20150923九年级数学(上)(浙江教育版)期末测试题附答案
- 格式:doc
- 大小:6.79 MB
- 文档页数:13
浙教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①b2>4ac;②abc>0;③2a﹣b=0;④8a+c<0;⑤9a+3b+c<0,其中结论正确有()个。
A.2个B.3个C.4个D.5个2、如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于点F,已知BC=8,DE=2,则⊙O的半径为()A.8B.5C.2.5D.63、如图,已知===,且△ABC的周长为15cm,则△ADE的周长为()A.6cmB.9cmC.10cmD.12cm4、圆锥的底面直径为30cm,母线长为50cm,那么这个圆锥的侧面展开图的圆心角为()A.108°B.120°C.135°D.216°5、“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是()A. B. C. D.6、如图,边长为1的正方形ABCD绕点A逆时针旋转后得到正方形,边与CD交于点O,则图中阴影部分的面积是()A. B. C. D.7、下列语句中,不正确的个数()①三点确定一个圆②平分弦的直径垂直于弦③相等的圆心角所对的弧相等④相等弧所对的弦相等.A.1B.2C.3D.48、一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是()A.m+n=4B.m+n=8C.m=n=4D.m=3,n=59、抛掷一个质地均匀且六个面上依次刻有1-6的点数的正方体型骰子,如图.观察向上的一面的点数,下列情况属必然事件的是().A.出现的点数是7B.出现的点数不会是0C.出现的点数是2 D.出现的点数为奇数10、在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为()A. B. C. D.11、下列三个函数:①y=x+1;②;③y=x2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有()A.0B.1C.2D.312、如图,在△ABC中,∠B=70°,AB=4,BC=6,将△ABC沿图示中的虚线DE 剪开,剪下的三角形与原三角形相似的有()A.1个B.2个C.3个D.4个13、如图,在□ABCD中,EF//AB,DE:EA = 2:3,EF = 4,则CD的长为()A. B.8 C.10 D.1614、如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为()A. B. C. D.15、如图,半径为5的⊙A中,弦BC,ED所对的圆心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于()A. B. C.4 D.3二、填空题(共10题,共计30分)16、如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=________cm.17、如图,直线与x轴,y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是________.18、在直角坐标系中,抛物线y=ax2-4ax+2(a>0)交y轴于点A,点B是点A关于对称轴的对称点,点C是抛物线的顶点,若△ABC的外接圆经过原点O,则a的值为________.19、如图,D是⊙O弦BC的中点,A是弧BC上一点,OA与BC交于点E,若AO =8,BC=12,EO=BE,则线段OD=________,BE=________.20、请写出一个开口向下,并且与y轴交于负半轴的抛物线的解析式为________.21、已知弦AB将圆周分成1:2的两部分,则弦AB所对的圆心角的度数为________.22、已知正整数a满足不等式组(x为未知数)无解,则a的值为________ ;函数y=(3﹣a)x2﹣x﹣3图象与x轴的交点坐标为________ 23、如图,将四边形ABCD绕顶点A顺时针旋转45°至AB’C’D’的位置,若AB=16cm,则图中阴影部分的面积为________.24、抛物线y=x2+2x﹣3的对称轴是________.25、已知扇形的圆心角为120°,半径为6,则扇形的弧长是________三、解答题(共5题,共计25分)26、已知=k,求k2-3k-4的值.27、如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.28、已知:如图,DE∥BC,EF∥CD,求证:AD2=AF•AB.29、经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.30、如图,四边形ABCD是的内接四边形,DB=DC求证:∠CAD=∠EAD.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、A5、B6、B7、C8、B9、B10、C11、C12、C13、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
浙教版九年级数学第一学期(期末)检测试题及答案考生须知:1.全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共4页,有三个大题,24个小题.满分150分,考试时间为120分钟.2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上.3.允许使用计算器,但没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.第Ⅰ卷(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.若2y =7x ,则x ∶y 等于 ( ) A 、7∶2 B 、4∶7 C 、2∶7 D 、 7∶42.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,则摸到红球的概率为( ) A .15B .13C .38D .583.若两个相似三角形的面积之比为1:4,则它们的周长之比为( )A. 1:2B. 1:4C. 1:5D. 1:164.两个圆的半径分别为5 cm 和3 cm ,圆心距是2 cm ,则这两个圆的位置关系是 ( ) A .外离B .外切C .相交D .内切5.抛物线()231y x =-+的对称轴是( )A .直线1x =B .直线3x =C .直线1x =-D .直线3x =- 6.如图是小明制作的一个圆锥形纸帽的示意图,围成这个纸帽的纸的面积为( )c m 2.(A )6000π (B )3000π (C )3000 (D )2002π7.如图,⊙O 是△A BC 的外接圆,∠OCB =40°,则∠A 的度数等于( )A . 50°B . 40°C . 30°D . 20° 8.如图所示,河堤横断面迎水坡AB 的坡比是1:3,堤高 BC =5m ,则坡面AB 的长度是( )A .10mB .103mC .15mD .53m第6题第7题第8题9.下列图中的每个矩形都是由五个相同的小正方形拼合组成,其中ΔABC 和ΔCDE 的顶点都在小正方形的顶点上,则ΔABC 与ΔCDE 一定相似的图形是( )10.如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交, 其顶点坐标为1,12⎛⎫⎪⎝⎭,下列结论:①ac <0;②a+b=0;③4ac ﹣b 2=4a ;④a+b+c <0.其中正确结论的个数是( )A 、1B 、2C 、3D 、4第Ⅱ卷 (非选择题,共110分)二、填空题(本题共6小题,每小题5分,共30分) 11.函数y=13-x 中,自变量x 的取值范围是_______; 12.如图,在△ABC 中,DE ∥BC ,若31=AB AD ,DE =2,则BC 的长为 。
浙教版九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.(3分)抛物线y=4x2﹣3的顶点坐标是()A.(0,3)B.(0,﹣3)C.(﹣3,0)D.(4,﹣3)2.(3分)下列各组中得四条线段成比例的是()A.4cm、2cm、1cm、3cm B.1cm、2cm、3cm、5cmC.3cm、4cm、5cm、6cm D.1cm、2cm、2cm、4cm3.(3分)如图,⊙O的半径为5,弦心距OC=3,则弦AB的长是()A.4B.6C.8D.54.(3分)在△ABC中,∠C=Rt∠,AC=6,BC=8,则cos B的值是()A.B.C.D.5.(3分)如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=6.(3分)有四张背面一模一样的卡片,卡片正面分别写着一个函数关系式,分别是y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0),将卡片顺序打乱后,随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是()A.B.C.D.17.(3分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.8.(3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0B.﹣1C.1D.29.(3分)已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠P AD=∠PDA=60°;②△P AO≌△ADE;③PO=r;④AO:OP:P A=1::.A.①④B.②③C.③④D.①③④10.(3分)如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球.通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在0.2左右,则m的值约为.12.(4分)抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是.13.(4分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为度.14.(4分)如图,在▱ABCD中,点E在DC边上,若,则的值为.15.(4分)如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.16.(4分)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y=ax2﹣2ax+a+3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是.三、解答题(本题有8小题,共66分)17.(6分)计算:2cos30°+sin45°﹣tan260°.18.(6分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.19.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;(2)求小丽投放的两袋垃圾不同类的概率.20.(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示.已知真空集热管DE与支架CB所在直线相交于点O,且OB=OE;支架BC与水平线AD垂直.AC=40cm,∠ADE=30°,DE=190cm,另一支架AB与水平线夹角∠BAD=65°,求OB的长度(结果精确到1cm;温馨提示:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)21.(8分)如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.22.(10分)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元.调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元).(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?23.(10分)如图1,BC是⊙O的直径,点A在⊙O上,AD⊥BC,垂足为D,=,BE分别交AD、AC于点F、G.(1)判断△F AG的形状,并说明理由;(2)如图2,若点E和点A在BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,若BG=26,BD﹣DF=7,求AB的长.24.(12分)如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.【解答】解:∵抛物线y=4x2﹣3,∴该抛物线的顶点坐标为(0,﹣3),故选:B.2.【解答】解:A、从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;B、从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;C、从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;D、从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选:D.3.【解答】解:连接OA,如图所示:∵OC⊥AB,OC=3,OA=5,∴AB=2AC,∵AC===4,∴AB=2AC=8.故选:C.4.【解答】解:如图,在Rt△ABC中,∵AC=6,BC=8,∴AB===10,∴cos B===,故选:C.5.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.6.【解答】解:函数y=2x,y=x2﹣3(x>0),y=(x>0),y=﹣(x<0)中,有y=2x,y=x2﹣3(x>0),y=﹣(x<0),是y随x的增大而增大,所以随意从中抽取一张,取出的卡片上的函数是y随x的增大而增大的概率是.故选:C.7.【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.8.【解答】解:因为对称轴x=1且经过点P(3,0)所以抛物线与x轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax2+bx+c中,得a﹣b+c=0.故选:A.9.【解答】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△P AD是等腰三角形,∠P AD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△P AO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO==r,③正确;∵AO:OP:P A=r:r:r=1::.∴④正确;说法正确的是③④,故选:C.10.【解答】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴P A=PC,∴PC+PE=P A+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=2,∴PC+PE的最小值为2,∴点H的纵坐标a=2,∵BC∥AD,∴=2,∵BD=4,∴PD==,∴点H的横坐标b=,∴a+b=2+=;故选:C.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:根据题意,得:=0.2,解得:m=20,故答案为:20.12.【解答】解:根据“上加下减,左加右减”的法则可知,抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x﹣1)2﹣2.故答案为:y=3(x﹣1)2﹣2.13.【解答】解:∵扇形的半径是1,弧长是,∴l==,即=,解得:n=60,∴此扇形所对的圆心角为:60°.故答案为:60.14.【解答】解:∵=,∴=;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴△ABF∽△CEF;∴;∵==,∴=.15.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=4,∴AD=4,∴MN=AD=2,故答案为:2.16.【解答】解:y=ax2﹣2ax+a+3=a(x﹣1)2+3,故抛物线的顶点为:(1,3);如图所示,a<0,图象实心点为8个“整点”,则符合条件的抛物线过点A、B之间(不含点B),当抛物线过点A(3,1)时,将点A的坐标代入抛物线表达式并解得:a=﹣;同理当抛物线过点B(4,1)时,a=﹣,故答案为:﹣<a<﹣.三、解答题(本题有8小题,共66分)17.【解答】解:2cos30°+sin45°﹣tan260°=2×+×﹣=+1﹣3=﹣218.【解答】证明:(1)∵AD是∠BAC的平分线,∴∠BAD=∠DAE,∵∠ADE=∠B.∴△ABD∽△ADE;(2)∵△ABD∽△ADE,∴∴AD2=AE•AB.19.【解答】解:(1)将有害垃圾、厨余垃圾、其他垃圾、可回收垃圾分别记为A,B,C,D,∵小明投放了一袋垃圾,∴小明投放的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,小丽投放的垃圾共有16种等可能结果,其中小丽投放的两袋垃圾不同类的有12种结果,所以小丽投放的两袋垃圾不同类的概率为=.20.【解答】解:设OE=OB=2x,∴OD=DE+OE=190+2x,∵∠ADE=30°,∴OC=OD=95+x,∴BC=OC﹣OB=95+x﹣2x=95﹣x,∵tan∠BAD=,∴2.14=,解得:x≈9.4,∴OB=2x≈19.21.【解答】解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得或,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|P y|=4×AB×,∴|P y||=9,P y=±9,当y=9时,﹣x2+2x+3=9,无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9).22.【解答】解:(1)设培植的盆景比第一期增加x盆,则第二期盆景有(50+x)盆,花卉有(50﹣x)盆,所以W1=(50+x)(160﹣2x)=﹣2x2+60x+8000,W2=19(50﹣x)=﹣19x+950;(2)根据题意,得:W=W1+W2=﹣2x2+60x+8000﹣19x+950=﹣2x2+41x+8950=﹣2(x﹣)2+,∵﹣2<0,且x为整数,∴当x=10时,W取得最大值,最大值为9160,答:当x=10时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是9160元.23.【解答】解:(1)等腰三角形;理由:如图1,∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(2)成立;∵BC为直径,AD⊥BC,∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∵=,∴∠ABE=∠C,∴∠ABE=∠BAD,∴AF=BF,∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,∴∠DAC=∠AGB,∴F A=FG,∴△F AG是等腰三角形;(3)由(2)得:AF=BF=FG,∵BG=26,∴FB=13,∴解得:BD=12,DF=5,∴AD=AF﹣DF=13﹣5=8,∴AB==4.24.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=,∴M(,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(舍去)或m=0.5;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为0.5或﹣1或﹣.。
2015学年第一学期期末试卷《九年级数学》(时间:90分钟 满分:120)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 一.选择题(每小题3分,共30分)1.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于( ▲ ) A .8 B .8 C .10 D .5 2.若两个相似三角形的面积之比为1:4,则它们的周长之比为( ▲ )A .1:2B .1:4C .1:5D .1:16 3.对于反比例函数xy 1=,下列说法正确的是( ▲ )A .图象经过(1,-1)B .图象位于第二,四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大4.如果P 1(-1, y 1),P 2(1, y 2) 和P 3(2, y 3)在函数xy 2=的图象上,那么( ▲ )A .y 1<y 2< y 3B .y 3<y 2<y 1C .y 2<y 1< y 3D .y 1< y 3<y 25.如图,45°<A <90°,则下列各式中成立的是( ▲ )A .sin A =cos AB .sin A >cos AC .sin A > tan AD .sin A <cos A6.已知二次函数y =x 2+bx -2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是( ▲ ) A .(1,0) B .(2,0) C .(-2,0) D .(-1,0) 7.如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是( ▲ ) A .6 cm B .5 cm C .4cm D .3cm 8.如图,AC 是矩形ABCD 的对角线,E 是边BC 的延长线上一点, AE 与CD 相交于点F ,则图中的相似三角形共有( ▲ ) A .2对 B .3对 C .4对 D .5对C BA FED CBA9.已知抛一枚均匀硬币正面朝上的概率是21,下列说法错误的是( ▲ ) A .连续抛一枚均匀硬币2次,必有1次正面朝上 B .连续抛一枚均匀硬币10次,有可能正面都朝上C .大量反复抛一枚均匀硬币,平均每100次出现50次正面朝上D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的10.在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得的抛物线的解析式是( ▲ )A .y =-(x +1)2 +2B .y =-(x -1)2 +4C .y =-(x -1)2 +2D .y =-(x +1)2 +4 二.填空题(每小题3分,共30分) 11.sin30°的值等于 .12.某商场开展购物抽奖促销活动,抽奖箱中有200张抽奖券,其中的一等奖5张,二等奖10张,三等奖25张,其余无奖.某顾客购物后参加抽奖活动,他从抽奖箱中随机抽取1张,则中奖的概率是 .13.二次函数y =x 2+2x -5的最小值是 .14.已知双曲线xk y 2-=在其象限内y 随x 的增大而增大,则k 的取值范围是 . 152y 的对应值如下表:由表可知,下列说法中,正确的是 (填写序号)①抛物线与x 轴的一个交点为(3,0);②函数y =ax 2+bx +c 的最大值为6;③抛物线的对称轴是直线21=x ;④在对称轴左侧,y 随x 的增大而增大. 16.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,若∠A =40°,则∠C = 度. 17.如图,⊙O 的弦CD 与直径AB 相交,若∠BAD=50°,则∠ACD = 度.第16题 第17题 第18题 第19题 第20题DBCBA BACE DC18.如图,△ABC 中,DE //BC ,AD =5,BD =10,DE =4,则BC = .19.如图,在△ABC 中,D 是AB 边上一点,连结CD ,要使△ADC 与△ABC 相似,应添加的条件是 (只需要写出一个条件)20.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,且AE =6,EF =8,FC =10,三.解答题(每小题10分,共60分)21.已知反比例函数的图象与一次函数42-=x y 的图象都经过点A (a , 2),请求出该反比例函数的解析式.22.在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致:小明认为如果两次分别从1~6六个整数中任取一个数(可重复取),分别作为点P (m , n )的横坐标和纵坐标,则点P(m, n )在反比例函数x y 12=的图象上的概率一定大于在反比例函数xy 6=的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点? (1)试用列表或画树状图的方法列举出所有点P (m, n )的情形;(2)分别求出点P(m, n )在两个反比例函数的图像上的概率,并说明谁的观点正确.23.如图,有一段斜坡BD 的长为10m ,坡角∠CBD =12°,为了方便残疾人的轮椅车通行,现准备把坡角降为5°.(1)求坡高CD ;(2)求斜坡新起点A 与原起点B 的距离(精确到0.1m ) (参考数据:sin12°≈0.21,cos12°≈0.98,tan5°≈0.09)22.如图,BD 是⊙O 的直径,A ,C 在⊙O 上,AB =AC ,AD 与BC 的延长线交于点E . (1)求证:△ABD ∽△AEB ;(2)若AD =1,DE =3,求BD 的长.5︒12︒D C BA25.如图,在△ABC中,∠B=90°,∠C=30°,BC=53,点D从点C出发,沿CA方向以每秒2个单位长的速度匀速运动,同时点E从点A出发,沿AB方向以每秒1个单位的速度向点B匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(t>0),作DF⊥BC于点F,连结EF,(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)四边形AEFD的面积S有最大值吗?如果有,求出相应的t值;如果没有,说明理由.A26.如图,将抛物线x x y 23412+-=向上平移h 个单位后分别与x 轴,y 轴交于点A , B , C ,抛物线的对称轴与x 轴的交于点D ,与抛物线交于点E . (1)用h 表示下列各点的坐标:C ,E ,A ,B ; (2)若∠ACB =90°,求此时抛物线的解析式;(3)以AB 为直径作⊙D ,在(2)的条件下,判断直线CE 与⊙D 的位置关系,并说明理由.2012学年第一学期九年级数学期末试卷参考答案一.选择题(每小题3分,共30分)DACDB CCCAB二.填空题(每小题3分,共30分)11.21 12.5113.-6 14.k <2 15.①③④ 16.25 17.4018.12 19.∠B=∠ACD 或∠BCA=∠ADC 或AC 2=AB ·AD 20.80π-160 三.解答题(每小题10分,共60分)21.把A(a , 2)代入42-=x y ,得2=2a -4,a =3, ------------------------5分设反比例函数为xk y =,把A(3, 2)代入得32k =,k =6,所求的反比例函数为xy 6=. ------------------------5分------------------------4分(2)由表格可知,点P(m , n )共有36种可能,且每种结果出现的可能性相等,点(2,6) ,(6,2) ,(3,4) ,(4,3)在x y 12=图像上,点(1,6) ,(6,1), (2,3) ,(3,2)在xy 6=图像上, -----------------------4分故点P(m , n )在两个函数图像上的概率相等,都是91364=, 所以小芳的观点是正确的. -----------------------2分 23.(1)CD=BDsin12°≈10×0.21=2.1(m ) -----------------------4分(2)AB=AC-BC=︒5tan DC -BD cos12°≈09.01.2-10×0.98≈23.3-9.8=13.5(m ) --------6分24.(1)∵AB=AC ,∴∠ABC=∠ACB ,又∵∠ACB=∠ADB ,∴∠ABC=∠ADB ,而∠A 是公共角,∴△ABD ∽△AEB . -----------------------5分(2)由△ABD ∽△AEB 得,ABAEADAB=∴AB 2=AD ·AE=1×(1+3)=4, ∵BD 是直径,∴∠BAD=Rt ∠,∴BD=522=+AD AB . -----------------------5分25.(1)∵DF ⊥BC ,∠C=30°,∴DF=21DC=t =AE ; -----------------------3分(2)∵∠B=90°,DF ⊥BC ,∴AE//DF ,又AE=DF ,∴四边形AEFD 是平行四边形,∴当AE=AD 时,四边形AEFD 是菱形,此时t =10-2t ,t =310. -----------------------4分(3)S=AE ·BF=()()503532335≤≤+-=-t t t t t ,34253225342525=+-==最大值时,当S t . -----------------------3分26.(1)()()()0,493;0,493;49,3;,0h B h A h E h C +++-+⎪⎭⎫⎝⎛; ---------------------4分 (2)由∠ACB=90°可得△AOC ∽△COB ,∴OC 2=OA ·OB ,∴()()h h h h 43493492=++-+=,∴h =4,∴此时抛物线的解析式为423412++-=x x y ; -----------------------3分 (3)由∠ACB=90°可知,CD 是⊙D 的半径,∵()();425,3,4,0,0,3⎪⎭⎫ ⎝⎛E C D ∴41544253,543,4252222=-+==+==⎪⎭⎫ ⎝⎛CE CD DE , ∵222222,5415425CD CE DE =-=-⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛即, ∴CE 与⊙D 相切. -----------------------3分。
浙教版九年级数学第一学期期末教学质量检测试题卷考生须知:1. 本试卷满分120分,考试时间为100分钟.2. 答题前,在答题纸上写姓名和准考证号.3. 必须在答题纸的对应答题位置上答题,写在其他地方无效,答题方式详见答题纸上的说明,考试结束后,上交答题纸.一、选择题(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.已知反比例函数是xy 2=,则它的图象在( ▲ ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 2.已知31=-a b a ,则ab的值为( ▲ ) A .2 B .21 C .23D .323.在Rt △ABC 中,∠A =Rt ∠,AB =3,BC =4,则cosB =( ▲ ) A .43 B .47 C .53 D .544.如图,DE 是△ABC 的中位线,则△ADE 与四边形BCED 的面积的比是( ▲ ) A .1:5 B .1:4 C .1:3 D .1:2 5.若函数xm y 2+=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ )A .2-<mB .0<mC .2->mD .0>m6.如图,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是( ▲ )A .点PB .点QC .点RD .点M(第4题图) (第6题图) (第7题图) 7.如图,□ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC =54°,连接AE ,则∠AEB 的度数为( ▲ )A .36°B .46°C .27°D .63°8.已知直线l 1∥l 2∥l 3∥l 4,相邻的两条平行直线间的距离均为h ,矩形ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB =4,BC =6,则tanα的值等于( ) A .23 B .43 C .34D .32(第8题图) (第9题图)9.如图,一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…如此进行下去,直至得C 13.若P (38,m )在第13段抛物线C 13上,则m 的值为( ▲ ) A .5B .4C .3D .210.若实数a ,b ,c ,满足a ≥b ≥c ,4a +2b +c =0且a ≠0,抛物线y =ax 2+bx +c 与x 轴交于A (x 1,0),B (x 2,0),则线段AB 的最大值是( ▲ ) A .2B .3C .4D .5二、填空题(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.已知:锐角α满足sinα=22,则α= ▲ 12.用一圆心角为120°,半径为6㎝的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是 ▲ ㎝13.如图,D 是△ABC 的边BC 上一点,已知AB =4,AD =2,∠DAC =∠B ,若△ABC 的面积为m ,则△ACD 的面积为 ▲14.对于抛物线y =-(x +1)2+3,下列结论:①抛物线开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④x ≥1时,y 随x 的增大而减小,其中正确的结论是 ▲ .(第13题图) (第15题图) (第16题图)15.如图,AB 是⊙O 的直径,弦BC =4㎝,F 是弦BC 的中点,∠ABC =60°,若动点E 以1㎝/s 的速度从A 点出发在AB 上沿着A →B →A 运动,设运动时间为t (s )(0≤t <16),连接EF ,当△BEF 是直角三角形时,t (s )的值为 ▲16.如图,已知Rt △ABC ,AB ∥y 轴,BC ∥x 轴,且点B 的坐标为(-1,-3),∠A =30°,点A 、C 在反比例函数()0<=k xky 图象上,线段AC 过原点O ,若M (a ,b )是该反比例函数图象在第二象限上的点,且满足∠BMC >30°,则a 的取值范围是 ▲ . 三、解答题(本题有7小题,共66分)解答应写出文字说明,证明过程或推演步骤。
浙教版九年级上册数学期末测试卷一、单选题(共15题,共计45分)1、如图,以点O为位似中心,把△ABC中放大到原来的2倍得到△A′B′C′.以下说法错误的是()A.△ ABC∽△ A′ B′ C′B.点C,O,C′三点在同一条直线上C. AB∥ A′ B′D. AO:AA′=1:22、设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1, y2, y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y23、一元二次方程(m+1)x2-2x-1=0有两个相等的实数根,则m等于()A.-6B.-1C.-2D.14、如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为()A. B. C. D.5、在一个不透明的袋子里装有两个红球和两个黄球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到黄球的概率是()A. B. C. D.6、如图,是的直径,弦与交于点,,,则等于()A. B. C. D.7、如图,在平面直角坐标系中,等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限将△ABC绕点A逆时针旋转75°得到△ADE,点C的对应点E恰好落在y轴的正半轴上,若点A的坐标为(1,0),则边AB的长为()A. B. C.2 D.8、同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图所示看到的万花简的一个图案,如图中所有小三角形均是全等的等边三角形,其中的四边形AEFG可以看成是把四边形ABCD以A为旋转中心()A.顺时针旋转60°得到B.逆时针旋转60°得到C.顺时针旋转120°得到D.逆时针旋转120°得到9、△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1) B.S四边形ABB1A1=3 C.B2C=2D.∠AC2O=45°10、已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x 的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个11、如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为( )A.1B.2C.3D.412、已知y=ax2+bx的图象如图所示,则y=ax-b的图象一定过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限13、如图,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它绕点C旋转一定角度,扶起平放在地面上(如图),则灰斗柄AB绕点C转动的角度为()A.75°B.25°C.115°D.105°14、如图,已知抛物线的图象与x轴交于两点,其对称轴与x轴交于点C其中两点的横坐标分别为-1和1下列说法错误的是()A. B. C. D.当时,y随x的增大而减小15、设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣x2﹣2x+2上的三点,则y1, y2, y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2二、填空题(共10题,共计30分)16、如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.17、把抛物线y=x2向右平移4个单位,所得抛物线的解析式为________.18、如图,AB是⊙O的直径,点C是半径OA的中点,过点C作DE⊥AB,交⊙O 于D,E两点,过点D作直径DF,连结AF,则∠DFA=________.19、如图,在Rt△ABC内画有边长为9,6,x的三个正方形,则x的值为________.20、已知:如同,△ABC内接于⊙O,且半径OC⊥AB,点D在半径OB的延长线上,且∠A=∠BCD=30°,AC=2,则由,线段CD和线段BD所围成图形的阴影部分的面积为________.21、平面直角坐标系中,以原点O为圆心,2为半径作⊙O,则点A(2,2)与⊙O的位置关系为________.22、如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC和∠BOC互补,则弦BC的长度为________.23、、是半径为的上的两条弦,且,,那么,的弦心距________,圆周角所对的弧等于________.24、如图,在3×3的方格中(共有9个小格),每个小方格都是边长为1的正方形,O、B、C是格点,则扇形OBC的面积等于________(结果保留π)25、已知y=(a+2)x2+x﹣3是关于x的二次函数,则常数a应满足的条件是________ .三、解答题(共5题,共计25分)26、如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.27、有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,求小红第二次取出的数字能够整除第一次取出的数字的概率.28、如图,为的中点,求的周长.29、如图,分别是的边,上的点,,,,,求的长.30、在一个不透明的袋子中装有三个完全相同的小球,分别标有数字1,2,3,从袋子中随机取出一个小球,用小球上的数字作为十位数字,然后放回,再取出一个小球,用小球上的数字作为个位数字,这样组成一个两位数.(1)请用列表法或画树状图的方法求出能组成哪些两位数?(2)求组成的两位数能被2整除的概率.参考答案一、单选题(共15题,共计45分)1、D2、A3、C4、A5、C6、D7、A8、D9、D11、C12、C13、D14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
浙教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()A. B. C. D.2、函数与的图象如图所示,则的大致图象为()A. B. C. D.3、如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB()A.是正方形B.是长方形C.是菱形D.以上答案都不对4、如图是从一幅扑g牌中取出的两组牌,分别是黑桃1,2,3,4红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是()A. B. C. D.5、抛物线y=x2-mx-m2+1的图象过原点,则m的值为( )A.0B.1C.-1D.±16、下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:9.A.1个B.2个C.3个D.4个7、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,若∠B=60°,则∠1的度数是()A.15°B.25°C.10°D.20°8、周长是4m的矩形,它的面积S(m2)与一边长x(m)的函数图象大致是( )A. B. C. D.9、二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()A.a<0B.b>0C.b 2﹣4ac>0D.a+b+c<010、将函数y=2(x+1)2﹣3的图象向右平移2个单位,再向上平移5个单位,可得到抛物线的顶点为()A.(﹣3,2)B.(3,8)C.(1,﹣8)D.(1,2)11、如图,是半圆的直径,为弦,于,过点作交半圆于点,过点作于,若,则的长为()A. B. C. D.12、用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A.2π cmB.1.5 cmC.π cmD.1 cm13、一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有71次摸到红球.请你估计这个口袋中白球的数量为( )个.A.29B.30C.3D.714、下列命题正确的是()A.若两个相似三角形的周长比为3:4,则这两个相似三角形的面积比也是3:4 B.如果两个多边形是相似多边形,那么它们一定是位似图形 C.顺次连接菱形的各边中心所得的四边形是正方形 D.各有一个内角是100°的两个等腰三角形相似15、在下列事件中,随机事件是()A.通常温度降到0℃以下,纯净的水会结冰B.随意翻到一本书的某页,这页的页码是奇数C.明天的太阳从东方升起D.在一个不透明的袋子里装有完全相同的6个红色小球,随机抽取一个白球二、填空题(共10题,共计30分)16、在△ABC中,AB=AC,点O是△ABC的外心,∠BOC=60°,BC=2,则S△ABC=________。
浙教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.已知O 的半径为5,点P 在O 内,则OP 的长可能是()A .7B .6C .5D .42.若32a b =,则a bb -的值是()A .2B .12C .32D .523.下列选项中的事件,属于必然事件的是()A .在一个只装有白球的袋中,摸出黄球B .a 是实数,0a >C .明年元旦那天温州的最高气温是10℃D .两个正数相加,和是正数4.将抛物线22y x =-向左平移1个单位,得到的抛物线表达式为()A .221y x =-+B .()221y x =-+C .221y x =--D .()221y x =--5.已知一个扇形的半径长为3,圆心角为60°,则这个扇形的面积为()A .12πB .πC .3π2D .3π6.如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD =90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为()A .2∶3B .2∶5C .4∶9D7.如图,在O 中,点B 是 AC 上一点,若100AOC ∠=︒,则ABC ∠的度数是()A .80°B .100°C .120°D .130°8.将进货价为35元的商品按单价40元售出时,能卖出200个,已知该商品单价每上涨1元,其销售量就减少5个,设这种商品的售价为x 元时,获得的利润为y 元,则下列关系式正确的是()A .()()352005y x x =--B .()()354005y x x =--C .()()402005y x x =--D .()()403755y x x =--9.已知二次函数221y ax ax =+-(其中x 是自变量),当1≥x 时,y 随x 的增大而减小,且32x -≤≤时,y 的最小值为9-,则a 的值为()A .1-B .43-C .83-D .103-10.如图,在ABC 中,90ACB ∠=︒,以ABC 的各边为边分别作正方形ACDE ,正方形BCFG 与正方形ABMN ,AN 与FG 相交于点H ,连结NF 并延长交AE 于点P ,且2NF FP =.记ABC 的面积为1S ,FNH △的面积为2S ,若1221S S -=,则BC 的长为()A .6B .C .8D .9二、填空题11.若一个正多边形的一个内角等于135°,那么这个多边形是正_____边形.12.若线段4a =,9b =,则线段a ,b 的比例中项为______.13.下表记录了一名篮球运动员在罚球线上投篮的结果:投篮次数n 4882124176230287328投中次数m 335983118159195223投中频率m n0.690.720.670.670.690.680.68根据表格,这名篮球运动员投篮一次,投中的概率约为______.(结果精确到0.01)14.如图,在ABC 中,30C ∠=︒,100ABC ∠=︒,将ABC 绕点A 顺时针旋转至ADE (点B 与点D 对应),连结BD ,若//BD AE ,则CAD ∠的度数为______度.15.如图,矩形ABCD 中,6AB =,以点D 为圆心,CD 长为半径的圆弧与以BC 为直径的半圆O 相交于点E ,若 BE的度数为60°,则直径BC 长为______.三、解答题16.如图1是某校园运动场主席台及遮阳棚,其侧面结构示意图如图2所示.主席台(矩形ABCD )高2AD =米,直杆5DE =米,斜拉杆EG ,EH 起稳固作用,点H 处装有一射灯.遮阳棚边缘曲线FHG 可近似看成抛物线的一部分,G 为抛物线的最高点且位于主席台边缘BC 的正上方,若点E ,H ,C 在同一直线上,且1DF =米,4EG =米,60AEG ∠=︒,则射灯H 离地面的高度为______米.17.(1)计算:()()0211432⎛⎫---- ⎪⎝⎭.(2)先化简,再求值:()()()422a a a a --+-,其中31a =.18.一个不透明的布袋里装有2个红球,1个白球,它们除颜色外其余都相同.(1)摸出1个球,记下颜色后不放回...,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表).(2)现再将n 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为57,求n 的值.19.如图,在ABC 中,CD 是角平分线,DE 平分CDB ∠交BC 于点E ,且//DE AC .(1)求证:2CD CA CE =⋅.(2)若22CE BE ==,求CD 的长.20.如图,在66⨯的正方形网格中,点A ,B ,C 均在格点上,请按要求完成下列作图:①仅用无刻度直尺;②保留作图痕迹.(1)在图1中画一个ADE ,使得ADE ∽ACB △,且相似比为1:2.(2)在图2中以AB 为直径的半圆上找一点P ,画出PBA ∠,使得22.5PBA ∠=︒.21.如图抛物线y =ax 2+bx +c 交x 轴于A (﹣1,0)、B (4,0)两点,交y 轴于点C (0,2),动点P 从点O 出发,以每秒1个单位长度的速度沿x 轴正方向运动,过点P 作x 轴的垂线,交抛物线于点E ,交直线BC 于点F ,点P 运动到B 点即停止运动,连接CE ,设点P 运动的时间为t 秒.(1)求抛物线y =ax 2+bx +c 的表达式;(2)当t =32时,求△CEF 的面积;(3)当△CEF 是等腰三角形时,求出此时t 的值.22.如图,AB 为O 的直径,C ,D 为O 上不同于A ,B 的两点,且OC 平分ACD ∠,延长AC 与DB 交于点E ,过点C 作CF OC ⊥交DE 于点F .(1)求证:A E ∠=∠.(2)若5BF =,34BD OB =,求O 的半径.23.如图所示的矩形ABCD 是一张平面设计图纸,它由甲、乙、丙三个部分构成,已知240AB BC ==cm ,点E ,F 在BC 和CD 上,BE CE ≥,且CE CF =.设CE x =(cm ).(1)当甲部分的面积是乙部分面积的4倍时,求丙部分的面积.(2)若甲、乙、丙三个部分分别用不同的材料打印,且每平方厘米的材料价格依次为3元、6元、2元,要使乙部分的面积不小于220cm ,且x 取整数,求打印该矩形图纸所需材料的最省费用.24.如图,AC 是四边形ABCD 外接圆O 的直径,AB =BC ,∠DAC =30°,延长AC 到E 使得CE =CD ,作射线ED 交BO 的延长线与F ,BF 交AD 与G .(1)求证:△ADE 是等腰三角形;(2)求证:EF 与⊙O 相切;(3)若AO=2,求△FGD的周长.参考答案1.D【分析】根据点在圆内,点到圆心的距离小于圆的半径进行判断.【详解】解:∵⊙O的半径为5,点P在⊙O内,∴5OP<,故选:D.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P 在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.2.B【分析】根据32ab=可设a=3k,b=2k,代入约去k即可得.【详解】解:∵32 ab=,∴可设a=3k,b=2k,∴a bb-=322k kk-=12,故选:B.【点睛】本题主要考查比例的性质,熟练掌握设k法求比例式的值是解题的关键.3.D【分析】必然事件是一定发生的,根据这个定义便可找到答案.【详解】解:A、在一个只装有白球的袋中,摸出黄球,是不可能事件,故A不符合题意.B、a是实数,0a>,当a=0时,不成立,故是可能事件,故B不符合题意.C、明年元旦那天温州的最高气温是10℃,是可能事件,故C不符合题意.D、两个正数相加,和一定是正数,故是必然事件.故本题选:D.【点睛】本题考查不可能事件、可能事件、必然事件的定义,属于基础题4.B【分析】根据“左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,把抛物线y=-2x2向左平移1个单位,则平移后的抛物线的表达式为y=-2(x+1)2,故选:B.【点睛】本题考查了二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.5.C【分析】根据计算公式直接套用求解即可.【详解】根据题意,得260333602S ππ⨯⨯==,故选C .【点睛】本题考查了扇形的面积计算问题,熟记扇形面积计算公式,准确判断计算条件是解题的关键.6.C 【详解】试题分析:∵AD ∥BC ∴∠ACB=∠DAC 又∵∠B=∠ACD=90°∴△ABC ∽△DCA∴S △ABC :S △DCA =AB 2:CD 2=22:32=4:9故选C考点:相似三角形的判定与性质7.D 【分析】在优弧AC 上取点D ,连接AD 、CD ,由∠AOC=100°求出∠ADC=12∠AOC ,根据四边形ABCD 是圆内接四边形,得到∠ADC+∠ABC=180°,即可求出∠ABC 的度数.【详解】在优弧AC 上取点D ,连接AD 、CD ,∵∠AOC=100°,∴∠ADC=12∠AOC=50°,∵四边形ABCD 是圆内接四边形,∴∠ADC+∠ABC=180°,∴∠ABC=180°-50°=130°,故选:D .【点睛】此题考查圆周角定理:同弧所对的圆周角等于圆心角的一半,圆内接四边形的性质:圆内接四边形的对角互补.8.B 【分析】根据售价减去进价表示出实际的利润.【详解】解:设这种商品的售价为x 元时,获得的利润为y 元,根据题意可得:[](35)2005(40)y x x =---即y=(x-35)(400-5x ),故选:B .【点睛】本题考查了二次函数的应用,解题的关键是理解“商品每上涨1元,其销售量就减少5个”.9.A 【分析】先根据解析式确定对称轴,再根据当1≥x 时,y 随x 的增大而减小,判断抛物线的开口方向,利用对称轴和二次函数的增减性确定最小值时的自变量,仔细求解即可.【详解】∵二次函数221y ax ax =+-,∴抛物线的对称轴为x=-1,∵当1≥x 时,y 随x 的增大而减小,∴抛物线开口向下即a <0,且x=2时的函数值小于x=1时的函数值,∵3112-+=-,∴(-3,m )和(1,m )是抛物线上的对称点,∴当32x -≤≤时,y 的最小值为x=2时的函数值,∵y 的最小值为9-,∴8a-1=-9,解得a=-1,故选A .【点睛】本题考查了二次函数的开口,对称性,增减性和最值,熟练掌握二次函数的性质灵活求解是解题的关键.10.D 【分析】过点N 作NQ ⊥EA ,交EA 的延长线于点Q ,设正方形ACDE 的边长为a ,正方形BCFG 的边长为b ,利用AAS 证出△NAQ ≌△BAC ,用a 和b 表示出各线段长,然后根据平行线分线段成比例定理求出a 和b 的关系,然后根据面积关系列出方程即可求出b 的值.【详解】解:过点N 作NQ ⊥EA ,交EA 的延长线于点Q ,设正方形ACDE 的边长为a ,正方形BCFG 的边长为b∴NQ ∥FA ,∠NAQ +∠ANQ=90°,AF=CF -AC=b -a ∴∠FAN=∠ANQ ,QR=AF=b -a ,FR=AQ ,112S ab =∵∠ACB=90°∴∠BAC +∠FAN=90°∴∠NAQ=∠BAC∵∠Q=∠ACB=90°,NA=BA ∴△NAQ ≌△BAC ∴AQ=AC=a ,NQ=BC=b∴FR=AQ=a ,NR=NQ -QR=b -(b -a )=a∴△NRF 为等腰直角三角形∴∠NFR=45°∵FR ∥PQ ∴2NR NF RQ FP ==,∠FPA=∠NFR=45°∴2a b a=-,△FAP 为等腰直角三角形∴23a b =,AP=AF=b -a=13b ∴PNA S =△12AP NQ ⋅=216b ,112S ab ==213b ∵FR ∥PQ ,2NF FP=∴△FNH ∽△PNA ,23NF NP =∴2249PNA S NF S NP ⎛⎫== ⎪⎝⎭△∴2242927PNA S S b ==△∵1221S S -=即221221327b b -=解得:b=9或-9(不符合实际,舍去)即BC=9故选D .【点睛】此题考查的是正方形的性质、全等三角形的判定及性质和相似三角形的判定及性质,掌握正方形的性质、全等三角形的判定及性质和相似三角形的判定及性质是解题关键.11.八【详解】360°÷(180°-135°)=812.6【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】解:设线段a,b的比例中项为x,∵线段x是a,b的比例中项,∴x2=ab,即x2=36,∴x=6(负数舍去),故答案为:6.【点睛】本题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.13.0.68【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:这名篮球运动员投篮一次,投中的概率约为0.68,故答案为:0.68.【点睛】本题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.14.30【分析】由旋转的性质可得:∠E=∠C,∠ADE=∠ABC,AD=AB,根据平行线的性质得出∠ADB=50°,再利用等腰三角形的性质得出结果.【详解】由旋转的性质可得:∠E=∠C,∠ADE=∠ABC,AD=AB,∵BD∥AE,∴∠BDE+∠E=180°,∵∠E=∠C=30°,∠ADE=∠ABC=100°,∴∠ADB=50°,∵AD=AB,∴∠ABD=∠ADB=50°,∴∠BAD=180°-∠ABD-∠ADB=80°,∵∠BAC=180°-∠C-∠ABC=50°,∴∠CAD=∠BAD-∠BAC=30°,故答案为:30.【点睛】本题考查了旋转的性质,平行线的性质及等腰三角形的性质,解题的关键是熟练掌握旋转的性质.15.【分析】连接BE 、OE 、CE ,由圆周角定理及其推论可得30BCE ∠=︒,利用矩形的性质及等边三角形的判定和性质得出6CE =,由特殊三角函数值即可求解.【详解】解:连接BE 、OE 、CE ,∵BC 是O 的直径,∴90BEC ∠=︒,∵ BE的度数是60°,∴60BOE ∠=︒∴1=302BCE BOE ∠=∠︒,∵四边形ABCD 是矩形,∴6AB CD ==,90DCB ∠=︒,∴903060DCE DCB BCE ∠=∠-∠=︒-︒=︒,∵6CD DE ==,∴CDE △是等边三角形,∴6CE =,在Rt BEC △中,∵6cos cos30CE BCE BC BC ∠=︒==,∴6cos30BC ==︒故答案为:【点睛】本题考查了圆周角定理及其推论,四边形的性质,等边三角形的判定和性质以及特殊三角函数值.16.4.5【分析】首先建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE 于Q ,再得出抛物线的解析式为y=-163及直线EC 解析式为y=-563,最后求出H 的纵坐标即可得解.【详解】解:如图所示,建立以AB 为x 轴,以AD 为y 轴的直角坐标系,过点G 作GQ ⊥AD 交AE 于Q ,∵AD=2,DE=5,DF=1,∴D(0,2),E(0,7),F(0,3),∵GQ ⊥AD,EG=4,∠AEG=60°,∴34232=∴2216122EG GQ -=-=,∴AQ=AE-EQ=7-2=5,∴5),0),2),∵5)为抛物线顶点,∴设抛物线的解析式为:,将点F(0,3)代入解析式得,即12a+5=3,解得a=-16,故抛物线解析式为:y=-16,设直线EC 解析式为:y=kx+b(k≠0),将E(0,7),,2)代入解析式联立,得:72b b =⎧⎪⎨=+⎪⎩,解得:7b k =⎧⎪⎨=⎪⎩直线解析式为:y=-56x+7,∴H 同时在抛物线与直线EC 上联立得(21567y x y ⎧=--+⎪⎪⎨⎪=+⎪⎩,解得:舍去)即Hy=7+,得H的纵坐标为:7=4.5,故射灯离地面高度4.5米.故答案为:4.5.【点睛】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形.17.(1)5;(2)44a -+,-【分析】(1)先算乘方,算术平方根以及零指数幂,再算加减法,即可求解;(2)通过整式的运算法则,先化简,再代入求值,即可.【详解】解:(1)原式1213=+-+5=;(2)()()()422a a a a --+-()2244a a a =---44a =-+,当1a =+时,原式)44414a =-+=-⨯+=-.【点睛】本题主要考查实数的运算以及整式的化简求值,熟练掌握实数运算法则和整式的运算法则,是解题的关键.18.(1)13;(2)4n =【分析】(1)依据题意,先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;(2)根据概率公式列方程,解方程即可求得n 的值.【详解】(1)树状图如下:∴一共有6种等可能的结果,两次摸出的球恰好颜色不同的有2种,∴两次摸出的球恰好颜色不同的概率为:2163P ==.(2)由题意得:1537n P n +==+解得:n=4.经检验,n=4是所列方程的解,且符合题意,∴4n =.【点睛】本题主要考查列表法,树状图法和概率公式,解题的重点在于要分析出所有等可能出现的结果,而解题的关键在于要根据概率公式求解或列方程.19.(1)见解析;(2)CD =【分析】(1)根据角平分线定义及平行线性质可得A CDE ∠=∠,再利用相似三角形的判定可证明ACD △∽DCE ,最后根据相似三角形的性质即可得出结论.(2)由已知22CE BE ==,可求出2CE =,1BE =,利用角平分线定义及平行线性质可得BCD CDE ∠=∠,推出2DE CE ==,再根据平行线分线段成比例性质求出6CA =,结合212CD CA CE =⋅=即可求得结果.【详解】(1)证明:∵CD 是角平分线,∴ACD DCE ∠=∠.∵DE 平分CDB ∠,∴CDE EDB∠=∠又∵//DE AC ,∴A EDB∠=∠∴A CDE ∠=∠,∴ACD △∽DCE ,∴CA CD CD CE=,∴2CD CA CE=⋅(2)解:∵22CE BE ==,∴2CE =,1BE =,∵CD 平分CDB ∠,∴ACD BCD ∠=∠,又∵//DE AC ,∴ACD CDE ∠=∠,∴BCD CDE ∠=∠,∴2DE CE ==,∵//DE AC ,∴13DE BE CA BC ==,∴6CA =,∴212CD CA CE =⋅=,∴CD =.【点睛】本题主要考查了相似三角形的判定与性质,掌握相似三角形的判定与性质以及平行线分线段成比例性质的综合应用是解题的关键.20.(1)见解析;(2)见解析【分析】(1)由ADE ∽ACB △,且相似比为1:2可直接进行作图;(2)由题意及圆周角定理可直接进行作图.【详解】解:(1)由ADE ∽ACB △,且相似比为1:2,如图所示:(2)根据圆周角定理可确定点P 的位置,然后可作如图所示:【点睛】本题主要考查圆周角定理及相似三角形的性质,熟练掌握圆周角定理及相似三角形的性质是解题的关键.21.(1)213222y x x =-++;(2)4532;(3)2或32或45【分析】(1)利用待定系数法把三个坐标点代入即可求表达式;(2)结合题意利用一次函数求出点E ,F 的坐标即可求面积;(3)分别用含t 的表达式表示点E ,F 的坐标,当△CEF 为等腰三角形,分为①当CE =CF 时②当CE =EF 时③当CF =EF 时三种情况分别求解即可.【详解】解:(1)将A (﹣1,0)、B (4,0),C (0,2)代入抛物线y =ax 2+bx +c ,得016402a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴213222y x x =-++;(2)由题意知:当t =32时,P (32,0),设直线BC 的解析式为y =kx +b ,则有402k b b +=⎧⎨=⎩,∴122k b ⎧=-⎪⎨⎪=⎩,∴122y x -+=,∵PF ⊥x 轴,∴点P ,E ,F 的横坐标均为32,∴分别代入一次函数和二次函数求出两点坐标:F 3524⎛⎫ ⎪⎝⎭,,E 32528⎛⎫ ⎪⎝⎭,,∴13125534522284232CEF S EF ⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ;(3)P (t ,0),则)F (t ,-122t +),E (t ,213222t t -++),∵△CEF 为等腰三角形,①当CE =CF 时,此时EF 的中点的纵坐标为2,∴214222t t -++=,∴t =2或t =0(舍),∴t =2;②当CE =EF 时,222221313122222t t t t t t +-+=-++()()解得32t =;(0t =不合题意舍去)③当CF =EF 时,2222211312222t t t t +-=-++()()解得4t +=4t =综上所述:t 的值为2或32或4.【点睛】此题考查二次函数的综合应用,有一定难度,利用坐标点结合图像解题是关键.22.(1)见解析;(2)8【分析】(1)根据角平分线和半径相等证//OC DE ,再用平行线的性质证明即可;(2)设3BD x =,4OB x =,根据(1)中的等角,得到AB=BE ,CE=CD ,列方程即可.【详解】(1)证明:∵OC=OA,∴ACO A ∠=∠.∵∠A=∠D ,∴∠D=∠ACO∵OC 平分ACD ∠,∴ACO OCD ∠=∠,∴OCD D ∠=∠.∴//OC DE ,∴E ACO ∠=∠,∴E A ∠=∠.(2)解:∵34BD OB =,∴设3BD x =,4OB x =,由(1)得E D ∠=∠,∴CD=CE ,∵//OC DE .CF OC ⊥,∴CF DE ⊥,∴35EF DF x ==+.∴310BE x =+,∵E A ∠=∠,∴AB BE =,即3108x x +=,解得2x =∴半径48OB x ==.【点睛】本题考查了圆周角的性质、等腰三角形的性质、平行线的判定与性质,解题关键是准确把握已知,合理利用已知条件,设未知数列方程.23.(1)550;(2)所需材料的最省费用为1958元【分析】(1)根据题意分别用x 表示出甲、乙、丙三个部分的面积,利用4S S =甲乙,便可求出CE 的值,从而求出丙的面积.(2)根据题意表示出三者的费用总和,利用乙部分的面积不小于220cm ,且x 取整数,找到X 的取值范围,根据二次函数性质和特征便可求解.【详解】解(1)由题意得:()14020400202S x x =⨯-=-甲,212S x =乙,()22112040400202040022S x x x x =⨯---=-++丙,∵4S S =甲乙,∴214002042x x -=⨯,解得110x =,220x =-(舍去)∴21204005502S x x =-++=丙.(2)()222113204006220400220200022y x x x x x x ⎛⎫=-++⨯+-++=-+ ⎪⎝⎭费用对称轴为直线20522x -=-=⨯,∵21202S x =≥乙,∴x ≥BE CE ≥,∴20x x -≥,∴10x ≤,∴10x ≤且x 为整数,∴x 的最小整数为7∴当7x =时,22720720001958y =⨯-⨯+=最小答:所需材料的最省费用为1958元.【点睛】本题考查二次函数的应用问题,能够把具体的问题抽象为数学函数问题才是关键.24.(1)见解析;(2)见解析;(3)【分析】(1)由圆周角定理可得∠ADC =90°,由等腰三角形的性质和直角三角形的性质可求∠E =∠DAC =30°,可得AD =DE ,可得结论;(2)先证△OCD 是等边三角形,可得∠ODC =60°,可得∠ODE =90°,可得结论;(3)由等腰三角形的性质可得BO ⊥AC ,可证△FGD 是等边三角形,可得FD =DG =FG ,由直角三角形的性质可求DG 的长,即可求解.【详解】(1)∵AC 是直径,∴∠ADC =90°,∵∠DAC =30°,∴∠ACD =60°,∵CE=CD,∴∠E=∠CDE,∵∠CDE+∠E=∠ACD=60°,∴∠E=30°=∠CDE,∴∠E=∠DAC,∴AD=DE,∴△ADE是等腰三角形;(2)如图,连接OD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴∠ODC=60°,∴∠ODE=∠ODC+∠CDE=90°,又∵OD是半径,∴EF是⊙O的切线;(3)∵AB=BC,AO=CO,∴BO⊥AC,∴∠AOG=∠EOF=90°,∵∠DAC=∠E=30°,∴∠AGO=∠F=60°,∴∠F=∠FGD=60°,∴△FGD是等边三角形,∴FD=DG=FG,∵AO=2,∠DAC=30°,∠ADC=∠AOG=90°,∴AC =4,DC =12AC =2,AD =AG =2OG ,AO ,∴OG AG∴DG∴△FGD 的周长=3×DG =【点睛】本题是圆的综合题,考查了圆周角定理,切线的判定,直角三角形的性质,等腰三角形的性质,灵活运用这些性质进行推理是本题的关键.。
2015学年第一学期初三数学调研测试试题卷考生须知:1.全卷共三大题,24小题,满分为120分. 考试时间为120分钟,本次考试采用闭卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答. 卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应的位置上.3.本次考试不得使用计算器.卷 Ⅰ一、选择题(本题有10小题,每小题3分,共30分)1.-2016的相反数是……………………………………………………………………( ) A. 62011-B. 2016C.62011D. -20162.四边形的内角和为 ……………………………………………………………………( ) A. 90°B. 180°C. 360°D. 720° 3.已知b a a,a b+=则32的值是 …………………………………………………………( ) A.53B.52C.35 D.25 4.将抛物线23x y =向上平移1个单位,得到抛物线…………………………………( ) A.2)1(3-=x y B.2)1(3+=x y C.132-=x yD.132+=x y5.在水平的讲台上放置圆柱形水杯和长方体形粉笔盒(如图),则它的俯视图是…( )A. 图①B. 图②C. 图③D. 图④6.在Rt △ABC 中,∠ACB=Rt ∠,BC =1,AB =2,则sin A 的值为……………………( ) A.12B.D.7.已知半径为3的圆⊙O 外有一条直线l ,已知⊙O 与直线l 相切,则圆心到直线l 的距离为……………………………………………………………………………………………( ) A. 1 B. 2 C. 3 D.4(第5题图)图④图③图②图①8.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为………………………………( ) A. 12B. 13C. 14D. 169.如果正比例函数y =ax (a ≠0)与反比例函数y =bx(b ≠0)的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为……………………………………( ) A. (2,3)B. (3,-2)C. (-2,3)D. (3,2)10.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1 cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2(在0<t ≤10内,图像为抛物线),则下列结论错误的是……………………( ) A .AE =6cmB .sin ∠EBC =45C. 当0<t ≤10时,y =25t 2D. 当t =12s 时,△PBQ 是等腰三角形卷 Ⅱ二、填空题(本题有6小题,每小题4分,共24分)11.函数11-=x y 中,自变量x 的取值范围是 . 12.因式分解:264ab a -= .13.扇形的半径为30cm ,圆心角为120°,用它做成一个圆锥的侧面,若不计接缝和损耗,则圆锥底面半径为 .14.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第n 个图案中共有小三角形的个数是 .Q图1 图2(第10题图)△△△△△△△ △△△ n =2 △△△△△ △△n =1 △△△△△ △△ △ △ △△△△ n =3△△△△△△△ △ △ △ △ △△△△△ n =4 ……15.对任意两实数a 、b ,定义运算“*”如下:⎪⎩⎪⎨⎧<+≥=*)()(b a b b b a b b a a a . 根据这个规则,则方程2 *x =9的解为 .16.如图,梯形OABC 中,BC //AO ,O (O ,O ),A (10,0),B (10,4),BC =2,G (t ,0)是底边OA 上的动点. (1)tan ∠OAC = .(2)边AB 关于直线CG 的对称线段为MN ,若MN 与△OAC 的其中一边平行时,则t = .三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(本题6分)计算:(1112cos302-︒⎛⎫++⋅ ⎪⎝⎭-18.(本题6分)已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,AE ∥BC ,CE ⊥AE ,垂足为E .(1)求证:△ABD ≌△CAE ;(2)连结DE ,线段DE 与AB 之间有怎样的位置和数量关系?请证明你的结论.A EB D C19. (本题6分)如图,某飞机于空中探测某座山的高度,在点A 处飞机的飞行高度是AF =3700米,从飞机上观测山顶目标C 的俯角是45°,飞机继续以相同的高度飞行300米到B 处,此时观测目标C 的俯角是50°,求这座山的高度CD .(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).20.(本题8分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E . (1)求OE 的长;(2)若OE 的延长线交⊙O 于点F ,求弦AF ,弦AC 和CF ︵围成的图形(阴影部分)的面积S .F D21.(本题8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:(A组:x<155;B组:155≤x<160;C组:160≤x<165;D组165≤x<170;E组:x≥170)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组.(2)样本中,女生的身高在E组的人数有人.(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?男生身高情况直方图女生身高情况扇形统计图C BA图2DEFCBA图122.(本题10分)阅读下列材料:小华遇到这样一个问题:已知:如图1,在△ABC 中,三边的长分别为AB,ACBC =2,求∠A 的正切值.小华是这样解决问题的:如图2所示,先在一个正方形网格(每个小正方形的边长均为1)中画出格点△ABC (△ABC 三个顶点都在小正方形的顶点处),然后在这个正方形网格中再画一个和△ABC 相似的格点△DEF ,从而使问题得解.(1)如图2,△DEF 中与∠A 相等的角为 , ∠A 的正切值为(2)参考小华的方法请解决问题:若△LMN 的三边分别为LM =2,MNLN求∠N的正切值.23. (本题10分)某公司装修需用A 型板材240块,B 型板材180块,A 型板材规格是60cm×30cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型,B 型板材(如右图是裁法一的裁剪示意图).现有下表中三种裁法:(1) 上表中,m = ,n = ;(2) 若裁完剩余的部分可以..拼接成A 型或B 型板材使用,则至少需要几张标准板材? (3) 若裁完剩余的部分不能..拼接成A 型或B 型板材使用,已知用170张标准板材,可以完成装修任务.请通过计算写出两种裁剪方案(要求:①其中一种方案三种裁剪方法都使用,另一种方案只用到两种裁剪方法;②每种方案需写出使用各种裁剪方法裁剪标准板的张数).单位:cm24.(本题12分)在平面直角坐标系中,O 是坐标原点,矩形OABC 的位置如图所示,点A , C 的坐标分别为(10,0),(0,8). 点P 是y 轴上的一个动点,将△OAP 沿AP 翻折得到:△O'AP ,直线BC 与直线O'P 交于点E ,与直线O'A 交于点F . (1)当O' 落在直线BC 上时,求折痕AP 的长.(2)当点P 在y 轴正半轴上时,若△PCE 与△POA 相似,求直线AP 的解析式; (3)在点P 的运动过程中,是否存在某一时刻,使得51BC CE ? 若存在,求点P 坐标,若不存在,请说明理由.2015学年第一学期初三数学调研测试参考答案及评分意见一、 选择题(本题有10小题,每小题3分,共30分) BCADC ACADD二 、填空题(本题有6小题,每小题4分,共24分)11、1≠x ; 12、)8)(8(-+b b a ; 13、10;14、43+n ; 15、2137;321-=-=x x ; 16、(1)2, (2) 4或54或5210-(答对1个2分,答对2个3分,答对3个4分) 【16解析】情况一:B A ''∥OA ,此时CG 平分∠B BC ',CDG ∆是等腰直角三角形所以,DG =CD =4,OG =4,t =4情况二:B A ''∥AC ,此时CG 平分∠B BC ',OGC BCG CG B ∠=∠='∠,所以,OG =OC =54,t =54情况三:B A ''∥OC ,此时CG 平分∠B BC ',AGC BCE CE B ACG ∠=∠='∠=∠,所以,AG =AC =52,t =5210-三、解答题(本题有8小题,共66分.各题均应写出解答过程) 17、略解:3 (每式化简正确各得1分,结论正确得2分) 18、略解:(1)略 (3分) (2)DE ∥AB;AB DE =(理由略) (3分)19、略解:设EC =x ,则BE = ,AE = (2分)∵AB +BE =AE ,∴ (2分) 解得:x =1800,故可得山高CD =DE -EC =3700-1800=1900(米). (2分) 答:这座山的高度是1900米. 20、略解:(1)0E =23(4分) (2)连结OC ,证明AEF ∆≌CEO ∆,则ππ23612===r S S OCF 扇形阴影(4分) 21、略解:(1)B ;C (各2分,共4分) (2) 2 ; (2分)(3)332152180%)15%25(38040810400=+=+⨯++⨯(人) (2分) 22、略解:(1)∠D ;21(各3分,共6分)(2)31(构造一个三边长为构造一个三边长为5,10,5的三角形,与△LMN 相似)(4分)23、解:(1) m = 0 ,n = 3 ; (4分) (2) 略解:(240×60+180×40)÷150=144 (∵所有材料宽均为30) (2分) 【或依据“总面积相等”列等式:(240×60+180×40)×30=144×150×30】 (3) 解:第一种方案:三种裁剪方法全部使用①若170张标准版纸刚好用完:设按裁法一裁x 张,则按裁法二该裁12(240-x )张,按裁法三该裁13(180-2x )张若170张标准版刚好够用,则有x +12(240-x )+13(180-2x )=170解得x =60∴170张标准版够用,用裁法一裁60张,用裁法二裁90张,用裁法三裁20张.(计算1分,结论1分,共2分)②若170张标准版纸可以有剩余:方案很多,如:用裁法一裁62张,用裁法二裁89张,用裁法三裁19张; 用裁法一裁63张,用裁法二裁89张,用裁法三裁18张; 用裁法一裁65张,用裁法二裁88张,用裁法三裁17张; 用裁法一裁66张,用裁法二裁87张,用裁法三裁16张; 用裁法一裁68张,用裁法二裁86张,用裁法三裁15张; ………………………(只要能完成装修任务即可)第二种方案:三种裁剪方法不全部使用,则必须同时使用裁法一和裁法二∵裁法二只能得到A 型板材,∴B 型板材只能由裁法一得到 ∴按裁法一需裁剪180÷2=90张标准版还剩下150(即240-90)张A 型板材只能由裁法二得到 ∴按裁法二需裁剪150÷2=75张标准版∴按照第二种方案共需90+75=165张标准版,故也够用 此时,用裁法一裁90张,用裁法二裁75张.(计算1分,结论1分,共2分)注:第二种方案中还有其余10种不同的裁剪方法,具体如下,写对同理给分.24、略解:(1)AP =55 (4分)(2)当APO CPE ∠=∠时,︒='∠=∠=∠60O AP APO CPE ,3310=OP 可得直线AP 解析式为:331033+-=x y (3分) 当OAP CPE ∠=∠时,O AP APO CEP '∠=∠=∠,此时,AP ∥CE ,显然不可能 (1分)(3))43310,0(),43310,0(),7410,0(),7410,0(4321+--+-P P P P (各1分,共4分)由题意:CE =2情况一:如图,BE =8,AB =8,AE =28,AO '=10,72='E O ,设OP =x ,则72,-=='x PE x P O ,根据222PE CE CP =+得:22)72(4)8(-=+-x x , 解得:)7410,0(,7410--=P x 此时情况二:同理求得72='E O ,设OP=x ,则72,+=='x PE x P O22)72(4)8(+=+-x x ,解得:)7410,0(,7410++=P x 此时情况三:先求出36='E O ,设OP =x ,则x PE x P O -=='36,22)36(4)8(x x -=+-解得:)43310,0(,43310--=P x 此时情况四:36='E O ,设OP =x ,则x PE x P O -=='36,22)36(4)8(x x -=++解得:)43310,0(,43310+-+=P x 此时。
浙教版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm2.如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A. ∠ABD=∠CB. ∠ADB=∠ABCC.D.3.抛物线y=3x2,y=-3x2,y= x2+3共有的性质是()A. 开口向上B. 对称轴是y轴C. 都有最高点D. y随x值的增大而增大4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()A. k>-B. k>- 且k≠0C. k≥-D. k≥- 且k≠05.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A. 0.5mB. 0.55mC. 0.6mD. 2.2m6.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则的值为()A. B. C. D.7.平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为( )A. (1,)B. ( -1,)C. (0,2)D. (2,0)8.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为()A. 70°B. 50°C. 40°D. 35°9.两个相似三角形的相似比为2:3,它们的面积之差为25cm2,则较大三角形的面积是()A. 75cm2B. 65cm2C. 50cm2D. 45cm210.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=;③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有()A. 2个B. 3个C. 4个D. 5个二、填空题(共10题;共30分)11.如图,锐角三角形ABC的边AB和AC上的高线CE和BF相交于点D.请写出图中的一对相似三角形,如________.12. 如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=________.13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.15.如图,点G是△ABC的重心,连结AG并延长交BC于点D,过点G作EF∥AB交BC于E,交AC于F.若AB=12,那么EF=________.16.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为________ 元时,可获得最大利润.17.如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,顶点P(m,n).给出下列结论:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在抛物线上,则y1>y2>y3;③关于x的方程ax2+bx+k=0有实数解,则k>c﹣n;④当n=﹣时,△ABP为等腰直角三角形.其中正确结论是________(填写序号).18.如果2+ 是方程的一个根,那么c的值是________.19.如图,在直角坐标系中,点A在y轴上,△OAB是等腰直角三角形,斜边OA=2,将△OAB绕点O逆时针旋转90°得△′′,则点′的坐标为________20.如图,△ABC中,已知∠C=90°,∠B=55°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m (0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________ .三、解答题(共8题;共60分)21.如图,已知△ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)(1)画出△ABC绕点O逆时针旋转90°后的△A1B1C1,并写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转180°后的△A2B2C2,并写出点A2的坐标;(3)直接回答:∠AOB与∠A2OB2有什么关系?22.已知:如图所示,AD=BC。
期末测试题(本试卷满分120分,时间:120分钟)一、选择题(每小题3分,共36分)1.若29ab=,则a bb+=()A.119B.79C.911D.79-2.(2014·四川泸州中考)一个圆锥的底面半径是6 cm,其侧面展开图为半圆,则圆锥的母线长为()A.9 cmB.12 cmC.15 cmD.18 cm3.如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且,则∠()A.100°B.110°C.120°D.135°第4题图4. (2015·浙江宁波中考)如图,用一个半径为30 cm,面积为300π cm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5 cmB.10 cmC.20 cmD.5π cm5.(2014·四川宜宾中考)一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率是()A. 19B.13C.12D.236.(2014·天津中考)如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF∶FC等于()A.3∶2B.3∶1C.1∶1D.1∶27.如图,△ABC的三个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD 相似的三角形有()A.3个B.2个C.1个D.0个8.(2015·浙江金华中考)如图,正方形ABCD 和正△AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则的值是( )A. B. C. D.2第8题图9.如图,一只蚂蚁从点出发,沿着扇形的边缘匀速爬行一周,设蚂蚁的运动时间为,蚂蚁绕一圈到点的距离..为,则关于的函数图象大致为( )10.(陕西中考)如图,是两个半圆的直径,∠ACP =30°,若,则 PQ 的值为( )A. B.C.a 3D.a 3211.(2014·哈尔滨中考)将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( ) A.y =-2(x +1)2-1 B.y =-2(x +1)2+3 C.y =-2(x -1)2+1 D.y =-2(x -1)2+3 12. (2015·宁波中考)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的处,称为第1次操作,折痕DE 到BC 的距离记为;还原纸片后,再将△ADE 沿着过AD 中点的直线折叠,使点A 落在DE 边上的处,称为第2次操作,折痕到BC 的距离记为;按上述方法不断操作下去……经过第2015次操作后得到的折痕到BC 的距离记为,若=1,则的值为( )A. B. C.1- D.2-第12题图二、填空题(每小题3分,共30分)13.若,则yx yx +-=_____________. 14(2015·兰州中考)已知△ABC 的边BC =4 cm ,⊙O 是其外接圆,且半径也为 4 cm ,则∠A 的度数是 .15.(2014·山东烟台中考)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是14,那么袋子中共有球_________个. 16.如图是二次函数2y ax bx c =++图象的一部分,图象过点A (3,0),且对称轴为直线1x =,给出下列四个结论:①;②0bc <;③20a b +=;④0a b c ++=,其中正确结论的序号是___________.(把你认为正确的序号都写上)17.如图,四边形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2 cm ,CD =4 cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是 cm.18.(2014·山东烟台中考)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的半径为4,则阴影部分的面积等于 .19.(江苏中考)如图,四边形为正方形,图(1)是以AB为直径画半圆,阴影部分面积记为,图(2)是以O为圆心,OA长为半径画弧,阴影部分面积记为,则的大小关系为_________.20.将一副三角板按如图所示叠放,则△AOB与△DOC的面积之比等于_________.4cm,一只蚂蚁由A点出发绕侧面一周后21.如图所示的圆锥底面半径OA=2 cm,高PO=2回到A点处,则它爬行的最短路程为________.22. (2014·山东潍坊中考)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,第22题图则建筑物的高是米.三、解答题(共54分)23.(6分)一段圆弧形公路弯道,圆弧的半径为2 km,弯道所对圆心角为10°,一辆汽车从此弯道上驶过,用时20 s,弯道有一块限速警示牌,限速为40 km/h,问这辆汽车经过弯道时有没有超速?(π取3)24.(6分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.求证:(1)D是BC的中点;(2)△BEC∽△ADC.25.(6分)已知二次函数的图象经过点A(2,-3),B(-1,0).(1)求二次函数的解析式;(2)观察函数图象,要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移几个单位?26.(7分)已知抛物线的部分图象如图所示.(1)求的值;(2)分别求出抛物线的对称轴和的最大值;(3)写出当时,的取值范围.27.(7分)如图,在△ABC 中,AC =8 cm ,BC =16 cm ,点P 从点A 出发,沿着AC 边向点C 以1 cm/s 的速度运动,点Q 从点C 出发,沿着CB 边向点B 以2 cm/s 的速度运动,如果P 与Q 同时出发,经过几秒△PQC 和△ABC 相似? 28.(6分)(2014·武汉中考)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率; ②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果. 29.(6分)(2015·浙江金华中考)如图,在矩形ABCD 中,点F 在边BC 上,且AF =AD ,过点D 作DE ⊥AF ,垂足为点E . (1)求证:DE =AB .(2)以D 为圆心,DE 为半径作圆弧交AD 于点G .若BF =FC =1,试求¼EG的长.30.(10分)(2015·浙江金华中考)如图,抛物线+c (a ≠0)与y 轴交于点A ,与x 轴交于B ,C 两点(点C 在x 轴正半轴上),△ABC 为等腰直角三角形,且面积为4.现将抛物线沿BA 方向平移,平移后的抛物线经过点C 时,与x 轴的另一交点为E ,其顶点为F ,对称轴与x 轴的交点为H . (1)求a ,c 的值.(2)连接OF ,试判断△OEF 是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q 放在射线AF 或射线HF 上,一直角边始终过点E ,另一直角边与y 轴相交于点P ,是否存在这样的点Q ,使以点P ,Q ,E 为顶点的三角形与△POE 全等?若存在,求出点Q 的坐标;若不存在,请说明理由.图① 图②期末测试题参考答案一、选择题1.A 解析: 22,,99a a b b =∴= 2111199=.9b b b a b b b b ++∴==2.B 解析:设圆锥的母线长为l ,∴ 180180p ·l =2×π×6,∴ l =2×π×6×180180p=12(cm ).3.C 解析: ∵ ,∴,∴ 弦三等分半圆,∴ 弦、、对的圆心角均为60°,∴ ∠=.4. B 解析:扇形的半径R =30 cm ,面积S =300π cm 2.根据S 扇形=12lR 可得扇形的弧长l =260030S R =π=20π(cm).根据题意,得2πr =20π,∴ r =10 cm . 5. B 解析:因为袋子中装有6个黑球和3个白球,所以摸到白球的概率是363+=13. 6.D 解析:∵ AD ∥BC ,∴ DEF BCF ∠=∠,EDF CBF ∠=∠, ∴ △DEF ∽△BCF ,∴EF EDCF BC =. 又∵AD BC =,∴12ED BC =,∴ EF ︰FC =1︰2.7.B 解析: 由∠BAE =∠EAC , ∠ABC =∠AEC ,得△ABD ∽△AEC ; 由∠BAE =∠BCE ,∠ABC =∠AEC ,得△ABD ∽△CED .共两个.8.C 解析:如图所示,连结OC ,OF ,OD ,∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴»A B =¼»»¼»»====,,BC CD DA AE EF AF ∴¼»»¼-=-,AE ABAF AD ∴»»¼»»»=-=-,,BEFD BC BE CD FD 即¼»=,EC CF ∴ OC ⊥EF .设垂足为点M .∵ 四边形ABCD 是正方形,△AEF 是正三角形,∴ ∠COD =90°,∠COF =60°.∵ OC =OD ,∴ ∠OCD =45°,∴ MH =MC .在Rt △OMF 中,设OM =a ,则OF =2a ,∴ MC =a ,MF ==a .又∵ OC ⊥EF ,∴ GH =2MH =2a ,EF =2MF =2a , ∴ ==,故选C.第8题答图9.C 解析:蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行,在开始时经过OA 这一段,蚂蚁到O 点的距离随运动时间t 的增大而增大;到弧AB 这一段,蚂蚁到O 点的距离s 不变,走另一条半径时,s 随t 的增大而减小,故选C .10.C 解析:如图,连接AP 、BQ .∵ AC ,BC 是两个半圆的直径,∠ACP =30°,∴ ∠APC =∠BQC =90°.设,在Rt △BCQ 中,同理,在Rt △APC 中,,则,故选C .11.D 解析:根据抛物线的平移规律:上加下减,左加右减,平移只改变其顶点.抛物线y =-2x 2+1平移以后的解析式为y =-2(x -1)2+1+2=-2(x -1)2+3,故选D. 12. D 解析:如图,连接AA 1,由已知可得DE 是△ABC 的中位线,∴ AA 1=2h 1=2,点A 与D 1E 1的距离为12,∴ h 2=2-12;点A 到D 2E 2的距离为,∴ h 3=2-2,h 4=2-3,…,h 2 015=2-2 014=2-201412 .二、填空题 13.31-解析:设,∴ 3122-=+-=+-kk k k y x y x .14. 30︒或150︒解析:由已知条件得到△OBC 是等边三角形,所以∠BOC =60︒,当点A 在优弧BC 上时,30A ∠=︒,当点A 在劣弧BC 上时,150A ∠=︒.15.12 解析:设袋中共有球x 个,∵ 有3个白球,且摸出白球的概率是14,∴ 31=4x ,解得x =12.16.①③ 解析:因为图象与轴有两个交点,所以, ①正确;由图象可知开口向下,对称轴在轴右侧,且与轴的交点在轴上方,所以,所以, ②不正确;由图象的对称轴为,所以,即,故, ③正确;由于当时,对应的值大于0,即,所以④不正确.所以正确的有①③. 17. 解析:如图,过点O 作OF ⊥AD ,已知∠B =∠C =90°, ∠AOD =90°, 所以.又,所以.在△ABO 和△OCD 中,第12题答图所以△≌△.所以=.根据勾股定理得.因为△AOD 是等腰直角三角形,所以,即圆心O 到弦AD 的距离是.18.163π 解析:如图,连接OC 、OD 、OE ,OC 交BD 于点M ,OE 交DF 于点N ,过点O 作OZ ⊥CD 于点Z ,∵ 六边形ABCDEF 是正六边形,∴ BC =CD =DE =EF ,∠BOC =∠COD =∠DOE =∠EOF =60°. 由垂径定理得OC ⊥BD ,OE ⊥DF ,BM =DM ,FN =DN . ∵ 在Rt △BMO 中,OB =4,∠BOM =60°, ∴ ∠OBM =30°∴ OM = 2.由勾股定理得BM BD =2BM∴ △BDO 的面积是12·BD ·OM =12×同理△FDO 的面积是.∵ ∠COD =60°,OC =OD =4,∴ △COD 是等边三角形.∴ ∠OCD =∠ODC =60°. ∴ ∠COZ =∠DOZ=30°.∴ CZ =DZ =2.由勾股定理得OZ .同理可得∠DOE =60°,∴ S 弓形CD =S 弓形DE .S 弓形CD =S 扇形COD -S △COD =2604360p 创-12×4×=83p-4∴ S 阴影=83p )=163π. 19.解析:设正方形OBCA 的边长是1,则,∴,,故.20.1︰3 解析:∵ ∠ABC =90°,∠DCB =90°,∴ AB ∥CD ,∴ △AOB ∽△COD .又∵ AB ︰CD =BC ︰CD =1︰,∴ △AOB 与△DOC 的面积之比等于1︰3.21.36cm 解析:圆锥的侧面展开图如图所示,设∠,由OA =2 cm ,高PO =24 cm ,得P A =6 cm ,弧AA ′=4 cm , 则,解得.作,由,得∠.又cm ,所以cm,∴所以cm.22.54 解析:∵ △ABG ∽△CDG ,∴ CD ∶AB =DG ∶BG .∵ CD =DG =2,∴ AB =BG . 又△EFH ∽△ABH ,∴ EF ∶AB =FH ∶BH .∵ EF =2,FH =4,∴ BH =2AB ,∴ BH =2BG =2GH .∵ GH =DH -DG =DF +FH -DG =52+4-2=54,∴ AB =BG =GH =54. 三、解答题23. 解:∵,∴ 汽车的速度为(km/h ),∵ 60 km/h >40 km/h ,∴ 这辆汽车经过弯道时超速.24.证明:(1)因为AB 为⊙O 的直径,所以∠ADB =90°,即AD ⊥BC . 又因为AB =AC ,所以D 是BC 的中点.(2)因为AB 为⊙O 的直径, 所以∠AEB =90°. 因为∠ADB =90°,所以∠ADB =∠AEB . 又∠C =∠C ,所以△BEC ∽△ADC . 25.解:(1)将点A (2,-3),B (-1,0)分别代入函数解析式,得解得所以二次函数解析式为322--=x x y .(2)由二次函数的顶点坐标公式,得顶点坐标为,作出函数图象如图所示,可知要使该二次函数的图象与轴只有一个交点,应把图象沿轴向上平移4个单位. 26. 解:(1)由图象知此二次函数过点(1,0),(0,3), 将点的坐标代入函数解析式,得解得(2)由(1)得函数解析式为,即为,所以抛物线的对称轴为的最大值为4.(3)当时,由,解得,即函数图象与轴的交点坐标为(),(1,0). 所以当时,的取值范围为.27.解:设经过t s △PQC 和△ABC 相似,由题意可知P A =t cm ,则CQ =2t cm.(1)若PQ ∥AB ,则△PQC ∽△ABC ,∴CB CQ CA CP =,∴ 16288tt =-,解得4=t . (2)若B CPQ ∠=∠,则△PQC ∽△BAC ,∴CA CQ CB CP =,∴ 82168t t =-,解得58=t . 答: 经过4 s 或58s △PQC 和△ABC 相似.28.分析:(1)①先将两种颜色的球进行标号,然后列表或画树状图得出所有等可能的结果数,找出第一次摸到绿球,第二次摸到红球的结果数,根据概率计算公式求出其概率;②找出两次摸到的球中有1个绿球和1个红球的结果数,根据概率计算公式求出其概率. (2)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:从表格中可以看出所有等可能的结果数为12,其中两次摸球中有1个绿球和1个红球的结果为8种,根据概率计算公式求出其概率为82=123. 解:(1)分别用R 1,R 2表示2个红球,G 1,G 2表示2个绿球,列表如下:由上表可知,有放回地摸2个球共有16种等可能结果. ①∵ 其中第一次摸到绿球,第二次摸到红球的结果有4种, ∴ 第一次摸到绿球,第二次摸到红球的概率P =41=164. ②∵ 其中两次摸到的球中有1个绿球和1个红球的结果有8种, ∴ 两次摸到的球中有1个绿球和1个红球的概率P =81=162. (2)23.29. (1)证明:∵ DE ⊥AF ,∴ ∠AED =90°.又∵ 四边形ABCD 是矩形,∴ AD ∥BC ,∠B =90°. ∴ ∠DAE =∠AFB ,∠AED =∠B =90°.又∵ AF =AD ,∴ △ADE ≌△F AB (AAS),∴ DE =AB .(2)解:∵ BF =FC =1,∴ AD =BC =BF +FC =2.又∵ △ADE ≌△F AB ,∴ AE =BF =1,∴在Rt△ADE中,AE=AD,∴∠ADE=30°.又∵DE===,∴¼EG的长===π.30.解:(1)∵△ABC为等腰直角三角形,∴OA=BC.又∵△ABC的面积=BC×OA=4,即=4,∴OA=2,∴A(0,2),B(-2,0),C(2,0),∴c=2,∴抛物线的函数表达式为+2.把C(2,0)代入+2中得4a+2=0,解得a=-,∴a=-,c=2.(2)△OEF是等腰三角形.理由如下:图③如图③,设直线AB的函数表达式为y=kx+b,把A(0,2),B(-2,0)代入y=kx+b中得,k=1,b=2, ∴直线AB的函数表达式为y=x+2.又∵平移后的抛物线顶点F在直线BA上,∴设顶点F的坐标为(m,m+2),∴平移后的抛物线的函数表达式为y=-+m+2。