核酶与抗体酶
- 格式:ppt
- 大小:5.70 MB
- 文档页数:45
川农研究生高级生化考试复习题1. 简述信号肽的特点和转运机制。
信号肽具有两个特点:1)位于分泌蛋白前体的N-端2)引导分泌蛋白进入膜以后,信号肽将被内质网腔内的信号肽酶切除信号肽的转运机制:信号肽运作的机制相当复杂,有关组分包括信号肽识别颗粒(SRP)及其受体、信号序列受体(SSR)、核糖体受体和信号肽酶复合物。
信号肽发挥作用时,首先是尚在延伸的、仍与核糖体结合的新生肽链中的信号肽与SRP 结合,然后通过三重结合(即信号肽与SSR的结合、SRP及其受体结合、核糖体及其受体的结合)。
当信号肽将新生肽链引导进入内质网腔内后,在信号肽酶复合物的作用下,已完成使命的信号肽被切除。
2. 同工酶产生的原因是什么?研究同工酶有何意义?为什么可以用电泳的方法分离鉴定同工酶?初级同工酶产生的原因是由于酶蛋白的编码基因不同,次级同工酶产生的原因是虽然编码基因相同,但基因转录产物mRNA或翻译产物加工过程不同。
1)在遗传学和分类学上,同工酶提供了一种精良的判别遗传标志的工具;2)在发育学上,同工酶有效的标志细胞类型及细胞在不同条件下的分化情况,以及个体发育和系统发育的关系。
3)在生物化学和生理学上,根据不同器官组织中同工酶的动力学、底物专一性、辅助因子专一性、酶的变构性等性质的差异,从而解释它们代谢功能的差异。
4)在医学和临床诊断上,体内同工酶的变化,可看作机体组织损伤、或遗传缺陷,或肿瘤分化的分子标记。
因为同工酶的功能虽然相同,但是其分子量和其所带电荷数有差异,故可以用电泳的分析方法鉴定。
3. 生物膜主要有哪些生物学功能?任举一例说明膜结构与功能的密切关系。
生物膜的生物学功能可以概括如下:1)区域化或房室化2)物质的跨膜运输3)能量转换(氧化磷酸化)4)细胞识别4. 研究蛋白质一级结构有哪些意义?蛋白质的一级结构即多肽链中氨基酸残基的排列顺序(N端—C 端)是由基因编码的,是蛋白质高级结构的基础,因此一级结构的测定成为十分重要的基础研究。
什么是抗体酶?抗体酶有何特性?答:抗体酶指既是抗体又具有催化功能的蛋白质。
因为它是具有催化活性的抗体,故又称为“催化性抗体”。
抗体酶具有典型的酶反应特性;与配体(底物)结合的专一性,包括立体专一性,抗体酶催化反应的专一性可以达到甚至超过天然酶的专一性;具有高效催化性,一般抗体酶催化反应速度比非催化反应快104~108倍,有的反应速度已接近于天然酶促反应速度;抗体酶还具有与天然酶相近的米氏方程动力学及pH依赖性等。
抗体酶与天然酶相比,最大的优点在于抗体的种类繁多,抗体的精细识别性使其能结合几乎任何天然的或合成的分子,制备成功的抗体酶不但能催化一些天然酶能催化的反应,而且还能催化一些天然酶不能催化的反应。
简述抗体酶的制备原理。
答:抗体酶的制备主要有诱导法、引入法、拷贝法等方法。
诱导法是利用反应过渡态类似物为半抗原制作单克隆抗体,筛选出具高催化活性的单抗即抗体酶;引入法则借助基因工程和蛋白质工程将催化基因引入到特异抗体的抗原结合位点上,使其获得催化功能;拷贝法主要根据抗体生成过程中抗原-抗体互补性来设计的。
核酶是如何发现的? 核酶的发现有什么重要意义?答:1982年,美国的T.Cech等研究发现原生动物四膜虫的26SrRNA前体能够在完全没有蛋白质的情况下,自我加工、拼接,得到成熟的rRNA。
1983年,S.Altman等研究RNaseP时发现,将RNaseP的蛋白质与RNA分离,分别测定,发现蛋白质部分没有催化活性;RNaseP的蛋白质部分除去并提高Mg2+,则留下的RNA部分具有与全酶相同的催化活性。
1986年,T.Cech与连接,具有核糖核酸酶和RNA聚合酶的活性。
核酶的发现,证明了核酸既是信息分子,又是功能分子,对于研究生命的起源,了解核酸新功能,以及重新认识酶的概念等都具有重要意义。
简述L19 RNA(L19 IVS)的生成及其催化反应。
答:1982年Cech等人在研究四膜虫前体rENA拼接机制时发现,在没有仟何蛋白质酶参与下,几秒钟内自动切除含有413nt的IVS(间插序列片段interveningsequcnce,IVS),并产生成熟的rRNA,但反应体系需镁离子和鸟苷酸或鸟苷(均需有3¢-OH)参与。
分子酶学复习重点1 剪接型核酶:定义:指RNA分子被磷酸二酯酶切割后,伴随着形成新的磷酸二酯键,即磷酸二酯键的转移反应或称转酯反应。
2 剪切型核酶: 这类核酶的作用是只剪不接,催化自身RNA或不同的RNA分子,切下特异行核苷酸序列。
3 探针酶:既保持高度的反应性,又能在DNA中任意选定的区域内进行切割的酶。
实质是核酸内切酶,由两部分组成,第一部分叫做切割系统,为核酸切割试剂或酶,第二部分叫做识别系统,可以识别核酸底物的特定核苷酸序列。
4 人工酶:人工合成的具有催化活性的蛋白质或多肽。
5 模拟酶:利用有机化学合成的一些比酶结构简单得多但具有催化功能的非蛋白质分子。
6 抗体酶:又称催化抗体,是一类具有催化能力的免疫球蛋白,即通过一系列化学与生物技术方法制备出的具有催化活性的抗体,它既具有相应的免疫活性,又能像酶那样催化化学反应。
7 克隆酶:基因工程将某种酶基因导入宿主细胞中大量表达其产物为克隆酶,即用基因工程技术生产的酶。
8 突变酶:用基因定位突变技术修饰天然酶基因,然后用基因工程技术生产该突变基因的酶,被称为突变酶。
9 酶活力(enzyme activity)也称为酶活性,是指酶催化一定化学反应的能力。
10 酶的比活力:单位质量样品中的酶活力;1mg蛋白质中所含的U数;1Kg蛋白质中所含的Kat数。
11 酶的转换数(K cat):当酶被底物饱和时每秒钟每个酶分子所转换底物分子数,又叫转换数(简称TN), Kcat可以用来衡量酶的催化效率,越大效率越高。
12 亲和标记:利用酶对S的特殊亲和力,将酶加以修饰标记,故称之为亲和标记。
13差别修饰法(差别标记):这种方法是非特异性试剂标记法的一个发展。
它利用竞争性抑制剂或底物预先占据活性中心,使非特异性试剂只修饰活性中心以外的基团,然后透析除去保护剂(即竞争性抑制剂或底物),再用同位素标记的非特异性试剂修饰活性中心的基团。
经氨基酸分析可知哪些基团位于活性中心。
抗体酶与核酸酶的名词解释介绍:在生物学领域中,抗体酶与核酸酶是两个重要的概念。
它们分别代表了抗体与核酸相关的酶活性。
本文将对抗体酶和核酸酶进行详细解释,并探讨它们在生物学中的作用和应用。
一、抗体酶(Antibody Enzyme)抗体酶是将抗体与酶活性结合的一种融合蛋白质。
它的独特结构使其能够同时具备免疫识别和酶活性两种功能。
通常,抗体酶由通过基因工程技术构建的单克隆抗体与酶分子相结合而成。
抗体酶的作用:抗体酶在生物学研究、医学诊断和治疗等领域具有重要应用。
首先,它可以用于免疫组织化学分析,通过特异性抗体的结合,检测与某种蛋白质或细胞相关的特定抗原。
其次,抗体酶还广泛应用于免疫诊断试剂盒中,如妊娠试纸、艾滋病病毒检测试剂等。
此外,抗体酶对于治疗肿瘤和炎症疾病等方面也有很大作用。
二、核酸酶(Nuclease)核酸酶是一类能够分解核酸分子的酶,主要包括DNase(脱氧核酸酶)和RNase(核糖核酸酶)两种。
核酸酶能够加速酶解核酸链的过程,并参与核酸代谢和细胞生命周期的调控。
DNase的作用:DNase主要作用于DNA分子,能够在酶解作用下使DNA链断裂。
在细胞凋亡(细胞程序性死亡)过程中,DNase起到关键作用,它能够将DNA分子断裂成较小的片段,进一步促使细胞死亡。
此外,DNase还在DNA修复和DNA重组等生物过程中发挥重要作用。
RNase的作用:RNase主要作用于RNA分子,它能够酶解RNA链,从而控制RNA在细胞内的代谢。
RNase在维持基因表达平衡、调节蛋白合成等方面发挥着重要作用。
另外,RNase还参与RNA降解、RNA修复和基因调控等生物过程。
抗体酶与核酸酶的应用抗体酶与核酸酶不仅在生物学研究中发挥作用,还在医学诊断和治疗中得到广泛应用。
1. 生物学研究中的应用抗体酶可以通过免疫组织化学、免疫印迹等技术,用于鉴定和定位特定蛋白质或细胞上的抗原。
核酸酶在基因表达和调控研究中也起到关键作用,通过核酸酶酶切,可以获取特定片段的DNA或RNA,进行进一步的分析。
三、名词解释:1.限制性核酸内切酶: 能识别特定的核苷酸顺序,并从特定位点水解核酸的内切酶称为限制性核酸内切酶(限制酶)2.遗传密码:mRNA分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码3.核酸的一级结构:核酸的一级结构是指组成核酸的核苷酸之间的连接方式及排列顺序。
4.增色效应:指与天然DNA相比,变性DNA因其双螺旋破坏,使碱基充分外露,因此紫外吸收增加,这种现象叫增色效应。
5.Tm 值:加热DNA溶液,使其对260nm紫外光的吸收度增加,达到其最大值一半时的温度,就是DNA的变性温度(解链温度,Tm)。
6.核酸的变性:在理化因素作用下,核酸双螺旋的两条互补链松散而分开成为单链,从而导致核酸的理化性质及生物学性质发生改变,这种现象称为核酸的变性。
7.核酶:具有自身催化作用的RNA称为核酶8.核酸分子杂交:两条来源不同的单链核酸(DNA或RNA),只要它们有大致相同的互补碱基顺序,经退火处理即可复性,形成新的杂种双螺旋,这一现象称为核酸的分子杂交。
四、简答题1 .答:DNA 双螺旋结构模型的要点是:( 1 ) DNA 是一反向平行的双链结构,脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触。
腺嘌呤始终与胸腺嘧啶配对存在,形成两个氢键( A=T ),鸟嘌呤始终与胞嘧啶配对存在,形成三个氢键(G≡C )。
碱基平面与线性分子结构的长轴相垂直。
一条链的走向是5'→3' ,另一条链的走向就一定是3'→5' 。
(2 ) DNA螺旋每旋转一周包含了 10 对碱基,每个碱基的旋转角度为36° 。
螺距为 3.4nm ,每个碱基平面之间的距离为 0.34nm 。
DNA 双螺旋分子存在一个大沟和一个小沟。
(3 ) DNA 双螺旋结构稳定的维系横向靠两条链间互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。