[精华]金属锻造性能
- 格式:ppt
- 大小:774.50 KB
- 文档页数:12
锻造的工艺特点
锻造是一种常见的金属加工工艺,它通过施加高压力和高温度,使金属原料发生塑性变形和晶粒细化,从而达到加工成形的目的。
锻造工艺的特点有以下几点:
一、高强度和高密度
锻造工艺可以使金属材料在高温高压下发生塑性变形,使其晶粒细化并排列有序,从而使金属材料的密度和强度得到提高。
相比于其他加工工艺,如铸造和焊接,锻造能够获得更高的强度和密度,因此在高负荷和高强度要求的产品制造中得到广泛应用。
二、良好的成形性能
锻造工艺可以使金属材料在高温下发生塑性变形,从而得到各种形状和尺寸的产品。
相比于其他加工工艺,如切削和冲压,锻造具有更好的成形性能,可以制造出更为复杂的产品,如飞机发动机叶片、汽车曲轴等。
三、优异的机械性能
锻造工艺可以使金属材料的晶粒细化和排列有序,从而提高其机械性能,如强度、硬度、韧性和耐磨性等。
同时,锻造还可以改善金属材料的组织和性能分布,从而使其具有更好的抗疲劳和抗蠕变性能。
四、节约原材料和成本
锻造工艺可以减少金属材料的浪费和能耗,从而节约原材料和成本。
相比于其他加工工艺,如铸造和焊接,锻造能够获得更高的利用率和较低的成本。
锻造工艺具有高强度和高密度、良好的成形性能、优异的机械性能和节约原材料和成本等特点。
在现代工业生产中,锻造工艺被广泛应用于各种重要的机械零部件、航空航天器件、汽车零部件等领域。
随着科技的发展和工艺的改进,锻造工艺也在不断地创新和发展,将为各行各业带来更多的机遇和挑战。
锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。
通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。
相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。
锻造的作用利用金属的塑性对金属坯料施加外力,使其产生塑性变形、改变尺寸、形状及改善性能,用以制造机械零件、工件、工具或毛坯的成形加工方法就是锻造。
下面给大家介绍锻造的作用1.细化晶粒:金属是由晶粒组成的,晶粒间靠晶界连结,晶界越多,金属结合的就越牢固。
金属经过锻造,粗大的铸造晶粒变为较细小的锻造晶粒,增加了晶界数量,金属的强度、硬度提高,也改善了金属的机械性能。
2.改变夹杂形态:金属内部的夹杂被视为裂纹源,影响了金属的机械性能和使用寿命。
通过锻造,能使颗粒状的夹杂变成条状或线状,减小内应力,减小其对金属机械性能的影响。
3.锻合内部缺陷:锻造能将金属内部的疏松压实,气孔锻合,提高金属的强度、硬度和韧性,延长金属的使用寿命。
4.消除偏析:钢锭的偏析使其各部性能不同,严重影响了金属的使用性能,通过锻造能将偏析部分或全部消除,减少偏析的区域,降低偏析对金属机械性能的影响。
5.改变金属纤维方向:锻造能使金属的纤维方向沿锻件形状分布,提高金属的强度、硬度和韧性。
锻造的种类和特点当温度超过300-400℃(钢的蓝脆区),达到700-800℃时,变形阻力将急剧减小,变形能也得到很大改善。
根据在不同的温度区域进行的锻造,针对锻件质量和锻造工艺要求的不同,可分为冷锻、温锻、热锻三个成型温度区域。
原本这种温度区域的划分并无严格的界限,一般地讲,在有再结晶的温度区域的锻造叫热锻,不加热在室温下的锻造叫冷锻。
在低温锻造时,锻件的尺寸变化很小。
什么是金属锻造工艺技术
金属锻造是指将金属材料加热至一定温度下,然后施加外力进行塑性变形的工艺技术。
它是一种重要的制造工艺,在各个领域有着广泛的应用。
金属锻造工艺技术具有以下几个特点:首先,它可以在较低的温度下进行,不需要像熔化铸造那样高温操作,所以可以避免一些高温操作带来的缺陷。
其次,金属锻造工艺技术可以大幅度提高材料的机械性能,使其达到更好的强度和韧性。
此外,金属锻造还可以实现复杂形状的制造,不仅可以满足不同产品的需求,还可以减少材料的浪费。
而且,金属锻造工艺技术还具有高效率、节约能源等优势。
在金属锻造工艺技术中,最常见的方法是冷锻和热锻。
冷锻是指在室温下进行锻造操作,适用于不锈钢、碳钢等材料。
热锻则是指将金属加热到适当温度后再进行锻造,适用于高温合金和超级合金等材料。
在锻造过程中,可以利用锻造压机来提供外力,并通过给定的模具来实现所需形状的锻造。
金属锻造工艺技术的应用非常广泛。
在航空航天领域中,需要制造各种复杂的航空零部件,金属锻造技术可以实现其高强度和轻量化要求。
在汽车制造业中,金属锻造技术可以生产各种发动机零部件、汽车悬挂系统等。
在农机制造业中,金属锻造技术可以生产各种耕地机械、收割机等。
此外,金属锻造还广泛应用于武器制造、机械制造、船舶制造等领域。
总之,金属锻造工艺技术是一种重要的制造工艺,可以提高材
料的机械性能,实现复杂形状的制造,并具有高效率和节约能源的优势。
随着科技的不断进步,金属锻造工艺技术将继续发展,为各个领域的制造业带来更多的机会和挑战。
锻造对锻件金属组织、性能的影响及缺陷(一)锻造对金属组织和性能的影响锻造生产中,除了必须保证锻件所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指标、塑性指标、冲击韧度、疲劳强度、断裂初度和抗应力腐蚀性能等,对高温工作的零件,还有髙温瞬时拉伸性能、持久性能、抗蝤变性能和热疲劳性能等。
锻造用的原材料是铸锭、轧材、挤材和锻坯。
而轧材、挤材和锻坯分别是铸锭经轧制、挤压及锻造加丁后形成的半成品。
锻造生产中,采用合理的工艺和工艺参数,可以通过下列几方面来改善原材料的组织和性能:1、打碎柱状晶,改善宏观偏析,把铸态组织变为锻态组织,并在合适的温度和应力条件下,焊合内部孔隙,提高材料的致密度;2、铸锭经过锻造形成纤维组织,迸一步通过轧制、挤压、模锻使锻件得到合理的纤维方向分布;3、控制晶粒的大小和均匀度;4、改善第二相(例如:莱氏体钢中的合金碳化物)的分布;5、使组织得到形变强化或形变强化等。
由于上述组织的改善,使锻件的塑性、冲击韧度、疲劳强度及持久性能等也随之得到了提高,然后通过零件的最后热处理就能得到零件所要求的硬度、强度和塑性等良好的综合性能。
但是,如果原材料的质量不良或所采用的锻造工艺不合理,则可能产生锻件缺陷,包括表面缺陷、内部缺陷或性能不合格等。
(二)原材料对锻件质量的影响原材料的良好质置是保证锻件质量的先决条件,如原材料存在缺陷,将影响锻件的成形过程及锻件的最终质量。
如原材料的化学元素超出规定的范围或杂质元素含量过髙.对锻件的成形和质量都会带来较大的影响,例如:S、B、Cu、Sn等元素易形成低熔点相,使锻件易出现热脆。
为了获得本质细晶粒钢,钢中残余铝含置需控制在一定范围内,例如A1酸0.02%〜0.04% (质量分数)。
含量过少,起不到控制晶粒泣大的作用,常易使锻件的本质晶粒度不合格;含铝量过多,压力加工时在形成纤维组织的条件下易形成木纹状断口、撕痕状断口等。
锻造基础知识⽬录第⼀节:基础知识 (5)⼀、锻压及其特点 (5)1.定义 (5)2.分类 (5)3.特点 (5)4.应⽤ (5)⼆、⾦属的锻造性能 (6)1.定义 (6)2.影响锻造性能的因素 (6)三、⾦属的塑性变形规律 (7)1. 最⼩阻⼒定律 (7)2. 塑性变形时的体积不变规律 (8)第⼆节:锻造 (8)⼀、锻造的定义及⽅法 (8)1.定义 (8)2.分类 (8)⼆、⾃由锻造及其特点 (8)1.定义 (8)2.特点 (8)三、⾃由锻造的⼯序 (9)1.镦粗 (9)2.拔长 (10)3.冲孔 (13)4.扩孔 (14)四、设备与⼯具 (15)1.设备 (15)2.⼯具 (15)五、锻造缺陷及防⽌ (15)第三节:锻造⽤原材料及其加热 (15)⼀、锻造⽤材料 (15)1.分类 (15)2.钢锭的结构 (15)3.钢锭的缺陷 (16)⼆、原材料的加热 (17)1.加热的⽬的 (17)2.加热⽅法 (17)3.锻造温度范围的确定 (17)4.⾦属的加热规范 (18)三、加热缺陷及防⽌措施 (18)1.氧化 (18)2.脱碳 (19)3.过热 (20)4.过烧 (20)5.裂纹 (21)四、加热温度的测量 (21)第四节:锻件的锻后冷却和热处理 (21)⼀、锻件的锻后冷却 (21)1.定义 (21)2.锻后冷却常见缺陷产⽣的原因和防⽌措施 (21)3.锻件的冷却⽅法 (22)⼆、锻件的锻后热处理 (23)1.⽬的 (23)2.⽅法 (23)第五节:⼯艺制定 (23)⼀、内容 (23)⼆、锻件图的制定 (23)三、坯料重量和尺⼨的确定 (24)1.形状材料的重量计算 (24)2.坯料尺⼨确定 (25)三.确定变形⼯艺和锻造⽐ (25)1变形⼯艺 (25)2.锻造⽐ (25)3.锻造⽐的计算 (25)4.锻造⽐对组织和机械性能的影响 (26)第⼀节:基础知识⼀、锻压及其特点1.定义锻压是利⽤外⼒使⾦属坯料产⽣塑性变形,获得所需尺⼨、形状及性能的⽑坯或零件的加⼯⽅法。