国赛培训:MatLab基础及在数学建模中的应用
- 格式:pdf
- 大小:1.22 MB
- 文档页数:18
MATLAB在数学建模中的应用随着科学技术的不断进步,数学建模在许多领域得到了广泛的应用。
其中,MATLAB作为一种功能强大的计算软件,具有很多优势,使其成为数学建模中的重要工具之一。
本文将介绍MATLAB在数学建模中的应用。
一、MATLAB的基本特点MATLAB是一种用于数学计算、数据分析、可视化和编程的高级技术计算软件。
它提供了许多方便且易于使用的功能,包括数值分析、矩阵计算、信号处理、图像处理、统计分析和数据可视化等等。
MATLAB的高度集成性、易于编程、优雅的编程语言和强大的可视化功能,使其广泛应用于工程领域、科学研究、数学建模等领域。
二、MATLAB在数学建模中的应用1.求解数学模型MATLAB提供了一组广泛的数学函数和工具箱,用于求解各种数学模型。
例如微分方程、线性代数、函数逼近和数值积分等等。
通过这些工具箱可方便地进行数学建模,完成各种数学问题的求解。
同时,MATLAB的计算速度非常快,可以大大缩短计算时间,提高求解精度。
2.绘制图像MATLAB可以生成各种类型的图形和图表,从二维和三维函数图到统计图和数据可视化。
因为MATLAB支持向量和矩阵计算,因此绘制图像非常方便,可以准确地显示数学模型的参数变化。
这对于数学建模的理解和分析,以及对结果的解释和演示非常有帮助。
3.设计算法MATLAB是一种基于高级编程语言的环境。
因此,它为数学建模者提供了编写自己的算法的机会。
MATLAB不仅提供了许多内置的算法,而且还可以自定义算法,以满足特定的需求。
这给数学建模者带来了更多的灵活性和自主性。
4.交互式研究MATLAB提供了交互式控制台,将数值计算和可视化相结合。
数学建模者可以通过这个控制台和模型进行交互式研究,并在过程中进行参数设置和模型调整。
这种交互方式可以及时观察模型的性能和结果,以便及时调整模型参数。
同时它也可以帮助数学建模者更加深入地理解模型本身。
三、MATLAB在数学建模中的优势MATLAB具有许多出色的特点,使得它成为数学建模中的首选工具。
数模竞赛matlab -回复题目:数学建模竞赛中使用Matlab的方法和应用引言:数学建模竞赛是培养学生综合运用数学、计算机和解决实际问题的能力的一种有效方式。
Matlab作为一种广泛应用于科学与工程领域的高级计算机语言和环境,被广泛应用于数学建模竞赛的解题过程中。
本文将介绍在数学建模竞赛中使用Matlab的方法和应用。
一、Matlab简介Matlab是一种功能强大的数学软件,其能够进行各种复杂的数值计算、数据分析和可视化处理。
其语法简洁易学,功能丰富,可以满足各类科学与工程计算的需求。
二、数据处理与分析在数学建模竞赛中,数据处理是必不可少的一环。
Matlab提供了丰富的数据处理函数和工具,可以轻松处理和分析各类数据。
可以使用Matlab 读取和导入数据,进行数据预处理、数据清洗、数据挖掘等操作。
此外,还可以进行统计分析、频谱分析、时序分析等等。
Matlab的图形绘制功能能够直观地展示数据的特征和规律。
三、模型建立与求解数学建模竞赛的核心是建立数学模型,并通过合适的数值方法求解模型。
Matlab提供了各种优化、微积分、常微分方程等求解工具箱,可以方便地建立和求解数学模型。
通过Matlab,可以进行优化求解、数值积分、微分方程的求解等操作。
此外,Matlab的符号计算工具箱还可以进行符号计算和代数运算,对于一些复杂模型的求解尤为方便。
四、算法设计与实现在数学建模竞赛中,有些问题需要自行设计合适的算法来解决。
Matlab提供了一系列的算法设计和实现工具,可以方便地自定义函数和算法。
可以通过Matlab编写高效、可读性强的算法代码。
此外,Matlab还支持C、Java等其他编程语言的嵌入,可以与其他语言进行交互,进一步扩展其功能。
五、可视化与报告在数学建模竞赛中,可视化是很重要的一环。
Matlab具有强大的数据可视化和图像处理功能,可以生成各类图表、曲线、图像等。
可以使用Matlab 制作直观的数据图表,使得模型和结果更加易于理解和解释。
MATLAB在数学建模方面的应用计算机仿真技术与CAD——基于MATLAB的控制系统(第二版)课程结业论文课题:matlab在数学建模方面的应用专业班级: 08自动化学生:学号:设计时间: 2010/12/20论文目录一、MATLAB简介二、Matlab在现在科技及生产上的应用三、利用matlab实现数学建模的一般步骤四、Matlab在数学建模方面的应用示例五、论文结束语一、 MATLAB的简介:MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。
MATLAB和Mathematica、Maple并称为三大数学软件。
它在数学类科技应用软件中在数值计算方面首屈一指。
MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连matlab开发工作界面接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。
二、软件应用Matlab以其丰富的数据类型和结构、友善的面向对象、快速的图形可视、广博的应用开发工具在控制界得到了广泛地应用,目前已成为控制系统计算机辅助设计领域中最流行和最受欢迎的软件环境。
但是,用Matlab进行控制系统分析,需要学会Matlab的M编程语言和熟悉它的子程序。
因此,如何利用Matlab强大的图形对象属性设置技术及图形用户界面制作技术为自动控制教学服务成为主要课题。
为此,设计了具有良好的人机交互界面并能完成线性控制系统的计算机辅助分析的教学软件。
数学模型是控制系统分析研究的基础,也是综合设计系统的依据。
1讲MATLAB及在数学建模中的应用•MatLab简介及基本运算•常用计算方法•应用实例MatLab简介及基本运算1.1 MatLab简介1.2 MatLab界面1.3 MatLab基本数学运算1.4 MatLab绘图简介•MATLAB名字由MATrix和LABoratory 两词组成。
20世纪七十年代后期, 美国新墨西哥大学计算机科学系主任Cleve Moler教授为减轻学生编程负担,为学生设计了一组调用LINPACK和EISPACK库程序的“通俗易用”的接口,此即用FORTRAN编写的萌芽状态的MATLAB。
经几年的校际流传,在Little的推动下,由Little、Moler、Steve Bangert合作,于1984年成立了MathWorks公司,并把MATLAB正式推向市场。
从这时起,MATLAB的内核采用C语言编写,而且除原有的数值计算能力外,还新增了数据图视功能。
1997年春,MATLAB5.0版问世,紧接着是5.1、5.2、5.3、6.0、6.1、6.5、7.0版。
现今的MATLAB拥有更丰富的数据类型和结构、更友善的面向对象、更加快速精良的图形可视、更广博的数学和数据分析资源、更多的应用开发工具。
•20世纪九十年代的时候,MATLAB已经成为国际控制界公认的标准计算软件。
MATLAB具有用法简易、可灵活运用、程式结构强又兼具延展性。
以下为其几个特色:①可靠的数值运算和符号计算。
在MATLAB环境中,有超过500种数学、统计、科学及工程方面的函数可使用。
②强大的绘图功能。
MATLAB可以绘制各种图形,包括二维和三维图形。
③简单易学的语言体系。
④为数众多的应用工具箱。
MatLab界面基本数学运算•MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)还有一种特殊的运算,点运算:.*、./、.\和.^。
•输入方式:在MATLAB命令窗中输入>> (12+2*(7-4))/3^2>> z=2*exp(2)+sin(pi/6)>> B=[1+5i,2+6i;3+8*i,4+9*i]在M文件中输入例1.1 求方程3x4+7x3+9x2-23=0的全部根p=[3,7,9,0,-23]; %建立多项式系数向量x=roots(p) %求根1.2 求一元二次方程ax2+bx+c=0的根。
Matlab在数学建模中的应用数学建模是通过对实际问题的抽象和简化,引入一些数学符号、变量和参数,用数学语言和方法建立变量参数间的内在关系,得出一个可以近似刻画实际问题的数学模型,进而对其进行求解、模拟、分析检验的过程。
它大致分为模型准备、模型假设、模型构成、模型求解、模型分析、模型检验及应用等步骤。
这一过程往往需要对大量的数据进行分析、处理、加工,建立和求解复杂的数学模型,这些都是手工计算难以完成的,往往在计算机上实现。
在目前用于数学建模的软件中,matlab 强大的数值计算、绘图以及多样化的工具箱功能,能够快捷、高效地解决数学建模所涉及的众多领域的问题,倍受数学建模者的青睐。
1 Matlab在数学建模中的应用下面将联系数学建模的几个环节,结合部分实例,介绍matlab 在数学建模中的应用。
1.1 模型准备阶段模型准备阶段往往需要对问题中的给出的大量数据或图表等进行分析,此时matlab的数据处理功能以及绘图功能都能得到很好的应用。
1.1.1 确定变量间关系例1 已知某地连续20年的实际投资额、国民生产总值、物价指数的统计数据(见表),由这些数据建立一个投资额模型,根据对未来国民生产总值及物价指数的估计,预测未来的投资额。
表1 实际投资额、国民生产总值、物价指数的统计表记该地区第t年的投资为z(t),国民生产总值为x(t),物价指数为y(t)。
赋值:z=[90.9 97.4 113.5 125.7 122.8 133.3 149.3 144.2 166.4 195 229.8 228.7 206.1 257.9 324.1 386.6 423 401.9 474.9 424.5]' x=[596.7 637.7 691.1 756 799 873.4 944 992.7 1077.6 1185.9 1326.4 1434.2 1549.2 1718 1918.3 2163.9 2417.8 2631.6 2954.7 3073]'y=[0.7167 0.7277 0.7436 0.7676 0.7906 0.8254 0.8679 0.91450.9601 1 1.0575 1.1508 1.2579 1.3234 1.4005 1.5042 1.63421.7842 1.95142.0688]'先观察x与z之间,y与z之间的散点图plot(x,z,'*')plot(y,z,'*')由散点图可以看出,投资额和国民生产总值与物价指数都近似呈线性关系,因此可以建立多元线性回归模型012z x y βββε=+++直接利用统计工具箱直接计算[b,bint,r,rint,stats]=regress(z,X,alpha)输入z :n 维数据向量X:[ones(20,1) x y],这里的1是个向量,元素全为常数1,即为ones(n,1)Alpha:置信水平,一般为0.05输出b :β的估计值bint:b 的置信区间r :残差向量z-Xbrint: r 的置信区间Stats:检验统计量2R ,F , p代入上述公式[b,bint,r,rint,stats]=regress(z,X,0.05)有b =322.80.4168-859.2322.75630.61850.859.479=+-z x y由stats =0.2672 920.7 0知z的99.085%可由模型确定,F远超过F检验的临界值,p远小于α=0.05 .bint =224. 421.70.0184 0.8151-1121. -597.5b的置信区间不包含零点,x,y对z影响都是显著的。
聚类分析人类认识世界往往首先将被认识的对象进行分类,聚类分析是研 究分类问题的多元数据分析方法,是数值分类学中的一支。
多元数据形成数据矩阵,见下表 1。
在数据矩阵中,共有 n 个样 品 x ,x ,…,x (列向),p 个指标(行向)。
聚类分析有两种类 1 2 n 型:按样品聚类或按变量(指标)聚类。
表 1 数据矩阵样品 指标x , x , ... , x , ... , x12jnx 1 x 11 x 21 ... x x 12 x 22 (x)x 1px2 p... x ... x np... x n 1... x n 2 j 1 x 2x pj 2 jp 聚类分析的基本思想是在样品之间定义距离,在变量之间定义相 似系数,距离或相似系数代表样品或变量之间的相似程度。
按相似程 度的大小,将样品(或变量)逐一归类,关系密切的类聚到一个小的 分类单位,然后逐步扩大,使得关系疏远的聚合到一个大的分类单位, 直到所有的样品(或变量)都聚集完毕,形成一个表示亲疏关系的谱 系图,依次按照某些要求对样品(或变量)进行分类。
一、分类统计量----距离与相似系数1.样品间的相似性度量----距离用样品点之间的距离来衡量各样品之间的相似性程度(或靠近程度)。
设d (x , x ) 是样品 x , x 之间的距离,一般要求它满足下列条件:i j i j 1) d (x , x ) 0 , 且 d (x , x ) 0 x x ; i j i j i j2) d (x , x ) d (x , x ) ;i j j i 3) d (x , x ) d (x , x ) d (x , x ) .i j i k k j 在聚类分析中,有些距离不满足 3),我们在广义的角度上仍称 它为距离。
1.1 欧氏距离12pd (x , x ) (x x ) 2 i j ik jkk 1 1.2 绝对距离pd (x , x )| xx |i j ikjk k 11.3 Minkowski 距离1pmd (x , x ) (x x ) m i j ik jkk 1 1.4 Chebyshev 距离d (x , x ) max | x x | i j ik jk1k p1.5 方差加权距离122p(x ik x ) jk d (x , x ) i j s 2k 1 k1 n 1 n 1 n 其中 x x , s ik2 k (x x ) . 2n ik k i 1 i 1 1.6 马氏距离1 2d (x , x ) (x i x ) T1(x i x ) Sjijj其中 S 是由样品 x , x , ... , x , ... , x 算得的协方差矩阵:1 2 j n1 n 1 n 1 nx x , S i(xx )(x x )Tn ii i 1 i 1样品聚类通常称为 Q 型聚类,其出发点是距离矩阵。
MATLAB中的数学建模方法及应用引言数学建模作为一门重要的学科,已经成为了现代科学研究和工程实践中不可或缺的一部分。
而在数学建模过程中,数值计算和数据分析是关键步骤之一。
MATLAB作为一种强大的数学计算软件,在数学建模领域得到了广泛应用。
本文将介绍MATLAB中常用的数学建模方法,并探讨一些实际应用案例。
一、线性模型线性模型是数学建模中最基础的一种模型,它假设系统的响应是线性的。
在MATLAB中,我们可以通过矩阵运算和线性代数的知识来构建和求解线性模型。
例如,我们可以使用MATLAB中的线性回归函数来拟合一条直线到一组数据点上,从而得到一个线性模型。
二、非线性模型与线性模型相对应的是非线性模型。
非线性模型具有更强的表达能力,可以描述更为复杂的系统。
在MATLAB中,我们可以利用优化工具箱来拟合非线性模型。
例如,我们可以使用MATLAB中的非线性最小二乘函数来优化模型参数,使得模型与实际数据拟合程度最好。
三、微分方程模型微分方程模型在科学研究和工程实践中广泛应用。
在MATLAB中,我们可以使用ODE工具箱来求解常微分方程(ODE)。
通过定义初始条件和微分方程的表达式,MATLAB可以使用多种数值方法来求解微分方程模型。
例如,我们可以利用MATLAB中的欧拉法或者龙格-库塔法来求解微分方程。
四、偏微分方程模型偏微分方程(PDE)模型是描述空间上的变化的数学模型。
在MATLAB中,我们可以使用PDE工具箱来求解常见的偏微分方程模型。
通过定义边界条件和初始条件,MATLAB可以通过有限差分或有限元等方法来求解偏微分方程模型。
例如,我们可以利用MATLAB中的热传导方程求解器来模拟物体的温度分布。
五、曲线拟合与数据插值曲线拟合和数据插值是数学建模过程中常见的任务。
在MATLAB中,我们可以使用拟合和插值工具箱来实现这些任务。
通过输入一系列数据点,MATLAB可以通过多项式拟合或者样条插值等方法来生成一个模型函数。