平面向量同步练习
- 格式:doc
- 大小:147.00 KB
- 文档页数:20
平面向量的应用 练习一、选择题(共10题)1.在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,若4a =,3b =,2sin 3A =,则B =( )A.π6B.π3C.π6或5π6D.π3或2π32.如图,在重600N 的物体上有两根绳子,绳子与铅垂线的夹角分别为30°,60°,物体平衡时,两根绳子拉力的大小分别为( )A. B.150N,150NC.D.300N,300N3.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=( )A.6 B.5 C.4 D.34.在ABC △中,内角,,A B C 所对的边长分别是,,a b c ,若cos (2)cos c a B a b A -=-,则ABC △的形状为( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形5.长江流域内某地南北两岸平行,如图所示,已知游船在静水中的航行速度1v 的大小110km /h =v ,水流的速度2v 的大小24km /h =v ,设1v 和2v 所成的角为(0π)q q <<,若游船要从A 航行到正北方向上位于北岸的码头B 处,则cos q 等于( )A. B.25-C.35-D.45-6.在ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c .若22()4c a b =-+,π3C =,则ABC △的面积是( )A.3 C.7.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .若π4A =,5a =,4c =,则满足条件的ABC △的个数为( )A.0B.1C.2D.无数多个8.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物的仰角分别为30°,45°,60°,且60m AB BC ==,则建筑物的高度为( )A.mB.mC.mD.m9.若ABC △的三个内角A B C ,,所对的边分别是a b c ,,,若()1sin sin 2C A B -=,且4b =,则22c a -=( )A. 10B. 8C. 7D. 410.在等腰梯形ABCD 中,//222AB DC AB BC CD ===,,P 是腰AD 上的动点,则|2PB PC -uuu r uuu r|的最小值为( )B.3D.274二、填空题(共4题)11.在ABC △中,若30B =°,AB =2AC =,则AB 边上的高是_____________.12.一条两岸平行的河流,水速为1m /s ,小船的速度为2m /s ,小船欲到河的正对岸,为使所走路程最短,小船应朝_______的方向行驶.13.在ABC △中,90ABC Ð=°,4AB =,3BC =,点D 在线段AC 上.若45BDC Ð=°,则BD =______________,cos ABD Ð=____________.14.设O 为ABC V 的外心,若2AO AB AC =+u u u r u u u r u u u r,则sin BAC Ð的值为___________.三、计算题15.在ABC△中,内角A,B,C所对的边分别为a,b,c.已知5a=,1c b-=,1 cos7C=.(1)求B;(2)若内角B的平分线交AC于点D,求ABD△的面积.答案解析1.答案:A解析:因为4a =,3b =,2sin 3A =,所以由正弦定理sin sin a b A B=,可得23sin 13sin 42b AB a´×===,又b a <,可得B 为锐角,则π6B =.2.答案:C解析:作平行四边形OACB ,使30,60AOC BOC Ð=°Ð=°,如图.在平行四边形OACB 中,60ACO BOC Ð=Ð=°,90OAC Ð=°,cos30OA OC °==u u r u u u r ,sin 30300N AC OC °==u u u r u u u r ,300N OB AC ==u u u r u u u r.3.答案:A解析:由sin sin 4sin a A b B c C -=,结合正弦定理,得2224a b c -=,所以22223b c a c +-=-.由余弦定理得2221cos 24b c a A bc +-==-,即23124c bc -=-,整理得6bc=.故选A.4.答案:D解析:由余弦定理得222cos 2c b a A bc+-=,222cos 2c a b B ac +-=,代入原式得2222222222222c a b c b a c b a a c bc c -++-+-=×-,所以22222222c a b c b a ac bc -++-=,所以222()()0a b c a b --+=,解得a b =或2220c a b -+=,则ABC △为等腰三角形或直角三角形.5.答案:B解析:设游般的实际速度为v ,1v 与河流南岸上游的夹角为a ,1AD =v u u u r ,2AC =v u u u r.以AD ,AC 为邻边作平行四边形如图所示,要使得游船正好航行到B 处,则12cos a =v v,即212cos 5a ==v v .又πq a =-,所以2cos cos(π)cos 5q a a =-=-=-,故选B.6.答案:B解析:由22()4c a b =-+可得22224c a b ab =+-+,又由余弦定理得22222π2cos3c a b ab a b ab =+-=+-,所以24ab ab -+=-,解得4ab =.则11sin 422ABC S ab C ==´△.故选B.7.答案:B4sin C=,sin sin C A \=<=,C A \<,所以C 只有一解,所以满足条件的ABC △只有1个,故选B.8.答案:D解析:设建筑物的高度为m h .由题图知,2PA h =,PB =,PC =.在PBA △和PBC △中,分别由余弦定理得,cos PBA Ð=,①cos PBC Ð=.②180PBA PBC °Ð+Ð=Q ,cos cos 0PBA PBC \Ð+Ð=.③由①②③,解得h =h =-.即建筑物的高度为m .9.答案:B解析:11sin()sin sin()22C A B A C -==+,即2sin cos 2cos sin sin cos cos sin C A C A A C A C -=+,即sin cos 3sin cos C A A C =,由正弦定理和余弦定理得:222222322b c a a b c c a bc ab +-+-×=×,即222222333b c a a b c +-=+-,即22244221632c a b -==´=,则228c a -=,故选B.10.答案:C解析:如图,以A 为原点,射线AB 为x轴正半轴建立直角坐标系,则由题意可得3(2,0),2B C æççè,设()P a ,其102a ≤≤,则3(2,),2PB a PC a æö=-=-ç÷ç÷èøuuu r uuu r ,所以52,2PB PC a æö-=-ç÷ç÷uuu r uuu r ,所以2PB-uuu r ==,所以当14a =时,|2|PB PC -uuu r uuu r ,故选:C 11.答案:1或2解析:由正弦定理sin sin AC ABB C=,得sin 30sin AB C AC °===.0150C <<°°Q ,60C \=°或120C =°.当60C =°时,90A =°,AB 边上的高为2;当120C =°时,30A =°,AB 边上的高为2sin 301´°=.12.答案:与水速成120°角解析:如图,为使小船所走路程最短,+船水v v 应与岸垂直.又|1,|||2,90AB AC ADC ====Ð=°v v u u u u r u u u r 船水∣∣,所以30CAD Ð=°.所以小船应朝与水速成120°角的方向行驶.13.解析:在BCD △中,由正弦定理得sin sin BD BC C BDC =Ð,即45BD =BD =,则()43cos cos 4555ABD A Ð=-==°.14.解析:设ABC △外接圆的半径为R ,因为2AO AB AC =+u u u r u u u r u u u r ,所以2AC AO AB BO =-=u u u r u u u r u u u r u u u r ,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ^,因为//AC BO ,所以OM BO ^,即π2BOM Ð=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R æöÐ=+Ð=-Ð=-=-=-=-ç÷èø,在BOC △中由余弦定理可得:BC ===,在ABC △中,由正弦定理可得:sin 2BC BAC R Ð===15.答案:(1)π3B =(2解析:(1)在ABC △中,由余弦定理得2222225(1)1cos 2107a b c b b C ab b +-+-+===,解得7b =,8c =.由余弦定理得2222564491cos 22582a c b B ac +-+-===´´.因为(0,π)B Î,所以π3B =.(2)由(1)知,π6ABD Ð=,22249642511cos 227814b c a A bc +-+-===´´,sin A =在ABD △中,ππsin sin πsin 66ADB A A æöæöÐ=--=+=ç÷ç÷èøèøππ11113sin cos cos sin 6614214A A +=´=.由正弦定理得sin sin AB AD ADB ABD =ÐÐ,所以8131142AD =,得5613AD =.所以ABD △的面积1156sin 82213S AD AB A =×=´´=。
平面向量专题练习(带答案详解) 平面向量专题练(附答案详解)一、单选题1.已知向量 $a=(-1,2)$,$b=(1,1)$,则 $a\cdot b$ 等于()A。
3 B。
2 C。
1 D。
02.已知向量 $a=(1,-2)$,$b=(2,x)$,若 $a//b$,则 $x$ 的值是()A。
-4 B。
-1 C。
1 D。
43.已知向量 $a=(1,1,0)$,$b=(-1,0,2)$,且 $ka+b$ 与 $2a-b$ 互相垂直,则 $k$ 的值是()A。
1 B。
5/3 C。
3/5 D。
7/54.等腰直角三角形 $ABC$ 中,$\angle ACB=\frac{\pi}{2}$,$AC=BC=2$,点 $P$ 是斜边 $AB$ 上一点,且 $BP=2PA$,那么 $CP\cdot CA+CP\cdot CB$ 等于()A。
-4 B。
-2 C。
2 D。
45.设 $a,b$ 是非零向量,则 $a=2b$ 是成立的()A。
充分必要条件 B。
必要不充分条件 C。
充分不必要条件 D。
既不充分也不必要条件6.在 $\triangle ABC$ 中 $A=\frac{\pi}{3}$,$b+c=4$,$E,F$ 为边 $BC$ 的三等分点,则 $AE\cdot AF$ 的最小值为()A。
$\frac{8}{3}$ B。
$\frac{26}{9}$ C。
$\frac{2}{3}$ D。
$3$7.若 $a=2$,$b=2$,且 $a-b\perp a$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{6}$ B。
$\frac{\pi}{4}$ C。
$\frac{\pi}{3}$ D。
$\frac{\pi}{2}$8.已知非零向量 $a,b$ 满足 $|a|=6|b|$,$a,b$ 的夹角的余弦值为 $\frac{1}{3}$,且 $a\perp (a-kb)$,则实数 $k$ 的值为()A。
18 B。
人教A 版(2019)必修第二册《6.1 平面向量的概念》同步练习一 、单选题(本大题共12小题,共60分)1.(5分)已知平面向量a →=(−2,1),b →=(1,2),则|a →−2b →|的值是( )A. 1B. 5C. √3D. √52.(5分)已知向量a →=(2,4),b →=(−2,m),且|a →+b →|=|a →−b →|,则m =()A. √3B. 1C.2√33D. 23.(5分)已知四边形ABCD 满足AD →=14BC →,点M 满足DM →=MC →,若BM →=xAB →+yAD →,则x +y =()A. 3B. 52C. 2D. −124.(5分)已知四棱锥P −ABCD 底面为平行四边形,点M 为BC 中点,设AB →=a →,AD →=b →,AP →=c →,则下列向量中与PM →相等的向量是( )A. 12a →+b →−c →B. a →+12b →−c →C. −a →−12b →+c →D. a →+12b →+c →5.(5分)已知直线上OA →,OB →的坐标分别为−1,2,则下列结论不正确的是( )A. OA →<OB →B. |OA →|<|OB →| C. |AB →|=3D. AB 的中点坐标为126.(5分)在△ABC 中,已知BC →=3BD →,则AD →=()A. 13(AC →+2AB →) B. 13(AB →+2AC →) C. 14(AC →+3AB →)D. 14(AC →+2AB →)7.(5分)下列说法中错误的是()A. 零向量与任一向量平行B. 方向相反的两个非零向量不一定共线C. 单位向量的长度为1D. 相等向量一定是共线向量8.(5分)下列说法正确的是( )A. 单位向量均相等B. 单位向量e →=1 C. 零向量与任意向量平行D. 若向量a →,b →满足|a →|=|b →|,则a →=±b →9.(5分)若平面单位向量a →,b →,c →不共线且两两所成角相等,则|a →+b →+c →|=( )A. √3B. 3C. 0D. 110.(5分)已知不共线的向量a →,b →,|a →|=2,|b →|=3,a →.(b →−a →)=1,则|a →−b →|=( )A. √3B. 2√2C. √7D. √2311.(5分)有下列四个命题:①互为相反向量的两个向量模相等;①若向量AB →与CD →是共线的向量,则A ,B ,C ,D 必在同一条直线上;①若|a |=|b |,则a =b 或a =-b ;①若a ①b =0,则a =0或b =0;其中正确结论的个数是( )A. 4B. 3C. 2D. 112.(5分)已知a →,b →为两个单位向量,下列四个命题中正确的是( )A. 如果a →与b →平行,那么a →与b →相等 B. a →与b →相等C. 如果a →与b →平行,那么a →=b →或a →=−b →D. a →与b →共线二 、填空题(本大题共5小题,共25分)13.(5分)与向量a →=(1,2,−2)方向相同的单位向量是 ______.14.(5分)若向量AB →=−3CD →,则向量AB →与向量CD →共线.______ (判断对错) 15.(5分)给出下列六个命题:①两个向量相等,则它们的起点相同,终点相同; ②若|a →|=|b →|,则a →=b →;③若AB →=DC →,则A ,B ,C ,D 四点构成平行四边形; ④在平行四边形ABCD 中,一定有AB →=DC →; ⑤若m →=n →,n →=p →,则m →=p →; ⑥若向a →//b →,b →//c →,则a →//c →. 其中错误的命题有______.(填序号)16.(5分)已知平面内三点A (2,-3),B (4,3),C (5,a )共线,则a=____ 17.(5分)已知向量a →=(m,1),b →=(4−n,2),m >;0,n >;0,若a →//b →,则1m+8n的最小值为__________;三 、多选题(本大题共4小题,共20分) 18.(5分)下列命题中正确的是( )A. 单位向量的模都相等B. 长度不等且方向相反的两个向量不一定是共线向量C. 若⇀ a 与b →满足|a |>|b |,且⇀ a 与b →同向,则a →>b →D. 两个有共同起点而且相等的向量,其终点必相同 19.(5分)下列说法中,正确的个数是( )A. 时间、摩擦力、压强、重力、身高、温度、加速度都是向量;B. 向量的模是一个正实数;C. 相等向量一定是平行向量;D. 向量a →与b →不共线,则a →与b →都是非零向量. 20.(5分)下列关于平面向量的说法中,正确的是()A. 若a →=b →,b →=c →,则a →=c →B. 若a →//b →,b →//c →,则a →//c →C. 若xa →+yb →=0→,x ,y ∈R ,a →,b →不共线,则x =y =0 D. 若|a →+b →|=|a →−b →|,则|a →|2+|b →|2=|a →+b →|221.(5分)已知点P 为△ABC 所在平面内一点,且PA →+2PB →+3PC →=0→,若E 为AC 的中点,F 为BC 的中点,则下列结论正确的是()A. 向量PA →与PC →可能平行 B. 向量PA →与PC →可能垂直 C. 点P 在线段EF 上D. PE :PF =1:2四 、解答题(本大题共4小题,共48分)22.(12分)已知四点A(x,0),B(2x ,1),C(2,x),D(6,2x ). (1)求实数x ,使向量AB →与CD →共线;(2)当向量AB →与CD →共线时,A ,B ,C ,D 四点是否存在同一直线上?23.(12分)如图,半圆的直径AB =6,C 是半圆上的一点,D ,E 分别是AB ,BC 上的点,且AD =1,BE =4,DE =3.[{"ℎ":"57.0","w":"837.0","x":"63.0","y":"509.0"}](1)求证:AC →//DE →;(2)求|AC →|.24.(12分)已知D,E,F 分别是ΔABC 各边AB ,BC ,CA 的中点,分别写出图中与DE →,EF →,FD →相等的向量.25.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c.已知向量m→=(a,√3b),n→=(cosA,sinB),且m→//n→.(Ⅰ)求角A的大小;(Ⅰ)若c=5,cosB=√21,求a的值.7答案和解析1.【答案】B;【解析】解:a →−2b →=(−4,−3). ∴|a →−2b →|=√(−4)2+(−3)2=5. 故选:B .利用数量积运算性质即可得出.此题主要考查了数量积运算性质,考查了推理能力与计算能力,属于基础题.2.【答案】B;【解析】解:由题意可得|a →+b →|2=|a →−b →|2, 即a →2+2a →·b →+b →2=a →2−2a →·b →+b →2, 可得a →·b →=0,又a →=(2,4),b →=(−2,m), 即有2×(−2)+4m =0, 解得m =1, 故选:B.由已知条件结合向量模的求法可得a →·b →=0,再代入坐标运算即可求解. 此题主要考查了向量模的求法,向量数量积的坐标运算,属于基础题.3.【答案】C;【解析】解:∵四边形ABCD 满足AD →=14BC →,点M 满足DM →=MC →,∴BC →=4AD →,故点M 为线段DC 的中点, ∴BM →=BD →+BC →2=BA →+AD →+4AD→2=−12AB →+52AD →.又∵BM →=xAB →+yAD →,∴x =−12,y =52, 故 x +y =2, 故选:C.由题意先求得BC →=4AD →,故点M 为线段DC 的中点,再利用平面向量的线性运算,借助平面向量的基本定理即可求解.本题考查的知识点是平面向量的基本定理,平面向量的线性运算,属于中档题.4.【答案】B;【解析】解:∵四棱锥P −ABCD 底面为平行四边形,点M 为BC 中点,AB →=a →,AD →=b →,AP →=c →,∴PM →=PB →+12BC →=PA →+AB →+12BC →=−c →+a →+12b →, 故选:B.直接根据向量的三角形法则进行求解即可.此题主要考查了向量的三角形法则,考查了推理能力与计算能力,属于基础题.5.【答案】A;【解析】解:向量不能比较大小,故A 不正确, ∵|OA →|=1,|OB →|=2,∴|OA →|<|OB →|,故选项B 正确, ∵AB →=OB →−OA →=2−(−1)=3,∴|AB →|=3,故选项C 正确, ∵A 的坐标为−1,B 的坐标为2,∴AB 的中点坐标为−1+22=12,故选项D 正确.故选:A.利用直线上的向量的坐标运算求解.此题主要考查了直线上的向量的坐标运算,考查了中点坐标公式,是基础题.6.【答案】A;【解析】解:根据向量的三角形法则得到AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →−AB →)=23AB →+13AC →=13(2AB →+AC →);故选:A.利用平面向量的三角形法则,将AD →用AB →,AC →表示,找出正确答案. 此题主要考查了向量的三角形法则,属于基础题.7.【答案】B;【解析】解:零向量与任一向量平行,故A 正确; 方向相反的两个非零向量一定共线,故B 错误; 单位向量的长度为1,故C 正确;相等向量的模相等,方向相同,一定是共线向量,故D 正确. 故选:B.由零向量的概念判断A ;由相反向量的概念判断B ;由单位向量的概念判断C ;由相等向量的概念判断D.此题主要考查向量的基本概念,是基础题.8.【答案】C; 【解析】此题主要考查了向量的概念,属于基础题. 根据向量的概念逐一判定即可.解:单位向量的模相等且为1,但单位向量的方向不确定,故A 、B 错误; 零向量与任意向量平行,故C 正确;若向量a →,b →满足|a →|=|b →|,只能得出向量a →,b →的模相等,但向量a →,b →的方向不确定,故D 错误; 故选C.9.【答案】C;【解析】解:∵平面单位向量a →,b →,c →不共线且两两所成角相等; ∴a →,b →,c →两两夹角为120°,且|a →|=|b →|=|c →|=1;∴|a →+b →+c →|=√(a →+b →+c →)2=√(a →)2+(b →)2+(c →)2+2a →.b →+2a →.c →+2b →.c →=√3+6cos120° =0 故选:C .根据三个向量不共线且两两所成的角相等可知,它们两两夹角为120°;再根据平面向量模的计算公式即可得出答案.该题考查了平面向量模的运算,属基础题.10.【答案】A;【解析】解:∵|a →|=2,|b →|=3,a →⋅(b →−a →)=1, ∴a →⋅b→−a 2→=a →⋅b →−4=1,∴a →⋅b →=5,∴|a →−b →|2=a 2→−2a →⋅b →+b 2→=4−2×5+9=3,∴|a →−b →|=√3, 故选:A .由已知结合数量积的运算可得a →⋅b →=5,代入运算可得|a →−b →|2的值,求其算术平方根即得.此题主要考查平面向量数量积的运算,涉及向量的模长的求解,属中档题.11.【答案】D;【解析】此题主要考查平面向量的基本概念与应用问题,是基础题.根据平面向量的基本概念,对选项中的命题进行分析、判断正误即可.解:对于①,互为相反向量的两个向量模相等,命题正确;对于①,向量AB 与CD 是共线的向量,点A ,B ,C ,D 不一定在同一条直线上, 如平行四边形的对边表示的向量,原命题错误; 对于①,当|a |=|b |时,a =b 或a =-b 不一定成立, 如单位向量模长为1,但不一定共线,原命题错误; 对于①,当a ①b =0时,a =0或b =0或a ①b ,原命题错误; 综上,正确的命题是①,共1个. 故选D.12.【答案】C;【解析】解:∵a →,b →为两个单位向量,∴如果a →与b →平行,那么a →=b →或a →=−b →,故A 不正确,C 正确; 因为两向量相等的充要条件是模相等且方向相同,所以B 不正确; ∵a →,b →为两个单位向量,∴a →,b →为两个向量不一定平行,故D 不正确. 故选:C .a →,b →为两个单位向量,它们的模是单位长度1,方向是任意的,根据两个单位向量的这两条性质,可以判断四个选项的真假.该题考查了命题的真假判断与应用,解答该题的关键是单位向量的定义及两向量相等的条件,同时考查了两向量的应用.13.【答案】(13,23,-23);【解析】解:向量a →=(1,2,−2), 可得|a →|=√1+4+4=3,所以与向量a →=(1,2,−2)方向相同的单位向量是:(13,23,−23). 故答案为:(13,23,−23).求出向量的模,然后求解单位向量即可.此题主要考查单位向量的求法,向量的模的计算,是基础题.14.【答案】对;【解析】解:向量AB →=−3CD →,根据平面向量的共线定理知, 向量AB →与向量CD →共线. 故答案为:对.根据平面向量的共线定理,判断即可.本题考查了平面向量的共线定理应用问题,是基础题.15.【答案】①②③⑥;【解析】解:在①中,两个零向量相等,则它们的起点相同,终点不一定相同,故①错误;在②中,若|a →|=|b →|,则a →与b →大小相等,方向不一定相同,故②错误; 在③中,若AB →=DC →,则A ,B ,C ,D 四点不一定构成平行四边形,故③错误; 在④中,在平行四边形ABCD 中,由向量相等的定义得一定有AB →=DC →,故④正确; 在⑤中,若m →=n →,n →=p →,则向量相等的定义得m →=p →,故⑤正确; 在⑥中,若向a →//b →,b →//c →,当b →=0→时,a →与c →不一定平行,故⑥不正确. 故答案为:①①①①.在①中,两个零向量相等,则它们的起点相同,终点不一定相同;在②中,a →与b →大小相等,方向不一定相同;在③中,若AB →=DC →,则A ,B ,C ,D 四点不一定构成平行四边形;在④中,由向量相等的定义得一定有AB →=DC →;在⑤中,由向量相等的定义得m →=p →;在⑥中,当b →=0→时,a →与c →不一定平行.该题考查命题真假的判断,是基础题,解题时要认真审题,注意向量相等、向量平行的合理运用.16.【答案】6;【解析】解:AB=(2,6) ,AC=(3,a+3) 由已知知AB ∥AC 所以2(a+3)=6×3 解得a=6 故答案为:617.【答案】92; 【解析】此题主要考查利用基本不等式求最值及平面向量共线的充要条件,属于中档题. 由a →//b →,可得:n +2m =4,则1m+8n=14(n +2m )(1m+8n),化简利用基本不等式求解即可.解:∵a →//b →,∴4−n −2m =0,即n +2m =4, ∵m >;0,n >;0, ∴1m +8n=14(n +2m )(1m +8n ) =14(10+n m+16m n)⩾14(10+2√n m·16mn)=92,当且仅当n =4m =83时取等号, ∴1m +8n 的最小值是92. 故答案为92.18.【答案】AD; 【解析】此题主要考查向量的有关概念,属于基础题.利用向量的有关概念,判断各个选项是否正确,从而得出结论.解:对于选项A :单位向量的模均为1,故A 正确,对于选项B :长度不等且方向相反的两个向量一定是共线向量,故B 错误, 对于选项C :向量不能比较大小,故C 错误, 对于选项D :根据相等向量的概念知,故D 正确. 故选AD .19.【答案】CD; 【解析】此题主要考查了向量的基本概念,熟练掌握向量,零向量,平行向量,向量的模的概念是解答该题的关键,属于基础题.直接由向量、零向量、向量相等,向量的模和向量共线的概念逐一核对四个命题得答案.解:对于A ,时间没有方向,不是向量,故A 错误;对于B ,零向量的模为0,故B 错误;对于C ,相等向量的方向相同,因此一定是平行向量,故C 正确;对于D ,根据零向量与任意向量共线,得到向量a →与b →不共线,则a →与b →都是非零向量,故D 正确.故选CD .20.【答案】ACD;【解析】解:若a →=b →,b →=c →,则一定a →=c →,∴A 正确;若a →与c →不平行,b →=0→,满足a →//b →,b →//c →,则得不出a →//c →,即B 错误;若xa →+yb →=0→,x,y ∈R,a →,b →不共线,则一定得出x =y =0,若x ,y 中有一个不为0,则可得出a →,b →共线,与已知不共线矛盾,∴C 正确;若|a →+b →|=|a →−b →|,则(a →+b →)2=(a →−b →)2,则a →·b →=0,从而得出|a →+b →|2=|a →|2+|b →|2,即D 正确.故选:ACD.A 显然正确;b →=0→时,可说明B 错误;根据平面向量基本定理即可说明C 正确;进行向量数量积的运算即可说明D 正确.此题主要考查了平面向量和共线向量基本定理,向量数量积的运算,考查了计算能力,属于基础题.21.【答案】BC;【解析】解:∵PA →+2PB →+3PC →=0→,∴PA →+PC →+2(PB →+PC →)=0→,∵E 为AC 的中点,F 为BC 的中点,∴2PE →+2×2PF →=0→,∴PE →=−2PF →,∴P 为FE 的三等分点(靠近点F),即PE :PF =2:1,故C 正确,D 错误,∴向量PA →与PC →不可能平行,故A 错误;当|AC →|=2|EP →|=43|EF →|=23|AB →|时,向量PA →与PC →垂直,B 正确.故选:BC.由题意并根据平面向量线性运算可知PE →=12(PA →+PC →),PF →=12(PB →+PC →),代入等式可得PE →=−2PF →,即可判断C 和D ;根据平面中的位置关系,可判断A 和B.本题考查平面向量的加法、减法和数乘运算及平面向量平行和垂直的判断,属中档题.22.【答案】解:(1)AB →=(x ,1),CD →=(4,x ),∵AB →与CD →共线,∴x 2-4=0,解得x=±2.∴当x=±2时,向量AB →与CD →共线.(2)取x=2时,A (2,0),B (4,1),C (2,2),D (6,4),直线AC ⊥x 轴,而点B ,D 不在直线AC 上,因此四点不共线.取x=-2时,A (-2,0),B (-4,1),C (2,-2),D (6,-4),直线AB 的方程为y-0=1−0−4−(−2)(x+2),化为:x+2y+2=0.点B ,D 满足直线AB 的方程,因此四点共线.;【解析】(1)AB →=(x,1),CD →=(4,x),利用向量共线定理解出x.(2)取x =2时,A(2,0),B(4,1),C(2,2),D(6,4),直线AC ⊥x 轴,而点B ,D 不在直线AC 上,即可判断出四点共线.取x =−2时,A(−2,0),B(−4,1),C(2,−2),D(6,−4),直线AB 的方程为:x +2y +2=0.验证点B ,D 是否满足直线AB 的方程,即可判断出结论.此题主要考查了向量共线定理、向量共线与直线平行的关系,考查了推理能力与计算能力,属于中档题.23.【答案】(1)证明:由题意知,在△DEB 中,BD =5,DE =3,BE =4,∴DE 2+BE 2=BD 2,∴△DEB 是直角三角形,∠DEB =90∘.又∵点C 为半圆上一点,∴∠ACB =90∘.∴AC//DE ,故AC →//DE →.(2)解:由AC//DE 知△ABC ∽△DBE.∴AC DE =AB BD ,即AC 3=65.∴AC =185,即|AC →|=185.;【解析】本题考查向量的概念及几何表示、平行向量的概念以及向量的模,属于基础题.(1)根据勾股定理可得DE ⊥BE ,因为AC ⊥BC ,故可得AC →//DE →;(2)由三角形相似得相似比,从而可求出答案.24.【答案】略;【解析】DE →=AF →=FC →;EF →=BD →=DA →;FD →=CE →=EB →.25.【答案】解:(Ⅰ)∵m →∥n →,∴asinB −√3bcosA =0,∴根据正弦定理得,sinAsinB −√3sinBcosA =0,且sinB >0,∴sinA =√3cosA ,tanA =√3,且A ∈(0,π),∴A =π3;(Ⅱ)∵cosB =√217,∴sinB =2√77,且C =2π3−B , ∴sinC =sin(2π3−B)=√32×√217+12×2√77=5√714,且c=5, ∴根据正弦定理得,c sinC =b sinB ,即5√714=2√77,解得b=4,∴根据余弦定理得,a 2=b 2+c 2-2bccosA=16+25-2×4×5×12=21,∴a =√21.;【解析】(Ⅰ)根据m →//n →即可得出asinB −√3bcosA =0,然后根据正弦定理即可得出sinA =√3cosA ,然后即可求出A =π3;(Ⅰ)可先求出sinB =2√77,sinC =5√714,然后根据正弦定理可求出b 的值,进而根据余弦定理可求出a 的值.本题考查了平行向量的坐标关系,正余弦定理,两角差的正弦公式,考查了计算能力,属于中档题.。
平面向量同步练习预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制平面向量的概念及线性运算A组专项基础训练一、选择题(每小题5分,共20分)1. 给出下列命题:①两个具有公共终点的向量,一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小;③?a = 0(入为实数),则入必为零;④入□为实数,若?a= b 则a与b共线.其中错误命题的个数为A. 1B. 2C. 3D. 42. 设P是厶ABC所在平面内的一点,BCrB A= 2西贝UA.PA^ PB= 0B. P CT P A= 0C. P B+ PC= 0D. PA^ PB+ PC= 03. 已知向量a, b不共线,c= ka+ b (k€ R), d= a—b.如果c// d,那么A. k = 1且c与d同向B. k= 1且c与d反向C. k =— 1且c与d同向D. k=— 1且c与d反向4. (2011四川)如图,正六边形ABCDEI中, B A^C D^ EF等于()A. 0B. "BEC. ADD. CF二、填空题(每小题5分,共15分)5.____________________________________________________________________ ____________________________ 设a、b是两个不共线向量,X B= 2a+ pb, BC= a+ b, CD= a—2b,若A、B D三点共线,则实数p的值为_________________6. 在?ABCDK X B= a, At= b, AN= 3心M为BC的中点,贝U S= ___(用a, b 表示).7. 给出下列命题:①向量AB勺长度与向量BA的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④向量AB与向量CD是共线向量,则点A、B、C D必在同一条直线上.其中不正确的个数为_________ .三、解答题(共22分)18 (10分)若a, b是两个不共线的非零向量,a与b起点相同,则当t为何值时,a, t b, 3(a+ b)三向量的终点在同一条直线上?9. (12分)在厶ABC中, E、F分别为AC AB的中点,BE与CF 相交于G点,设AB= a,AC= b,试用a, b表示AG。
高中数学《平面向量的应用》同步练习
高中数学《平面向量的应用》同步练习
【小编寄语】查字典数学网小编给大家整理了高中数学《平面向量的应用》同步练习,希望能给大家带来帮助!
当堂练习:
1.已知A、B、C为三个不共线的点,P为△ABC所在平面内一点,若
,则点P与△ABC的位置关系是 ( )
A、点P在△ABC内部
B、点P在△ABC外部
C、点P在直线AB上
D、点P在AC边上
2.已知三点A(1,2),B(4,1),C(0,-1)则△ABC的形状为 ( )
A、正三角形
B、钝角三角形
C、等腰直角三角形
D、等腰锐角三角形
3.当两人提起重量为|G|的旅行包时,夹角为
,两人用力都为|F|,若|F|=|G|,则
的值为( )
A、300
B、600
C、900
D、1200
4.某人顺风匀速行走速度大小为a,方向与风速相同,此时风速大小为v,则此人实际感到的风速为 ( )
A、v-a
B、a-v
C、v+a
D、v
5.一艘船以5km/h的速度向垂直于对岸方向行驶,船的实际航行方向与水流方向成300角,则水流速度为 km/h。
的合力为
,如上右图,在平行四边形
中,因为
,所以
.即
,所以细绳
受力最大.
当堂练习:
1.D;
2.C;
3.D;
4.A;
5. 5
km/h; 6. 粒子b相对于粒子a的位移为(1,7), S在Sa 方向上的投影为-5;
7.
8.
9.略;
10.|
|=14,cos∠ABC=。
第二章《平面向量》一、选择题1.在矩形ABCD 中,O 是对角线的交点,若e e 则213,5===( )A .)35(2121e e +B .)35(2121e e -C .)53(2112e e - D .)35(2112e e - 2.化简)]24()82(21[31b a b a --+的结果是( )A .-2B .-2C .-D .-3.对于菱形ABCD ,给出下列各式: ①BC AB =②||||BC AB =③||||BC AD CD AB +=- ④||4||||22AB BD AC =+ 2其中正确的个数为 ( )A .1个B .2个C .3个D .4个4 ABCD 中,设====,,,,则下列等式中不正确的是( ) A .=+B .=-C .=-D .=-5.已知向量与反向,下列等式中成立的是( )A .||||||-=-B .||||-=+C .||||||b a b a -=+D .||||||b a b a +=+6.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为 ( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5) 7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③)3,2(1-=e)43,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是( )A .①B .①③C .②③D .①②③ 8.与向量)5,12(=平行的单位向量为( )A .)5,1312(B .)135,1312(--C .)135,1312(或)135,1312(--D .)135,1312(±±9.若32041||-=-,5||,4||==b a ,则与的数量积为( )A .103B .-103C .102D .1010.若将向量)1,2(=a 围绕原点按逆时针旋转4π得到向量,则的坐标为( )A .)223,22(--B .)223,22(C .)22,223(-D .)22,223(-11.设k ∈R ,下列向量中,与向量)1,1(-=一定不平行的向量是 ( ) A .),(k k b =B .),(k k c --=C .)1,1(22++=k kD .)1,1(22--=k k12.已知12||,10||==,且36)51)(3(-=,则b a 与的夹角为 ( )A .60°B .120°C .135°D .150°二、填空题13.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 .14.在四边形ABCD 中,若||||,,b a b a b AD a AB -=+==且,则四边形ABCD 的形状是 15.已知)2,3(=a ,)1,2(-=,若λλ++与平行,则λ= .16.已知e 为单位向量,||=4,e a 与的夹角为π32,则e a 在方向上的投影为 . 三、解答题17.已知非零向量,满足||||-=+,求证: ⊥18.已知在△ABC 中,)3,2(=,),,1(k =且△ABC 中∠C 为直角,求k 的值. 19、设21,e e 是两个不共线的向量,2121212,3,2e e CD e e CB e k e AB -=+=+=,若A 、B 、D 三点共线,求k 的值.20.已知2||= 3||=,b a 与的夹角为60o,b a c 35+=,b k a d +=3,当当实数k 为何值时,⑴∥ ⑵⊥21.如图,ABCD 为正方形,P 是对角线DB 上一点,PECF 为矩形, 求证:①PA=EF ;②PA ⊥EF.22.如图,矩形ABCD 内接于半径为r 的圆O ,点P 是圆周上任意一点,求证:PA 2+PB 2+PC 2+PD 2=8r 2.参考答案13. 120°; 14. 矩形 15、 1± 16. 2- 三、解答题: 17.证:()()22-=+⇒+=+⇒-=+18.解:)3,1()3,2(),1(--=-=-=k k19.()212121432e e e e e e -=+--=-=若A ,B ,D 三点共线,则与共线, 即212142e e e k e λλ-=+由于不共线21e e 可得:221142e e k e e λλ-==故8,2-==k λ20.⑴若∥ 得59=k⑵若⊥得1429-=k 21.解以D 为原点为x 轴正方向建立直角坐标系 则A(0,1), C:(1,0) B:(1,1) 故EF PA =22.证:-=-=,即22222228 44rPDPCPBPArr=+++=+。
第1课时 平面向量的实际背景及基础概念一、选择题1.下列各量中不是向量的是(A.浮力 B .风速 C.位移 D.2.下列命题正确的是(A.向量AB 与BA 是两平行向量B.若a 、b 都是单位向量,则a=bC.若=,则A 、B 、C 、D四点构成平行四D.3. 在△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,则(A. 与AC 共线B. 与CB 共线C. 与相等D. 与相等 4.在下列结论中,正确的结论为((1)|a |=|b |⇒a =b ; (2) a ∥b 且|a |=|b | ⇒ a =b ; (3) a =b ⇒a ∥b 且|a |=|b |(4) a ≠b ⇒ a 与b 方向相反 A. (3) B.(2)(3) C.(2)(4) D.(1)(3)(4) 二、填空题:5.物理学中的作用力和反作用力是模 且方向 的共线向量.6.把平行于某一直线的一切向量归结到共同的始点,则终点所构成的图形是 ;若这些向量为单位向量,则终点构成的图形是 .7.已知||=1,| AC |=2,若∠BAC=60°,则|BC |= .8.在四边形ABCD 中, =,且||=||,则四边形ABCD 是 .三、解答题:9. 某人从A 点出发向西走了200m 到达B 点,然后改变方向向西偏北60°走了450m 到达C点,最后又改变方向,向东走了200m 到达D 点. (1)作出向量、、 (1 cm 表示200 m).(2)求的模.10.如图,已知四边形ABCD 是矩形,设点集M ={A ,B ,C ,D },求集合T ={、P 、Q ∈M ,且P 、Q 不重合}.第10题图A B一、选择题1.下列等式: a +0=a , b +a =a +b ,AB +AC =BC , AB +BC =BC 正确的个数是( ) A.2 B .3 C.4 D.52.化简++的结果等于( ) A. B . C. SPD.3.若C 是线段AB 的中点,则 AC +为A. B . C. 0D. 以上都错4.O 为平行四边形ABCD 平面上的点,设=a ,=b ,=c ,=d ,则( )A.a +b =c +d B .a +c =b +d C.a +d =b +c D.a +b +c +d =0 二、填空题:5.化简:(OM BO MB AB +++)= ; 6.如图,在四边形ABCD 中,根据图示填空:b +e = , f +d = ,a +b +c = .7.已知向量a 、b 分别表示“向北走5km ”和“向西走5公里”,则a +b 表示 ; 8、一艘船从A 点出发以23km/h 的速度向垂直于对岸的方向行驶,而船实际行驶速度的大小为4 km/h ,则河水的流速的大小为 . 三、解答题:9.一架飞机向北飞行300公里,然后改变方向向东飞行400公里,求飞机飞行的路程和位移.10.如图所示,O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a 、b 、c 、d 的方向(用箭头表示),使a +b =AB ,c -d =,并画出a +d.Dd e c A f Ca bBC一、选择题1.下列等式:①AB -= ②AB -= ③-(-a )=a ④a +(-a )=0 ⑤a +(-b )=a -b( )A.2 B .3 C.4D.52. 在△ABC 中, =a , =b ,则AB 等于( ) A.a +bB .-a +(-b ) C.a -bD.b -a3.在下列各题中,正确的命题个数为( )(1)若向量a 与b 方向相反,且|a |>|b |,则a +b 与a (2)若向量a 与b 方向相反,且|a |>|b |,则a -b 与a +b(3)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a (4)若向量a 与b 方向相同,且|a |<|b |,则a -b 与a +b A.1 B.2 C.3 D.44.若a 、b 是非零向量,且|a -b |=|a |=|b ,则a 和a +b 的夹角是( ) A.090 B . 600 C.300 D.045二、填空题5. 在正六边形ABCDEF 中, AE =m , AD =n ,则BA = .6. 已知a 、b 是非零向量,则|a -b |=|a |+|b |时,应满足条件. 7. 如图,在四边形ABCD 中,根据图示填空: c -d = ,a +b +c -d= .8.已知=a , =b ,若||=12,||=5,且∠AOB =90°,则|a -b |= . 三、解答题9. 试用向量方法证明:对角线互相平分的四边形是平行四边形.10. 已知O 是平行四边形ABCD 的对角线AC 与BD 的交点,若=a , BC =b ,=c ,试证明:c +a -b =.Dd e c A fa b C B第4、5课时 向量的数乘运算及其几何意义一、选择题 1.设e 1、e2A.e 1、e2 B .e 1、e2C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a =e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .C.相等D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -yA.3B .-3C.0D.24. 下面向量a 、b 共线的有( )(1)a =2e 1,b =-2e 2 (2)a =e 1-e 2,b =-2e 1+2e2(3)a =4e 1-52e 2,b =e 1-101e 2 (4)a =e 1+e 2,b =2e 1-2e 2.(e 1、e 2不共线)A.(2)(3) B .(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3)(4) 二、填空题5.若a 、b 不共线,且λa +μb =0(λ,μ∈R )则λ= ,μ= .6.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .7.已知λ1>0,λ2>0,e 1、e 2是一组基底,且a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).8. 如图,在△ABC 中,=a, =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= 三、解答题:9. 如图,平行四边形ABCD 中,=a,=b,N 、M 是AD 、DC 之中点,F 使BF =31BC ,以a、b为基底分解向量与.DABCa bB FC MA N D10.如图,O 是三角形ABC 内一点,PQ ∥BC ,且BCPQ=t,=a,=b,=с,求OP 与.第6课时 平面向量基本定理一、选择题1.设e 1、e 2是同一平面内的两个向量,则有( ) A. e 1、e 2一定平行 B. e 1、e 2的模相等C.同一平面内的任一向量a 都有a =λe 1+μe 2(λ、μ∈R )D.若e 1、e 2不共线,则同一平面内的任一向量a 都有a =λe 1+u e 2(λ、u ∈R ) 2.已知矢量a = e 1-2e 2,b =2e 1+e 2,其中e 1、e 2不共线,则a +b 与c =6e 1-2e 2的关系A.不共线 B .共线 C.相等 D.无法确定3.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( )A.3 B .-3 C.0 D.2 4.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 二、填空题5.已知a 、b 不共线,且c =λ1a +λ2b (λ1,λ2∈R ),若c 与b 共线,则λ1= .6. 已知λ1>0,λ2>0,e 1、e 2是一组基底,且 a =λ1e 1+λ2e 2,则a 与e 1_____,a 与e 2_________(填共线或不共线).7. 已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .8. 已知矩形ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 三、解答题9. 已知梯形ABCD 中,AB ∥CD 且AB=2CD ,M , N 分别是DC , AB 中点,设AD =a , AB =b ,试以a, b 为基底表示DC , BC , MN .10. 化简++++.第7课时 平面向量的正交分解和坐标表示及运算一、选择题 1.设a =(23,sin α),b=(cosα,31),且a ∥b ,则锐角α为( ) A.30° B .60° C.45° D.75°2.设k ∈R,下列向量中,与向量a =(1,-1)一定不平行的向量是( )A.(k ,k ) B .(-k ,-k )C.(k 2+1,k2+1)D.(k2-1,k2-1)3.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-36 4.已知|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 二、填空题5.已知a =(3,2),b =(2,-1),若λa +b 与a +λb (λ∈R )平行,则λ= . 6.若a=(-1,x)与b=(-x ,2)共线且方向相同,则x= . 7.若A(0, 1), B(1, 2), C(3, 4) 则-2=8.在△ABC 中,AB =a, BC =b ,AD 为边BC 的中线,G 为△ABC 的重心,则向量= .三、解答题9.若M(3, -2) N(-5, -1) 且 21=MP MN , 求P 点的坐标.10.在中,设对角线AC =a ,BD =b 试用a, b 表示AB ,BC .11.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD 是梯形.12.设1e , 2e 是两个不共线向量,已知=21e +k 2e , =1e +32e ,=21e -2e , 若三点A , B , D 共线,求k 的值.第8课时 平面向量共线的坐标表示一、选择题1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( ) A.6 B .5 C.7 D.82.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A.-3 B .-1 C.1 D.33.若=i +2j , =(3-x )i +(4-y )j (其中i 、j 的方向分别与x 、y 轴正方向相同且为单位向量). 与共线,则x 、y 的值可能分别为( )A.1,2 B .2,2 C.3,2 D.2,44.若a =(x 1,y 1),b =(x 2,y 2),且a ∥b ,则坐标满足的条件为( ) A.x 1x 2-y1y2=0 B .x1y1-x2y2=0 C.x1y2+x2y1=0 D.x1y2-x2y1=0 二、填空题5.已知a =(4,2),b =(6,y ),且a ∥b ,则y = .6已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 的值为 .7.已知□ABCD 四个顶点的坐标为A (5,7),B (3,x),C (2,3),D (4,x ),则x = . 8.若A (-1,-1),B (1,3),C (x ,5)三点共线,则x = . 三、解答题9.已知a =(1,2),b =(-3,2),当k 为何值时k a +b 与a -3b 平行?10.已知A 、B 、C 、D 四点坐标分别为A (1,0),B (4,3),C (2,4),D (0,2),试证明:四边形ABCD 是梯形.11.已知A 、B 、C 三点坐标分别为(-1,0)、(3,-1)、(1,2),AE =AC 3131=, 求证:∥.12.△ABC 顶点A(1, 1), B(-2, 10), C(3, 7) ,∠BAC 平分线交BC 边于D , 求D 点坐标第9课时 平面向量的数量积的物理背景及其含义一、选择题1.已知|a |=1,|b |=2,且(a -b )与a 垂直,则a 与b 的夹角是( )A.60° B .30° C.135° D.45° 2.已知|a |=2,|b |=1,a 与b 之间的夹角为3π,那么向量m =a -4b 的模为( ) A.2 B .23材 C.6 D.123.已知a 、b 是非零向量,则|a |=|b |是(a +b )与(a -b )垂直的( )A.充分但不必要条件 B .必要但不充分条件 C.充要条件 D.既不充分也不必要条件4.已知a =(λ,2),b =(-3,5)且a 与b 的夹角为钝角,则λ的取值范围是( )A.λ>310 B .λ≥310 C.λ<310 D.λ≤310 二、填空题5.已知a =(3,0),b =(k ,5)且a 与b 的夹角为43π,则k 的值为 . 6.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b |·|a -b |= . 7.已知a +b =2i -8j ,a -b =-8i +16j ,其中i 、j 是直角坐标系中x 轴、y 轴正方向上的单位向量,那么a ·b = .8.已知a ⊥b 、c 与a 、b 的夹角均为60°,且|a |=1,|b |=2,|c |=3,则(a +2b -c )2=______. 三、解答题9.已知|a |=1,|b |=2,(1)若a ∥b ,求a ·b ;(2)若a 、b 的夹角为60°,求|a +b |;(3)若a -b 与a 垂直,求a 与b 的夹角.10.设m 、n 是两个单位向量,其夹角为60°,求向量a =2m +n 与b =2n -3m 的夹角.11.对于两个非零向量a 、b ,求使|a +t b |最小时的t 值,并求此时b 与a +t b 的夹角.12.已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |.第10课时 平面向量数量积的运算律一、选择题1.下列叙述不正确的是( )A.向量的数量积满足交换律 B .向量的数量积满足分配律 C.向量的数量积满足结合律 D.a ·b 是一个实数2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( ) A.72 B .-72 C.36 D.-363.|a |=3,|b |=4,向量a +43b 与a -43b 的位置关系为( ) A.平行 B .垂直 C.夹角为3πD.不平行也不垂直 4.给定两个向量a =(3,4),b =(2,-1)且(a +x b )⊥(a -b ),则x 等于( ) A.23 B .223 C. 323 D. 423 二、填空题5.已知a =(1,2),b (1,1),c=b -k a ,若c ⊥a ,则c = .6.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= . 7.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= . 8.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= . 三、解答题5. 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°).6. 已知a =(3,4),b =(4,3),求x ,y 的值使(x a +y b )⊥a ,且|x a +y b |=1.7. 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x .12.如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒, 求点B 和向量的坐标.第11课时 平面向量数量积的坐标表示、模、夹角一、选择题1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( ) A.23 B .57 C.63 D.832.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( )A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形 3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( )A.)54,53(或)53,54( B .)54,53(或)54,53(--C.)54,53(-或)53,54(-D.)54,53(-或)54,53(-4.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为( ) A.13 B .513 C.565D.65 二、填空题5.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .6.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = . 7.已知A (1,0),B (3,1),C (2,0),且a =,b =,则a 与b 的夹角为 . 8.已知|a |=10,b =(1,2)且a ∥b ,则a 的坐标为 .三、解答题9.已知a =(3,-1),b =(1,2),求满足条件x ·a =9与x ·b =-4的向量x .10.已知点A (1,2)和B (4,-1),问能否在y 轴上找到一点C ,使∠ACB=90°,若不能,说明理由;若能,求C 点坐标.11.四边形ABCD 中=AB (6,1), BC =(x ,y ),CD =(-2,-3), (1)若BC ∥DA ,求x 与y 间的关系式;(2)满足(1)问的同时又有⊥,求x ,y 的值及四边形ABCD 的面积.12.在△ABC 中,=(2, 3),=(1, k ),且△ABC 的一个内角为直角, 求k 值..第12课时 平面向量的应用举例一选择题1.在四边形ABCD 中,若则,AD AB AC += ( ) A .ABCD 是矩形 B.ABCD 是菱形C ABCD 是正方形 D.ABCD 是平行四边形 2已知:在是则中,ABC ABC ∆<∙∆,0( )A 钝角三角形B 直角三角形C 锐角三角形D 任意三角形二.解答题3.设M 、N 分别是四边形ABCD 的对边AB 、CD 的中点,求证:)(21MN +=4.求证:对角线相等的四边形是矩形.5.求证:圆的直径所对的圆周角为直角.6.求证:直角三角形斜边上的中线等于斜边的一半.7.证明:三角形的三条高交于一点.8..AC AB CE BD CE BD ABC ==∆,求证:为中线,且,中,第13课时 向量在物理中的应用一选择题1某人以时速为a km 向东行走,此时正刮着时速为a km 的南风,则此人感到的风向及风速分别为( )A .东北, 2akm/h B.东南, akm/hC .西南, 2akm/h D.东南, 2akm/h2.一船以4km/h 的速度沿与水流方向成1200的方向航行,已知河水流速为2km/h ,则ABCDA E3h 后船的实际航程为( )A .63km B.6km C .53km D.5km二、填空题3.力F 1,F 2共同作用在某质点上,已知F 1=5N, F 2=12N,且F 1与F 2互相垂直,则质点所受合力的大小为_______________4.在200米山顶上.测得山下一塔顶与塔底的俯角分别为 60,30则塔高为__________米 5.某人向正东方向走x 千米后,他向右转150,然后朝新方向走3千米.结果他离开出发点恰好3千米,则 x=_________________.6.若用两根完全相同的绳子向两侧呈“V ”挂重物,每根绳子最大拉力为100N ,两根绳子间的夹角为600,则能挂重物的最大重量是 . 三、解答题7.一个质量为100g 的球从1.8m 的. 高处落到水平板上又弹回到1.25m 的高度,求在整个过程中重力对球所做的功。
2.1平面向量的实际背景及基本概念 1 .在下列判断中,正确的是 ( )①长度为0的向量都是零向量; ②零向量的方向都是相同的; ③单位向量的长度都相等;④单位向量都是同方向; ⑤任意向量与零向量都共线.A .①②③ B.②③④ C .①②⑤ D.①③⑤2. 下列关于向量的结论:(1)若|a | =|b |,贝U a = b 或a =- b ; (2)向量a 与b 平行,则a 与b 的方向相同或相反;⑶起点不同,但方向相同且模相等的向量是相等向量;(4)若向量a 与b 同向,且| a |>| b |,则a >b. 其中正确的序号为() A. (1)(2)B.⑵(3) C . (4)D. (3) 3. 下列说法正确的是( ) ① 向量ABw &是平行向量,则 A B C D 四点一定不在同一直线上② 向量a 与b 平行,且| a | = | b |丰0,贝U a + b = 0或a - b = 016.已知E,F 分别是平行四边形 ABCD 勺边BC,CD 中点,AF 与DE 相交于点G,若AB = a , AD 二b ,则GC 用a, b 表示为 ________ .③向量AB 勺长度与向量BA 勺长度相等 A. ①③ 1. 向量 2. ④单位向量都相等B.②④ C .①④ D.②③—2_― T2向量的线性运算及其几何意义(AB MB) (BO BC) OM 化简后等于PM -PN MN 所得结果是3. 4. 化简 四边形ABCD 是平行四边形,则BC -CD BA 等于11 — r r -4-化简的丄[丄(2a 8b) -(4^ 2b)]结果是 _____________ 3 2 已知向量 a , b ,且 3(x+a )+2(x — 2a )—4(x —a+b )= 0,则 x = ___________ .若向量x 、y 满足2x +3y = a ,3x —2y = b , a 、b 为已知向量,贝U x = ________ ; y = —F T T T在矩形 ABCD 中,若 | AB |=3 J BC |=4,则 | AB AD |=已知正方形 ABCD 边长为J , AB 二a , BC 二b , AC =C ,则a b C 的模等于 已知|OA|=|a |=3 , |OB|=|b|=3,/ AOB=60,则 |a b|二 一10. 已知E 、F 分别为四边形 ABCD 勺边CD BC 边上的中点,设AD =a , BA = b ,则EF = _11. 在厶ABC 中,D E 、F 分别BC CA AB 的中点,点皿是厶ABC 的重心,则MA • MB - MC 等于12. 已知AD ,BE 分别是JABC 的边BC ,AC 上的中线,且AD 二a , BE 二b ,则AC 是( ) 小、4 22 4 (A) a b (B) a b3 3 3 3 13. A. PA PB =0 B. PB PC =0 5. 6. 7. 8. 9. 42 (C) — a b (D)3 3 BC BA =2BP ,| 则( C. PC PA = 0 D. b 3 PA PB PC = 01 t T14. 在△ ABC 中,已知 D 是 AB 边上一点,若 AD =2DB,CD =^CA — CB ,则’二• 斗 T 畔 畔F ・ ・15. 6、e 2是两个不共线的向量,且AB =2e •ke 2,CB=e 1 3e , ,C^2e^e 2 .若A B 、D 三点共线,则k 的值为 ______ .3 设t P 是^ A%C 所在平面内的一点屮2.3 平面向量数量积的坐标表示、模、夹角A 蠹A . 52.已知平面向量A . - 1 a = (1 , B. B. 65 C ・¥ D. 13 —3) , b = (4 , — 2),入 a + b 与 a 垂直,则入=(1 C . -2 D. 2 3.已知 | a |=| A . 1 B T b | , .-1 a'_ b ,且(a + b ') — (k a - b ),则 k 的值是( ) C6), P ( 3, 4),且 AP =■ PB , x 和’的值分别为() C . -7 , - D . 5,- 5 5 5.已知向量a = ( 3, 1), b 是不平行于x 轴的单位向量,且 a • b = 3,贝U b 等于( ) 1, 4.已知平面内三点 A . -7 , 2A (-1 , 0), B( x , 」1 2 , 2 6. 设点M 是线段BC 的中点,点 A . 8 7. 已知a,b A. B. C. D. (1,0)JT &已知向量 A 30° B. 4 是非零向量且满足( A 在直线 BC 外, B C = 16, |A B + A C = |AB- A C ,则 | X M =( c. 2 a - 2b ) 丄a , 2 二 D. 1 (b -2a ) 丄b ,则a 与b 的夹角是( ) 5 二 6a =(1,2),b =(—2, M),|c|=、5,若(a b) 5 ,则a 与C 的夹角为 ( ) 2 D 150 °15 —,| a | = 3 , | b | = 5 ,贝U a 与b 的夹角是( B 60° 120 ° 9.已知△ ABC 中, XB= a , AC= b , a • b <0, &ABC =.30° B . 150 C . 210° D. 30° 或 150° 10. P 是厶ABC 所在平面上一点, PA PB 二 PB PC 二 PC PA ,贝U P 是厶 ABC 的(外心B 内心 重心 D 垂心 11. 已知向量 a=( cos msin v),向量 b=( 、、3, -1),则 |2a - b| 的最大值是12. (1) a = ( - 3,2) , b = (2,1) , c = (3 , - 1) , t € R13. (1) 已知向量 求|a + tb |的最小值及相应的t 值;(2)若a -tb 与c 共线,求实数t . 已知 XB= (6,1) , E3C = (x , y ) , &== ( - 2,- 3),若 E3C// 5A ACL E3D 求x 、y 的值;(2)求四边形ABC 啲面积。
平面向量 同步测试一、选择题:1.a 与b 是非零向量,下列结论正确的是A .|a |+|b |=|a +b |B .|a |-|b |=|a -b |C .|a |+|b |>|a +b |D .|a |+|b |≥|a +b |解析:在三角形中,两边之和大于第三边,当a 与b 同向时,取“=”号.答案:D2.在四边形ABCD 中,DC AB =,且|AB |=|BC |,那么四边形ABCD 为A .平行四边形B .菱形C .长方形D .正方形解析:由AB =DC 可得四边形ABCD 是平行四边形,由|AB |=|BC |得四边形ABCD 的一组邻边相等,一组邻边相等的平行四边形是菱形.答案:B3.已知ABCD 的三个顶点A 、B 、C 的坐标分别为(-2,1)、(3,4)、(-1,3),则第四个顶点D 的坐标为A .(2,2)B .(-6,0)C .(4,6)D .(-4,2)解析:设D (x ,y ),则AB =(5,3),DC =(-1-x ,3-y ),AD =(x +2,y -1),BC =(-4,-1).又∵∥,∥,∴5(3-y )+3(1+x )=0,-(x +2)+4(y -1)=0,解得x =-6,y =0.答案:B4.有下列命题:①++=0;②(a +b )·c =a ·c +b ·c ;③若a =(m ,4),则|a |=23的充要条件是m =7;④若的起点为A (2,1),终点为B (-2,4),则与x 轴正向所夹角的余弦值是54.其中正确命题的序号是 A .①② B .②③C .②④D .③④ 解析:∵2=++,∴①错.②是数量积的分配律,正确.当m =-7时,|a |也等于23,∴③错.在④中,=(4,-3)与x 轴正向夹角的余弦值是54,故④正确. 答案:C5.已知a =(-2,5),|b |=2|a |,若b 与a 反向,则b 等于A .(-1,25)B .(1,-25) C .(-4,10) D .(4,-10)解析:b =-2a =(4,-10),选D.答案:D6.已知|a |=8,e 是单位向量,当它们之间的夹角为3π时,a 在e 方向上的投影为 A .43 B .4 C .42 D .8+23解析:由两个向量数量积的几何意义可知:a 在e 方向上的投影即:a ·e =|a ||e |cos 3π=8×1×21=4. 答案:B7.若|a |=|b |=1,a ⊥b 且2a +3b 与k a -4b 也互相垂直,则k 的值为A .-6B .6C .3D .-3解析:∵a ⊥b∴a ·b =0又∵(2a +3b )⊥(k a -4 b )∴(2a +3b )·(k a -4 b )=0得2k a 2-12b 2=0又a 2=|a |2=1,b 2=|b |2=1解得k =6.答案:B8.已知a =(3,4),b ⊥a ,且b 的起点为(1,2),终点为(x ,3x ),则b 等于A .(-51,1511) B .(-1511,51) C .(-51,154) D .(51,154) 解析:b =(x -1,3x -2)∵a ⊥b ,∴a ·b =0即3(x -1)+4(3x -2)=0,解得x =1511. 答案:C9.等边△ABC 的边长为1,=a ,=b ,=c ,那么a ·b +b ·c +c ·a 等于A .0B .1C .-21D .-23 解析:由已知|a |=|b |=|c |=1,∴a ·b +b ·c +c ·a=cos120°+cos120°+cos120°=-23. 答案:D10.把函数y =312-x 的图象按a =(-1,2)平移到F ′,则F ′的函数解析式为 A .y =372+x B .y =352-x C .y =392-x D .y =332+x 解析:把函数y =312-x 的图象按a =(-1,2)平移到F ′,则F ′的函数解析式为A ,即按图象向左平移1个单位,用(x +1)换掉x ,再把图象向上平移2个单位,用(y -2)换掉y ,可得y -2=31)1(2-+x . 整理得y =372+x 答案:A11.已知向量e 1、e 2不共线,a =k e 1+e 2,b =e 1+k e 2,若a 与b 共线,则k 等于( )A .±1B .1C .-1D .0解析:∵a 与b 共线∴a =λb (λ∈R ),即k e 1+e 2=λ(e 1+k e 2),∴(k -λ)e 1+(1-λk )e 2=0∵e 1、e 2不共线.∴⎩⎨⎧=-=-010k k λλ 解得k =±1,故选A.答案:A12.已知a 、b 均为非零向量,则|a +b |=|a -b |是a ⊥b 的A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件解析:|a +b |=| a -b |⇔(a +b )2=(a -b )2⇔a ·b =0⇔a ⊥b .答案:C二、填空题13.如图,M 、N 是△ABC 的一边BC 上的两个三等分点,AB =a ,AC =b ,则MN = .解析:-==b -a ,∴=3131=(b -a ).答案:31(b -a ) 14.a 、b 、a -b 的数值分别为2,3,7,则a 与b 的夹角为 .解析:∵(a -b )2=7∴a 2-2a ·b +b 2=7∴a ·b =3∴cos θ=21||||=⋅b a b a ∴θ=3π. 答案:3π 15.把函数y =-2x 2的图象按a 平移,得到y =-2x 2-4x -1的图象,则a = . 解析:y =-2x 2-4x -1=-2(x +1)2+1∴y -1=-2(x +1)2即原函数图象向左平移1个单位,再向上平移1个单位,∴a =(-1,1).答案:(-1,1)16.已知向量a 、b 的夹角为3π,|a |=2,|b |=1,则|a +b ||a -b |的值是 . 解析:∵a ·b =|a ||b |cos 3π=2×1×21=1 ∴|a +b |2=a 2+2a ·b +b 2=22+2×1+12=7,|a -b |2=a 2-2 a ·b +b 2=22-2×1+1=3∴|a +b |2|a -b |2=3×7=21∴|a +b ||a -b |=21. 答案:21三、解答题:17.(本小题满分10分)已知A (4,1),B (1,-21),C (x ,-23),若A 、B 、C 共线,求x . 解:∵AB =(-3,-23),BC =(x -1,-1) 又∵∥ ∴根据两向量共线的充要条件得-23(x -1)=3 解得x =-1.18.(本小题满分12分)已知|a |=3,|b |=2,a 与b 的夹角为60°,c =3a +5b ,d =m a -b ,c ⊥d ,求m 的值.解:a ·b =|a ||b |cos60°=3∵c ⊥d ,∴c ·d =0即(3a +5b )(m a -b )=0∴3m a 2+(5m -3)a ·b -5b 2=0∴27m +3(5m -3)-20=0解得m =4229. 19.(本小题满分12分)已知a 、b 都是非零向量,且a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,求a 与b 的夹角.解:由已知,(a +3b )·(7 a -5b )=0,(a -4b )·(7a -2 b )=0,即7a 2+16a ·b -15 b 2=0 ①7a -30a ·b +8 b 2=0 ②①-②得2a ·b =b 2代入①式得a 2=b 2∴cos θ=21||21||||22==⋅b b b a b a , 故a 与b 的夹角为60°.20.(本小题满分12分)已知:在△ABC 中,AB =c ,BC =a ,AC =b ,AB 上的中线CD =m ,求证:a 2+b 2=21c 2+2m 2. 证明:∵DC AD AC DC BD BC +=+=,,两式平方相加可得a 2+b 2=21c 2+2m 2+2(·+·) ∵BD ·DC +AD ·DC=|BD ||DC |·cos BDC +|AD ||DC |cos CDA =0∴a 2+b 2=21c 2+2m 2. 21.(本小题满分14分)设i 、j 分别是直角坐标系x 轴、y 轴上的单位向量,若在同一直线上有三点A 、B 、C ,且=-2i +m j ,=n i +j ,=5i -j ,⊥,求实数m 、n 的值. 解:∵OA ⊥OB ,∴-2n +m =0①∵A 、B 、C 在同一直线上,∴存在实数λ使AC =λAB , AC =OC -OA =7i +[-(m +1)j ] AB =OB -OA =(n +2)i +(1-m )j ,∴7=λ(n +2) m +1=λ(m -1)消去λ得mn -5m +n +9=0 ② 由①得m =2n 代入②解得m =6,n =3;或m =3,n =23. 22.(本小题满分14分)如图,△ABC 的顶点A 、B 、C 所对的边分别为a 、b 、c ,A 为圆心,直径P Q =2r,问:当P 、Q 取什么位置时,BP ·CQ 有最大值?解:BP ·=(AB AP -)·(-)=(-)·(--)=-r 2+AB ·AP AC +·CB设∠BAC =α,PA 的延长线与BC 的延长线相交于D ,∠PDB =θ,则BP ·CQ =-r 2+cb cos θ+ra cos θ∵a 、b 、c 、α、r 均为定值,∴当cos θ=1,即AP ∥BC 时,BP ·有最大值.。
平面向量同步练习平面向量的概念及线性运算A 组 专项基础训练一、选择题(每小题5分,共20分) 1. 给出下列命题:①两个具有公共终点的向量,一定是共线向量; ②两个向量不能比较大小,但它们的模能比较大小; ③λa =0 (λ为实数),则λ必为零;④λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误命题的个数为 ( )A .1B .2C .3D .4 2. 设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则 ( )A.PA →+PB →=0B.PC →+PA →=0C.PB →+PC →=0D.PA →+PB→+PC →=0 3. 已知向量a ,b 不共线,c =ka +b (k ∈R),d =a -b .如果c ∥d ,那么 ( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d反向4. (2011·四川)如图,正六边形ABCDEF中,BA→+CD →+EF →等于 ( ) A .0 B.BE→ C.AD → D.CF → 二、填空题(每小题5分,共15分)5. 设a 、b 是两个不共线向量,AB→=2a +pb ,BC →=a +b ,CD →=a -2b ,若A 、B 、D 三点共线,则实数p 的值为________.6. 在▱ABCD 中,AB→=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=___(用a ,b 表示). 7. 给出下列命题:①向量AB→的长度与向量BA →的长度相等;②向量a 与b 平行,则a 与b 的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④向量AB →与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上.其中不正确的个数为________.三、解答题(共22分)8. (10分)若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,tb ,13(a +b )三向量的终点在同一条直线上?9. (12分)在△ABC 中,E 、F 分别为AC 、AB 的中点,BE 与CF 相交于G 点,设AB→=a , AC →=b ,试用a ,b 表示AG →.B 组 专项能力提升一、选择题(每小题5分,共15分)1. (2012·浙江)设a ,b 是两个非零向量. ( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b | 2. 已知△ABC 和点M 满足MA→+MB →+MC →=0,若存在实数m 使得AB→+AC →=mAM →成立,则m 等于A .2 B .3 C .4 D .53. O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足:OP →=OA →+λ ⎝ ⎛⎭⎪⎪⎫AB →|AB→|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的 ( ) A .外心 B .内心C .重心 D .垂心 二、填空题(每小题5分,共15分)4. 已知向量a ,b 是两个非零向量,则在下列四个条件中,能使a 、b 共线的条件是__________(将正确的序号填在横线上).①2a -3b =4e ,且a +2b =-3e ;②存在相异实数λ、μ,使λ·a +μ·b =0;③x ·a +y ·b =0(实数x ,y 满足x +y =0);④若四边形ABCD 是梯形,则AB→与CD →共线.5. 如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN→,则m +n 的值为________.6. 在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB→,则λ=________. 三、解答题7. (13分)已知点G 是△ABO 的重心,M 是AB 边的中点.(1)求GA→+GB →+GO →; (2)若PQ 过△ABO 的重心G ,且OA →=a ,OB →=b ,OP →=ma ,OQ →=nb ,求证:1m +1n =3.平面向量基本定理及坐标表示A 组 专项基础训练一、选择题(每小题5分,共20分)1. 与向量a =(12,5)平行的单位向量为 ( )A.⎝⎛⎭⎪⎪⎫1213,-513B.⎝ ⎛⎭⎪⎪⎫-1213,-513C.⎝ ⎛⎭⎪⎪⎫1213,513或⎝ ⎛⎭⎪⎪⎫-1213,-513D.⎝⎛⎭⎪⎪⎫±1213,±513 2. 如图,在△OAB 中,P 为线段AB 上的一点,OP→=xOA →+yOB →,且BP → =2PA→,则 ( ) A .x =23,y =13 B .x =13,y =23C .x =14,y =34D .x =34,y =143. 已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于 ( )A .-12a +32b B.12a -32b C .-32a -12b D .-32a+12b4. 在△ABC 中,点P 在BC 上,且BP→=2PC →,点Q 是AC 的中点,若PA→=(4,3),PQ →=(1,5),则BC →等于A .(-2,7) B .(-6,21)C .(2,-7) D .(6,-21) 二、填空题(每小题5分,共15分)5. 若三点A (2,2),B (a,0),C (0,b ) (ab ≠0)共线,则1a +1b 的值为________.6. 已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.7. 在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足OC →=23OA →+13OB →,则|AC →||AB →|=三、解答题(共22分)8. (10分)已知a =(1,2),b =(-3,2),是否存在实数k ,使得ka +b 与a -3b 共线,且方向相反? 9. (12分)如图所示,M 是△ABC 内一点,且满足条件AM→+2BM →+3CM →=0, 延长CM 交AB 于N ,令CM→=a ,试用a 表示CN →.B 组 专项能力提升一、选择题(每小题5分,共15分)1. 若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于 ( )A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)2. 已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于 ( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)3. 已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB内,|OC |=22,且∠AOC =π4,设OC→= λOA →+OB →(λ∈R),则λ的值为 ( ) A .1 B.13 C.12 D.23二、填空题(每小题5分,共15分)4. △ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若p =(a +c ,b ),q =(b -a ,c -a ),且p ∥q ,则角C =________.5. 已知A (7,1)、B (1,4),直线y =12ax 与线段AB 交于C ,且AC→=2CB →,则实数a =________. 6. 设OA→=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A 、B 、C 三点共线,则1a +2b 的最小值是________. 三、解答题7. (13分)已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB→. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A 、B 、M 三点都共线;(3)若t 1=a 2,求当OM →⊥AB →且△ABM 的面积为12时a 的值.平面向量的数量积A 组 专项基础训练一、选择题(每小题5分,共20分)1. (2012·辽宁)已知向量a =(1,-1),b =(2,x ),若a ·b =1,则x 等于 ( )A .-1B .-12 C.12 D .12. (2012·重庆)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |等于 A. 5B.10 C .2 5 D .103. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎪⎪⎫79,73 B.⎝ ⎛⎭⎪⎪⎫-73,-79C.⎝ ⎛⎭⎪⎪⎫73,79 D.⎝⎛⎭⎪⎪⎫-79,-73 4. 在△ABC 中,AB =3,AC =2,BC =10,则AB →·AC →等于 ( )A .-32B .-23 C.23 D.32二、填空题(每小题5分,共15分)5. (2012·课标全国)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________.6. (2012·浙江)在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC→=________. 7. 已知a =(2,-1),b =(λ,3),若a 与b 的夹角为钝角,则λ的取值范围是__________. 三、解答题(共22分)8. (10分)已知a =(1,2),b =(-2,n ) (n >1),a 与b 的夹角是45°.(1)求b ;(2)若c 与b 同向,且a 与c -a 垂直,求c .9. (12分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2te 1+7e 2与向量e 1+te 2的夹角为钝角,求实数t 的取值范围.B 组 专项能力提升一、选择题(每小题5分,共15分)1. (2012·湖南)在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC 等于 ( )A. 3B.7 C .2 2 D.23 2. 已知|a |=6,|b |=3,a·b =-12,则向量a 在向量b 方向上的投影是( )A .-4B .4C .-2D .23. (2012·江西)在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA |2+|PB |2|PC |2等于 A .2 B .4 C .5 D .10二、填空题(每小题5分,共15分)4. (2012·安徽)设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a |=________.5. (2012·江苏)如图,在矩形ABCD 中,AB =2,BC =2,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.6. (2012·上海)在矩形ABCD 中,边AB 、AD 的长分别为2、1,若M 、N 分别是边BC 、CD 上的点,且满足|BM→||BC →|=|CN →||CD →|,则AM →·AN →的取值范围是________. 三、解答题7. (13分)设平面上有两个向量a =(cos α,sin α)(0°≤α<360°),b =⎝ ⎛⎭⎪⎫-12,32.(1)求证:向量a +b 与a -b 垂直;(2)当向量3a +b 与a -3b 的模相等时,求α的大小.平面向量的应用A 组 专项基础训练一、选择题(每小题5分,共20分)1. 在△ABC 中,已知向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB→|+AC →|AC →|·BC →=0且AB→|AB→|·AC →|AC →|=12,则△ABC 为( )A .等边三角形B .直角三角形C .等腰非等边三角形D .三边均不相等的三角形2. 已知|a |=2|b |,|b |≠0且关于x 的方程x 2+|a |x -a·b =0有两相等实根,则向量a 与b 的夹角是 A .-π6B .-π3 C.π3 D.2π33. 已知P 是△ABC 所在平面内一点,若CB→=λPA →+PB →,其中λ∈R ,则点P 一定在( )A .△ABC 的内部B .AC 边所在直线上 C .AB 边所在直线上D .BC 边所在直线上 4.已知点A (-2,0)、B (3,0),动点P (x ,y )满足PA →·PB →=x 2,则点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 二、填空题(每小题5分,共15分)5. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若AB →·AC →=BA →·BC→=1,那么c =________. 6. 已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP→的最大值为________. 7. 已知在△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC =________. 三、解答题(共22分)8. (10分)已知△ABC 中,∠C 是直角,CA =CB ,D 是CB 的中点,E 是AB 上一点,且AE =2EB ,求证:AD ⊥CE .9. (12分)已知向量a =(cos x ,sin x ),b =(-cos x ,cos x ),c =(-1,0).(1)若x =π6,求向量a 与c 的夹角;(2)当x ∈⎣⎢⎢⎡⎦⎥⎥⎤π2,9π8时,求函数f (x )=2a·b +1的最大值,并求此时x 的值.B 组 专项能力提升一、选择题(每小题5分,共15分)1. 平面上O ,A ,B 三点不共线,设OA →=a ,OB →=b ,则△OAB 的面积等于( )A.|a |2|b |2-(a ·b )2B.|a |2|b |2+(a ·b )2C.12|a |2|b |2-(a ·b )2D.12|a |2|b |2+(a ·b )22. 如图,△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7,则AO →·BC→ 等于 ( ) A.32 B.52C .2D .3 3. 已知向量m ,n 的夹角为π6,且|m |=3,|n |=2,在△ABC中,AB →=m +n ,AC →=m -3n ,D 为BC 边的中点,则|AD →|等于 A .1 B .2 C .3 D .4 二、填空题(每小题5分,共15分)4. 给定两个长度为1的平面向量OA →和OB →,它们的夹角为120°.如图所示,点C 在以O 为圆心的圆弧AB 上变动.若OC →=xOA →+yOB→,其中x ,y ∈R , 则x +y 的最大值是________. 5. (2012·湖南)如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC→=________. 6. 已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA→+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.。