涉及多个领域的技术融合,包括无线通信、传感器网络、云计算、大数据处理、人工智能等。
本文旨在全面梳理车联网系统架构的基本构成,深入探讨其关键技术,包括信息感知与采集技术、信息传输与交换技术、数据处理与应用技术等,以期为车联网技术的进一步发展提供理论支撑和实践指导。
本文首先介绍车联网系统的基本定义、发展历程及现状,分析车联网系统架构的组成要素及其相互关系。
重点讨论车联网中的关键技术,包括无线通信技术、传感器技术、数据处理技术和安全技术等,并分析这些技术在车联网系统架构中的应用与挑战。
展望车联网系统的未来发展趋势,提出促进车联网技术持续创新和应用推广的策略建议。
1. 车联网的定义与背景车联网(Internet of Vehicles,IoV)是指通过先进的信息和通信技术,实现车辆与车辆、车辆与基础设施、车辆与行人以及车辆与互联网之间的全方位、实时信息交互和智能化协同控制,从而构建一个安全、高效、节能、环保的智能交通系统。
车联网技术融合了物联网、云计算、大数据、人工智能等多个领域的最新发展成果,为汽车产业和交通运输行业带来了革命性的变革。
随着全球经济的持续发展和城市化进程的加速推进,交通拥堵、道路安全、能源消耗和环境污染等问题日益凸显。
车联网技术的出现,为解决这些问题提供了新的途径。
它通过将车辆与各种传感器、设备和系统连接起来,实现了对交通状况的实时监测、预警和调度,提高了交通系统的智能化水平和运行效率。
同时,车联网技术的发展也受到了各国政府的高度重视和大力支持。
车联网体系结构及关键技术分析摘要:随着我国社会经济的发展,人们生活水平不断提升,人均汽车拥有量不断上升,增加了城市交通的压力,道路承载容量接近饱和,交通安全问题和环保问题日益严峻,对城市的发展产生极为不利的影响。
在这种背景下,企业联网技术的发展,在缓解城市交通压力,提升交通运输效率,疏散交通方面发挥了十分重要的作用。
国外有很多国家开启了智能交通和车辆信息系统,提升了汽车智能驾驶水平,满足了城市良性发展的基本要求。
因此,本文主要针对车联网体系结构及关键技术进行分析。
关键词:车联网体系;结构;关键技术车联网来源于物联网,主要以车辆作为基本的信息单元,整合车辆资源,能够有效改善城市交通现状,丰富信息交通方式,实现了智能化的交通管理。
因此,本文首先分析物联网基础的相关内容,然后结合实际情况,对车联网概念、体系、架构以及关键技术进行分析,从而为当前车联网的发展提供借鉴和帮助。
一、车联网的内容车联网利用电子标签获取车辆的行驶属性和实际运行的状态系想你,利用GPS技术对车辆进行定位,从而获得车辆行驶的位置等信息,通过无线传输技术,实现了汽车联网信息的共享。
通过RFID和传感器获得道路、桥梁等基础设施的基本情况,最大限度实现信息的共享与传输,为车辆驾驶提供高质量的交通服务。
第一,从技术角度来看,车联网技术主要包括电子标签技术、位置定位技术、无线传输技术、数字广播技术、网络服务平台技术,各个技术之间是相互联系,密切配合。
第二,从系统交互的角度来看,具体包括测车辆通信系统、车与人通信系统以及车与路通信系统等。
在车辆通信系统中,可以加强物与物之间的通信,让任何一辆车都可以成为服务器,当作重要的通信终端。
车与路通信系统可以让车辆能够提前获得道路基本运营情况,是否便于车辆行驶。
车与综合信息平台通信系统汇集了大量的车辆行驶信息,为驾驶人员提供信息、出行等方面的信息。
第三,从应用角度来看,车联网技术主要分析监控应用系统、安全系统以及路况信息系统以及安全保障系统。
车联网标准DSRC及C-V2X发展讲解本文主要讲解DSRC与C-V2X标准之争、国际C-V2X标准进展、中国C-V2X标准进展,分析5G车联网标准的发展。
一、DSRC与C-V2X标准之争1.DSRC与C-V2X标准整体情况车联网V2X(Vehicle-to-Everything)全球存在两大标准流派,DSRC(DedicatedShort Range Communications,专用短程通信技术)和C-V2X(Cellular-Vehicle-to-Everything,基于蜂窝技术的车联网通信)。
2.车联网主要的标准组织和联盟包括:IEEE(美国电气电子工程师学会)、ETSI(欧洲电信标准协会)、3GPP(移动通信伙伴联盟)、ARIB(日本电波产业协会)、TTA(韩国电信技术协会)、IMDA(新加坡资讯通信媒体发展局)、5GAA(5G Automotive Association)等。
ETSI制定了基于DSRC的标准ITS-G5,同时作为3GPP的创建伙伴,ETSI也会从3GPP的技术标准成果中直接转化引用。
3.中国车联网主要标准组织和联盟包括:CCSA(中国通信标准化协会)、C-ITS(中国智能交通产业联盟)、SAE-China(中国汽车工程学会)、NTCAS(全国汽车标准化委员会)、TIAA(车载信息服务产业应用联盟)、TC/ITS(全国智能运输系统标准化技术委员会)、全国道路交通管理标准化技术委员会、IMT-2020(5G)推进组C-V2X工作组、CAICV(中国智能网联汽车产业创新联盟)等。
4.DSRC标准由IEEE基于WIFI制定,并且获得通用、丰田、雷诺、恩智浦、AutoTalks和Kapsch TrafficCom等支持。
通用已经有量产车凯迪拉克CTS搭载DSRC(由Aptiv提供系统,AutoTalks提供模块,恩智浦提供芯片),丰田则在2016年就开始销售具备DSRC技术的皇冠和普锐斯,销量已经超过10万辆(电装提供系统,瑞萨提供芯片)。
车联网平台运营方案一、项目概述车联网是指通过无线通信技术将汽车与互联网连接起来,实现车辆之间的信息交互和与互联网的互通。
车联网平台是搭建车辆、通信、软件和数据等要素,通过云技术将车辆信息进行收集、传输、处理和应用的系统。
本项目旨在建立一个车联网平台,为用户提供智能交通、车辆管理、智能导航、车辆远程控制等功能,提高交通效率、降低能源消耗,改善用户的驾驶体验。
二、平台架构车联网平台的架构包括前端硬件、中间层、后端云平台和应用层四个部分。
1.前端硬件前端硬件包括车载终端设备和车辆传感器。
车载终端设备安装在车辆上,负责收集车辆信息,将其传输到中间层进行处理。
车载终端设备具备无线通信功能,可以与云平台进行数据交互。
车辆传感器可以收集车辆的状态信息,如车速、油耗、发动机温度等。
2.中间层中间层是车联网平台的核心部分,负责处理和分析前端收集的数据。
中间层具备存储和计算能力,能够对大量的车辆数据进行处理、分析和挖掘,提取有价值的信息。
中间层还可以对车辆进行远程控制,如远程锁车、远程启动、远程巡航等。
3.后端云平台后端云平台是车联网平台的数据中心,负责存储、管理和分析海量的车辆数据。
云平台具备高可靠性和可扩展性,能够处理数百万台车辆的数据。
云平台还提供数据接口,可以与第三方应用进行对接,实现更多的功能扩展和应用开发。
4.应用层应用层是车联网平台的用户界面,提供给用户使用的各种应用程序。
应用层可以通过云平台提供的数据接口获取车辆的状态信息,并进行实时监控和控制。
应用层还可以提供智能导航、智能交通管制、车辆管理等功能,满足用户的个性化需求。
三、平台功能车联网平台提供的主要功能包括智能交通、车辆管理、智能导航和车辆远程控制等。
1.智能交通通过车联网平台,可以实现智能交通管制和智能驾驶辅助。
平台可以根据车辆流量和道路状况,实时优化交通信号,提高交通效率。
平台还可以通过车辆传感器收集的数据,实现车辆之间的互相协作,提高行车安全。
一、车联网体系车联网是物联网在交通这个特殊行业的典型应用。
在车联网体系参考模型中主要包括三层:数据感知层、网络传输层和应用层。
1.数据感知层数据感知层承担车辆与道路交通信息的全面感知和采集,是车联网的神经末梢,通过传感器、RFID(射频)、车辆定位等技术,实时感知车况及控制系统、道路环境、车辆当前位置、周围车辆等信息,实现对车辆自身属性以及车辆外在环境,如道路、人、车等静、动态属性的提取,为车联网全面、原始的终端信息服务。
数据感知层的数据来源包括多个部分,一是车辆自身的感知,例如速度、加速度、位置、横摆角加速度等,主要通过车内总线、GPS和其他感知设备来实现;二是对周围车辆行驶状态的感知,比如周围车辆的位置、方位、速度、航向角,这就需要车间通信,以及道路环境的感知,比如交通信号状态、道路拥堵状态、车道驾驶方向、这就需要车路通信,每辆车和路边设施单元需要把自己感知到的信息分发出去;三是通过后台或第三方应用交互来获取更多的数据,比如天气数据等。
2.网络传输层为了车与车、车与路、车与人、车与云(车与后台中心)之间实现信息共享,这就需要考虑通信协议的制定。
网络层通过制定满足业务传输需求的能够适应通信环境特征的网络架构和协议模型,在一种网络环境下整合不同实体所感知到的数据,通过向应用层屏蔽通信网络类型,为应用程序提供透明的信息传输服务。
通过云计算、虚拟化等技术的综合应用,充分利用现有网络资源,为上层应用提供强大的通信支撑和信息支撑服务。
3.应用层车联网的各项应用必须在现有网络体系和协议基础上,兼容未来可能的网络拓展功能。
应用需求是推动车联网发展的原动力,车联网在实现智能交通管理、车辆安全控制、交通事件预警等功能的同时,还应为车联网用户提供车辆信息查询、信息订阅、事件告知等各类服务功能。
同时可以运用云计算平台,面向政府管理部门、整车厂商和信息服务运营企业以及个人用户在内的不同类型用户,提供汽车综合服务与管理功能,共享汽车与道路交通数据,从而支持新型的服务形态和商业运营模式。