连续函数的最佳逼近
- 格式:ppt
- 大小:1012.50 KB
- 文档页数:49
附录一 Bernstein 多项式:连续函数的多项式逼近连续函数可以由多项式一致逼近是分析中的重要定理,直接的证明方法就是用函数的Bernstein 多项式去逼近函数。
通常的教材中的证明比较难于理解,我们选择前苏联数学家Korovkin 在1953年给出证明方法,解决了教学中的这一难点。
Weierstrass 第一逼近定理 设是闭区间[a , b ]上的连续函数,则存在多项式序列{在[a , b ] 上一致收敛于。
也就是对任意给定的)(x f })(x P n )(x f 0>ε,存在多项式,使得)(x P ε<−)()(x f x P对一切∈x [a , b ]成立。
Weierstrass 第一逼近定理的证明证 不失一般性,设[a , b ]为[0, 1]。
设X 是[0, 1]上连续函数全体构成的集合,Y 是多项式全体构成的集合,定义映射)(t f n B : X Y→ )(t f 6k n k k n n k n x x C n k f x f B −=−⎟⎠⎞⎜⎝⎛=∑)1(),(0,得到{},表示),(x f B n ),(x f B n X f ∈在映射作用下的像,它是以n B x 为变量的次多项式,称为的n 次Bernstein 多项式。
n f关于映射,有下述基本性质与基本关系式:n B (1)线性性:对于任意及X g f ∈,∈βα,R ,成立),(),(),(x g B x f B x g f B n n n βαβα+=+;(2)单调性:若()()(t g t f ≥∈t [a , b ]),则 ),(),(x g B x f B n n ≥ (∈x [a , b ]);(3); 1)1(),1(0=−=−=∑k n k k n n k n x x C x B x x x C n k x t B k n k k n n k n =−=−=∑)1(),(0; =−=−=∑k n k k n n k n x x C n k x t B )1(),(0222nx x x 22−+。
1.RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP 网络的结构要比RBF 网络简单。
??2.RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经元直到满足精度要求为止。
但是在训练样本增多时,RBF 网络的隐层神经元数远远高于前者, 使得RBF 网络的复杂度大增加, 结构过于庞大, 从而运算量也有所增加。
??3.RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。
4.他们的结构是完全不一样的。
BP是通过不断的调整神经元的权值来逼近最小误差的。
其方法一般是梯度下降。
RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。
5.bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。
对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。
而rbf神经网络是种高效的前馈式网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。
6. BP网络用于函数逼近时,权值的调节采用的是负梯度下降法,这种调节权值的方法有它的局限性,既存在着收敛速度慢和局部极小等缺点。
而径向基神经网络在逼近能力、分类能力和学习速度等方面均优于BO网络。
从理论上,RBF网络和BP网络一样可近似任何的连续非线形函数,两者的主要差别在于各使用不同的作用函数,BP网络中的隐层节点使用的是Sigmoid函数,其函数值在输入空间中无限大的范围内为非零值,而RBF网络的作用函数则是局部的。
7. RBF神经网络与BP神经网络的比较RBF神经网络与BP神经网络都是非线性多层前向网络,它们都是通用逼近器。
数值分析连续函数的最佳逼近第二讲数值分析中的最佳逼近是一个重要的概念,在连续函数的研究中有着广泛的应用。
本文将对数值分析中连续函数的最佳逼近进行详细的讨论。
首先,我们需要明确最佳逼近的含义。
在数值分析中,最佳逼近是指在给定的范围内选择一个函数来尽可能地接近给定的连续函数。
最佳逼近的问题可以分为两类:在指定函数族中选择一个函数和在给定的有界闭区间上最佳逼近。
在指定函数族中选择一个函数的最佳逼近问题可以通过最小二乘法来解决。
最小二乘法是指通过最小化指定函数和连续函数的残差平方和来选择一个最佳的函数。
在给定的有界闭区间上最佳逼近问题可以通过插值法来解决。
插值法是指通过在给定的有限数据点上插值得到一个函数,并使得插值函数在给定的有界闭区间上与连续函数的误差最小。
最常见的插值方法是拉格朗日插值法和牛顿插值法。
拉格朗日插值法是通过构造一个或多个基于不同数据点的插值多项式来逼近连续函数。
拉格朗日插值法的优点是简单易用,但其缺点是计算复杂度高,尤其是在数据点较多的情况下。
牛顿插值法是通过构造一个差商的多项式来逼近连续函数。
差商是指用有限数据点之间的差来表示函数间的关系。
牛顿插值法相对于拉格朗日插值法来说更加高效。
此外,还有其他的最佳逼近方法,如最小二乘逼近和最小平均绝对误差逼近。
最小二乘逼近是通过最小化连续函数和指定函数族的平方误差来选择一个最佳的函数。
最小平均绝对误差逼近是通过最小化连续函数和指定函数族的绝对误差的平均值来选择一个最佳的函数。
最佳逼近的理论基础是泛函分析和数学分析中的一些重要定理,如魏尔斯特拉斯逼近定理和诺特尔定理。
魏尔斯特拉斯逼近定理指出,任意连续函数在有界闭区间上都可以用一个多项式来逼近。
诺特尔定理是关于差商和插值多项式收敛的一个重要定理。
最佳逼近问题在实际应用中有着广泛的应用。
例如,在信号处理中,最佳逼近可以用于滤波器设计和图像压缩。
在数值计算中,最佳逼近可以用于求解微分方程等数值问题。
§2 最佳一致逼近一、最佳一致逼近的概念定义3.10 设函数f (x )是区间[a , b ]上的连续函数,对于任意给定的ε >0,如果存在多项式p (x ),使不等式ε<-<<)()(max x p x f bx a 成立,则称多项式p (x )在区间[a , b ]上一致逼近(或均匀逼近)于函数f (x )。
那么,对于在区间[a , b ]上的连续函数f (x ),是否存在多项式p (x )一致逼近于f (x )呢?这个问题有许多人研究过。
德国数学家维尔斯特拉斯(Weierstrass)在1885年曾给出下述著名定理。
维尔斯特拉斯定理 若f (x )是区间[a , b ]上的连续函数,则对于任意ε >0,总存在多项式p (x ),使对一切a ≤x ≤b 有ε<-)()(x p x f证明从略。
维尔斯特拉斯定理表明,连续函数f (x )可以用多项式p (x )逼近到任意精确程度,但维尔斯特拉斯定理只在理论上肯定了闭区间上的连续函数可以用多项式以任意精确度来逼近,并没有给出确定逼近得最快的多项式的方法。
事实上,如果精确度要求较高,则用来逼近的多项式的次数一般也很高,这就增加了计算工作量。
因而,在实际计算时,我们总量希望在一定的精确度要求下,逼近多项式的次数越低越好。
切比雪夫从这样的观点去研究一致逼近问题,他不让逼近多项式的次数n 趋于无穷大,而是先把n 加以固定。
对于给定的[a , b ]上的连续函数f (x ),他提出在次数不超过n 的多项式的集合p n 中去寻找一个多项式)(*x p n ,使它在[a , b ]上“最佳地逼近”f (x )。
这里最佳逼近的意思是指)(*x p n 对f (x )的偏差。
)()(max *x p x f n bx a -<< 和其它任一p (x ) ∈ p n 对f (x )的偏差)()(max x p x f bx a -<<比较时是最小的,也就是说{})()(max min )()(max )(*x P x f x p x f bx a p x p n b x a n-=-<<∈<<(3.18)这就是通常所谓的最佳一致逼近问题,也称为切比雪夫逼近问题。