探索多边形的内角和公式
- 格式:pdf
- 大小:161.67 KB
- 文档页数:1
第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
这(n-2)个三角形的内角和正好是这个n边形的内角和。
由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。
例2:如果一个多边形的内角和是2160度,求这个多边形的边数。
五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。
n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。
2023年探索多边形的内角和与外角和教案2023年探索多边形的内角和与外角和教案1一、教学目标:1、让学生经历探索多边形外角和公式的过程,培养学生主动探究的习惯。
2、能灵活的运用多边形内角和与外角和公式解决有关问题。
二、教材分析本节的主要内容是多边形的.外角定义和公式。
多边形的外角和是三角形的一个重要性质,与前面的内角和公式综合运用能解决一些较难的问题。
为提供三角形的外角提供了一种方法。
三、教学重点、难点1、多边形的外角和公式及公式的探索过程。
2、能灵活运用多边形的内角和与外角和公式解决有关问题。
四、教学建议关于外角和公式关键要让学生理解它是不随多边形边数的增加而增大,因此在教学中应设置由特殊到一般的题目,让学生亲身体会这个外角和是360°。
五、教具、学具准备投影仪、题板、画图工具六、教学过程1、复习提问:(1)多边形的内角和是多少?(2)正八边形的每一个内角为度?2、创设问题情景,引入新课:教师投放课本51页图9—35时,并出示以下问题:小明沿一个五边形广场周围的小路,按顺时针方向跑步(1)小明从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们。
(2)观察∠1、∠2、∠3、∠4、∠5的两边分别与它相邻的五边形的内角的边有何关系?(3)问题:你能计算小明跑完一圈,身体转过的角度和吗?如何计算∠1+∠2+∠3+∠4+∠5呢?点拨:请填写下题:如图,oa‘∥ae,ob‘∥ab,oc‘∥bc,od‘∥cd,oe‘∥de,则∠α=,∠β=,∠γ=,∠δ=∠θ=。
因为∠α+∠β+∠γ+∠δ+∠θ=。
所以∠1+∠2+∠3+∠4+∠5=。
由此可得:五边形的外角和是360°(4)你能借助内角和来推导五边形的外角和吗?点拨:因五边形的每一个内角与它相邻的外角是邻补角,所以五边形的内角和加外角和等于5×180°所以外角和等于5×180°—(5—2)×180°=360°(5)你用第二种方法推导下列多边形的外角和三角形的外角和四边形的外角和五边形的外角和n边形的外角和是。
多边内角和公式多边形内角和公式是我们在数学学习中一个非常重要的知识点。
咱们先来说说什么是多边形。
简单来讲,多边形就是由多条线段首尾顺次连接所围成的封闭图形。
那多边形的内角和公式又是啥呢?这公式就是:(n - 2)×180°,其中 n 表示多边形的边数。
我记得有一次给学生们讲这个知识点的时候,发生了一件特别有意思的事儿。
那是一个阳光明媚的上午,我像往常一样走进教室。
当我在黑板上写下多边形内角和公式的时候,下面的同学们一脸迷茫。
于是我决定用一个实际的例子来帮助他们理解。
我拿出了一个六边形的纸模型,问同学们:“大家猜猜这个六边形的内角和是多少度?”同学们开始七嘴八舌地讨论起来,有的说500 度,有的说 800 度。
我笑着摇摇头,然后把六边形沿着对角线剪成了四个三角形。
我指着这四个三角形问:“一个三角形的内角和是 180 度,那四个三角形的内角和是多少度呢?”同学们恍然大悟,纷纷算出是 720 度。
接着我又说:“那咱们再看看这个公式,六边形的边数 n 是 6,代入公式 (6 - 2)×180 = 720 度,是不是和咱们刚才算的一样呀?”同学们这下子眼睛都亮了,纷纷点头。
其实啊,多边形内角和公式不仅仅是一个数学公式,它在我们的生活中也有很多的应用呢。
比如说,建筑师在设计房屋的时候,需要考虑到房间的角度和形状,这时候多边形内角和公式就能派上用场。
再比如,我们在制作拼图或者镶嵌图案的时候,也需要用到这个公式来保证图案的完美拼接。
咱们再回过头来仔细想想这个公式。
为什么是 (n - 2)×180°呢?这是因为从一个 n 边形的一个顶点出发,可以引出 (n - 3) 条对角线,把 n边形分成 (n - 2) 个三角形。
而每个三角形的内角和是 180 度,所以 n边形的内角和就是 (n - 2)×180 度。
对于这个公式,同学们在刚开始学习的时候可能会觉得有点难理解。
多边形的内角和多边形是指由若干条边和相应连接边的顶点组成的图形,它是几何学中一个重要的概念。
在数学中,我们经常研究多边形的性质和特征,其中一个关键的概念就是多边形的内角和。
一、多边形的定义和性质多边形是由若干条边和对应连接边的顶点所围成的封闭图形。
它的性质如下:1. 多边形的边是线段,且相邻两边之间不相交。
2. 多边形的顶点是两条边的交点。
3. 多边形的边数等于顶点数,也等于内角数。
4. 多边形的内角数等于外角数,它们的和为360度。
二、多边形的内角和公式对于任意n边形(n≥3),它的内角和S可以通过以下公式计算:S = (n - 2) × 180度该公式的推导可以通过以下步骤实现:1. 将多边形分成n个三角形,每个三角形的一个顶点为多边形的一个顶点,另外两个顶点分别为相邻的两条边的交点。
2. 由于三角形的内角和为180度,所以n个三角形的内角和为n ×180度。
3. 由于多边形的内角数等于外角数,而多边形的外角和为360度,所以n个三角形的外角和为n × 360度。
4. 由于多边形的内角和和外角和之和等于180°,所以n个三角形的内角和和外角和之和为n × 360° + n × 180°。
5. 由于多边形是由n个三角形组成的,所以n个三角形的内角和和外角和之和也等于多边形的内角和和外角和之和,即n × 180° + n × 360°= S + 360°。
6. 将该等式化简可得 S = (n - 2) × 180°。
三、实例分析我们以正五边形为例,来计算其内角和。
正五边形的定义是指五边形的五个内角相等且五条边相等。
根据内角和公式,我们可以得出正五边形的内角和如下:S = (5 - 2) × 180度 = 3 × 180度 = 540度由此可见,正五边形的内角和为540度。
计算正多边形的内角和和外角之和正多边形是指所有边相等、所有角相等的多边形。
在这篇文章中,我们将探讨如何计算正多边形的内角和和外角之和。
一、正多边形的内角和为了计算正多边形的内角和,我们首先需要了解一个公式:正多边形的内角和公式,也被称为欧拉公式。
根据欧拉公式,正多边形的内角和等于(边数-2)×180度。
例如,一个正三角形的内角和为(3-2)×180度=180度;一个正四边形的内角和为(4-2)×180度=360度;一个正五边形的内角和为(5-2)×180度=540度,以此类推。
二、正多边形的外角和正多边形的外角是指每个角与其相邻的内角的补角。
一般情况下,我们求解外角和时候会用到以下公式:正多边形的外角和等于360度。
根据这个公式,不论正多边形的边数是多少,其外角和都等于360度。
三、计算示例让我们通过一些示例来计算正多边形的内角和和外角和。
1. 计算一个正七边形的内角和:根据欧拉公式,正七边形的内角和为(7-2)×180度=900度。
2. 计算一个正六边形的内角和:根据欧拉公式,正六边形的内角和为(6-2)×180度=720度。
3. 计算一个正五边形的内角和和外角和:根据欧拉公式,正五边形的内角和为(5-2)×180度=540度。
根据正多边形的外角和公式,正五边形的外角和为360度。
四、总结在本文中,我们探讨了如何计算正多边形的内角和和外角和。
根据欧拉公式,我们可以通过正多边形的边数来计算其内角和。
而根据外角和公式,不论正多边形的边数是多少,其外角和都等于360度。
这个知识点在几何学中具有重要的意义,可用于解决各种涉及正多边形的问题。
理解正多边形的内角和和外角和的计算方法,将为我们在学术和实际应用中提供帮助。
11.3.2多边形的内角和(教学设计)一、教学目标1、知识与技能:(1)探索并了解多边形的内角和公式。
(2)能对多边形的内角和公式进行应用,解决实际问题。
(3)掌握多边形的外角和定理,并能运用。
2、过程与方法:(1)通过量,拼,分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。
3、情感态度与价值观:(1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。
(2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。
二、教学重难点重点:多边形内角和定理与外角和定理的推导及运用。
难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。
三、教法:启发式、探索式四、学法:自主探索、合作交流五、前置作业:1、做一个不规则四边形学具;2、用尽可能多的方法探究多边形的内角和。
(目的:一是让学生结合自己已有的生活经验,尝试应用更多的方法来探究多边形的内角和。
二是制作一个学具,通过操作学具来触发学生的思考,为重难点的突破打好基础。
)六、教学过程:(一)创设问题情境,导入新课课件出示一组生活中的图片问题1:看完这组图片,你能抽象出哪些几何图形问题2:生活中有如此多几何图形,你对它们有多少了解?设置意图:学生能说出发现了三角形、四边形、五边形、六边形、八边形…进而指出什么是多边形。
老师指出三角形是最简单的多边形,三角形的内角和是180度,那多边形的内角和是多少呢?从而顺利引入新课。
过渡语:我们知道三角形的内角和等于180度,正方形,长方形的内角和等于360度,那么四边形、五边形、六边形呢?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。
”(板书课题)二、合作交流、探究新知活动一:探究“任意四边形的内角和”问题1:任意四边形的内角和是多少度?你是怎样得到的?你能找到几种方法?活动任务:用用尽可能多的方法探索四边形的内角和活动要求:1.先自己想,再小组交流。
多边形内角和公式的推导及应用n边形的内角和公式:n边形的内角和=n-2×180°一、其推导方法如下:方法1:从一个顶点出发可以引出n-3条对角线,这样把多边形分割成了n-2个三角形如图1,由图可知这n-2个三角形的内角的总和恰好是n边形的内角和,故而可得n边形的内角和为n-2×180°方法2:在多边形的内部任取一点G,和各个顶点连接,这样把多边形分割成了n个三角形如图2,由图可知这n个三角形的内角的总和恰好比n边形的内角和多一个周角,故而可得n边形的内角和为n×180°-360°=n-2×180°方法3:在多边形的边上任取一点G,和各个顶点连接,这样把多边形分割成了n-1个三角形如图3,由图可知这n-1个三角形的内角的总和恰好比n 边形的内角和多一个平角,故而可得n边形的内角和为n-1×180°-180°=n-2×180°方法4:在多边形的外部任取一点G,和各个顶点连接,这样把多边形分割成了n个三角形如图4,由图可知这n个三角形的内角的总和比n边形的内角和多以下几局部:①三角形AFG的内角和180°;②各个三角形的一个角组成的和∠AGF;③∠GAF和∠AFG,而且∠AGF+∠GAF+∠AFG=180°,故而可得n边形的内角和为n×180°-180°-180°=n-2×180°二、n边形的内角和公式的应用:1、求n边形的边数:例1、假设n边形的内角和是它外角和的2倍,那么n等于解:有题意可知,n-2×180°=2×360°,解得n=62、求角度数:例2、如图求角∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H 的度数?分析:所求的八个角的度数可以通过作辅助线如右图,很容易的转化成了求六边形的内角和的度数了所以∠A +∠B +∠C +∠D +∠E +∠F +∠G +∠H =6-2×180°=72021复杂的图形内角和可以通过巧妙地转化构成了我们熟悉的根本图形的内角和了例3、用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE ,其中∠BAC = 度分析:有题意知:ABCDE 为正五边形,所以其内角和为 5-2×180°=540°且五个角相等于540°5=108°,故∠BAC =108°思考题:请同学们思考下面的一个问题,看谁说得又对又好:把一个多边形截去一个角后,形成的新多边形的内角和为2880°,请问原来的多边形的边数是几?答案:17、18、19三种可能,你答对了吗?你能想出其中的奥秘吗?如下列图的三种情况:图 2图1。
多边形的内角和多边形是一个有多条边的几何图形,其中一个重要的特征是它的内角和。
本文将探讨多边形内角和的计算方法及其应用。
通过详细的解析和实例分析,希望能够帮助读者更好地理解多边形的内角和的概念和计算方法。
一、多边形的内角和的定义多边形的内角和是指一个多边形的所有内角之和。
对于任意一个多边形来说,不论边的数量是多少,内角和都有一个恒定的特性。
为了更好地理解内角和的概念,我们来具体分析一下不同多边形的内角和。
二、三角形的内角和三角形是最简单的多边形,由三条边组成。
根据三角形内角和的性质,三角形的内角和始终等于180度。
这是因为三角形的一条边可以看作是一个平行四边形的一条对角线,而平行四边形的内角和是360度,所以三角形的内角和等于180度。
三、四边形的内角和四边形是一种有四条边的多边形,常见的四边形有矩形、正方形、梯形等。
不同类型的四边形有不同的内角和计算方法。
1. 矩形和正方形的内角和矩形和正方形的内角和都等于360度。
这是因为矩形和正方形都满足平行四边形的内角和性质,而平行四边形的内角和是360度。
2. 梯形的内角和梯形是一种两边平行但长度不相等的四边形。
梯形的内角和等于360度。
为了证明这个结论,我们可以将梯形分割成两个三角形和一个矩形,然后分别计算它们的内角和,最后相加得到梯形的内角和。
四、多边形的内角和公式对于任意一个多边形来说,它的内角和可以通过以下公式进行计算:内角和 = (n-2) × 180度其中,n表示多边形的边数。
这个公式适用于所有的多边形,无论边的数量是多少。
五、多边形内角和的应用多边形内角和的计算方法在几何学、物理学等领域具有广泛的应用。
1. 几何学在几何学中,多边形内角和的计算方法可以应用于解决多边形的各种性质和问题。
例如,可以利用内角和的公式来判断一个多边形是否是凸多边形,以及计算凸多边形和非凸多边形的内角和。
2. 物理学在物理学中,多边形内角和的计算方法可以用于描述多边形结构的稳定性。
探索多边形的内角和公式
发表时间:2011-01-25T16:17:02.157Z 来源:《少年智力开发报》2010年第8期供稿作者:陈瑞红
[导读] 一个正多边形的内角和与它的一个外角的和为1125°,那么这个正多边形的边数为多少?
郑州市第五十四中学陈瑞红
多边形的内角和是初中数学的一个重要内容,在讲解多边形的内角和时,内角和公式的推导过程是十分必要的。
在讲解中,我让学生先独立思考,然后分小组讨论,最后进行总结归纳,让学生在学习过程中培养他们的独立解决问题与合作精神,增加学生学习数学的兴趣。
在学生的自学过程中,他们发现多边形的内角和的推导方法有很多,但都是将多边形问题转化为三角形问题来解决的,即利用多边形对角线或对角线的一部分,可以把多边形分割若干个小三角形,再通过三角形的内角和推导出多边形的内角和。
这是化规思想的体现,也是解决多边形问题的基本思想,在课堂教学中,首先复习三角形的内角和公式及推导过程,然后引导出多边形内角和公式的推导方法: 1、如图1,从点P出发可连(n-3)条线段,把n边形分割成(n-2)个三角形,这样,多边形的内角和恰好等于这(n-2)个三角形的内角和之和,即:(n-2)•180°。
从而把多边形的内角和问题转化为三角形的内角和问题给解决了。
2、如图2, 从点P出发可连(n-2)条线段,把多边形分割成(n-1)个三角形,此时,多边形的内角和不就等于这(n-1)个三角形的内角之和再减去点P处的平角了吗?即:(n-1)•180°-180°=(n-2)•180°。
显然,这个结论与1的结论相同。
3、如图3, 从点P出发可连n条线段,把多边形分割成n个三角形,此时,多边形的内角和就等于这n个三角形的内角之和再减去点P处的周角,即:n• 180°-360°= (n-2)•180°。
4、如图4, 从点P出发可连n条线段,共形成n个三角形,此时,多边形的内角和就等于其中(n-1)个三角形的内角之和再减去外面的一个三角形的内角和,即:(n-1)•180°-180°=(n-2)•180°。
可见,无论点P取在以上四种情况的何处,都能说明多边形的内角和与其边数n的关系是(n-2)•180°。
在公式探索完之后,我们又进行了练习,学生饶有兴趣的进行了解答。
例.一个正多边形的内角和与它的一个外角的和为1125°,那么这个正多边形的边数为多少?
分析:本例是用多边形的内角和进行计算的典型例题,解决本题的关键是找出题中的等量关系,进行解答;这里需要向学生强调多边形的外角在0°到180°之间。
解:设这个正多边形的边数为n,则
1125°-180°﹤(n-2)•180°﹤1125°
解得
5.25﹤n-2﹤
6.25
7.25﹤n﹤8.25
∵ n 取正整数,
∴ n=8
∴这个正多边形是八边形。
通过本节课的学习,更加树立了学生学好数学的信心,通过学生的合作交流,也增强了学生的合作意识。