连续函数的最佳逼近
- 格式:ppt
- 大小:1012.50 KB
- 文档页数:49
附录一 Bernstein 多项式:连续函数的多项式逼近连续函数可以由多项式一致逼近是分析中的重要定理,直接的证明方法就是用函数的Bernstein 多项式去逼近函数。
通常的教材中的证明比较难于理解,我们选择前苏联数学家Korovkin 在1953年给出证明方法,解决了教学中的这一难点。
Weierstrass 第一逼近定理 设是闭区间[a , b ]上的连续函数,则存在多项式序列{在[a , b ] 上一致收敛于。
也就是对任意给定的)(x f })(x P n )(x f 0>ε,存在多项式,使得)(x P ε<−)()(x f x P对一切∈x [a , b ]成立。
Weierstrass 第一逼近定理的证明证 不失一般性,设[a , b ]为[0, 1]。
设X 是[0, 1]上连续函数全体构成的集合,Y 是多项式全体构成的集合,定义映射)(t f n B : X Y→ )(t f 6k n k k n n k n x x C n k f x f B −=−⎟⎠⎞⎜⎝⎛=∑)1(),(0,得到{},表示),(x f B n ),(x f B n X f ∈在映射作用下的像,它是以n B x 为变量的次多项式,称为的n 次Bernstein 多项式。
n f关于映射,有下述基本性质与基本关系式:n B (1)线性性:对于任意及X g f ∈,∈βα,R ,成立),(),(),(x g B x f B x g f B n n n βαβα+=+;(2)单调性:若()()(t g t f ≥∈t [a , b ]),则 ),(),(x g B x f B n n ≥ (∈x [a , b ]);(3); 1)1(),1(0=−=−=∑k n k k n n k n x x C x B x x x C n k x t B k n k k n n k n =−=−=∑)1(),(0; =−=−=∑k n k k n n k n x x C n k x t B )1(),(0222nx x x 22−+。
1.RBF 的泛化能力在多个方面都优于BP 网络, 但是在解决具有相同精度要求的问题时, BP 网络的结构要比RBF 网络简单。
??2.RBF 网络的逼近精度要明显高于BP 网络,它几乎能实现完全逼近, 而且设计起来极其方便, 网络可以自动增加神经元直到满足精度要求为止。
但是在训练样本增多时,RBF 网络的隐层神经元数远远高于前者, 使得RBF 网络的复杂度大增加, 结构过于庞大, 从而运算量也有所增加。
??3.RBF神经网络是一种性能优良的前馈型神经网络,RBF网络可以任意精度逼近任意的非线性函数,且具有全局逼近能力,从根本上解决了BP网络的局部最优问题,而且拓扑结构紧凑,结构参数可实现分离学习,收敛速度快。
4.他们的结构是完全不一样的。
BP是通过不断的调整神经元的权值来逼近最小误差的。
其方法一般是梯度下降。
RBF是一种前馈型的神经网络,也就是说他不是通过不停的调整权值来逼近最小误差的,的激励函数是一般是高斯函数和BP的S型函数不一样,高斯函数是通过对输入与函数中心点的距离来算权重的。
5.bp神经网络学习速率是固定的,因此网络的收敛速度慢,需要较长的训练时间。
对于一些复杂问题,BP算法需要的训练时间可能非常长,这主要是由于学习速率太小造成的。
而rbf神经网络是种高效的前馈式网络,它具有其他前向网络所不具有的最佳逼近性能和全局最优特性,并且结构简单,训练速度快。
6. BP网络用于函数逼近时,权值的调节采用的是负梯度下降法,这种调节权值的方法有它的局限性,既存在着收敛速度慢和局部极小等缺点。
而径向基神经网络在逼近能力、分类能力和学习速度等方面均优于BO网络。
从理论上,RBF网络和BP网络一样可近似任何的连续非线形函数,两者的主要差别在于各使用不同的作用函数,BP网络中的隐层节点使用的是Sigmoid函数,其函数值在输入空间中无限大的范围内为非零值,而RBF网络的作用函数则是局部的。
7. RBF神经网络与BP神经网络的比较RBF神经网络与BP神经网络都是非线性多层前向网络,它们都是通用逼近器。