秋八年级数学上册命题定理与证明新华东师大
- 格式:ppt
- 大小:1.07 MB
- 文档页数:10
定理与证明-华东师大版八年级数学上册教案一、教学目标1.了解定理与证明的基本概念和方法;2.能够正确运用定理和相关知识进行数学问题的证明;3.提高数学思维和解决问题的能力。
二、教学重难点1.定理的理解和运用;2.证明的方法与技巧;3.证明过程中思维的拓展。
三、教学内容1.定义:定理是一种真实的、重要的数学命题,需要经过证明才能成立;2.定理的分类:数形结合、解析几何、代数方程、数论等;3.定理的证明方法:直接证明、间接证明、归谬法等;4.基本定理的讲解和运用:比如射影定理、等腰三角形定理、余弦定理等;5.综合运用定理和公式解决实际问题。
四、教学过程1. 导入(5分钟)请学生们回忆上节课学过的定理和证明方法,并举例说明其运用。
2. 讲解定理与证明的基本概念和方法(20分钟)1.讲解定理的定义和分类,举例说明;2.讲解证明的基本方法和技巧,如直接证明、间接证明、归谬法等;3.举例说明定理的证明过程,并让学生模仿练习。
3. 讲解基本定理并运用于实际问题的解决(20分钟)1.介绍常见的基本定理,如射影定理、等腰三角形定理、余弦定理等;2.利用定理解决实际问题的案例分析,并让学生进行练习。
4. 合作探究与案例演示(20分钟)将学生分组,让他们自行查找和收集相关定理和证明的例题,进行合作探究;然后让其中一小组进行案例演示,展示其探究和归纳分析的结果。
5. 课堂小结(5分钟)1.对今天的教学内容进行回顾;2.强调掌握定理和证明的基本方法和技巧;3.提醒学生关注几何图形和代数方程的联系。
五、课后作业1.完成课堂练习题;2.完成课后练习题;3.查找和阅读相关数学文献,了解更多有关定理和证明的知识。
六、教学反思通过本次教学,学生们了解了数学中定理和证明的基本概念和方法,并掌握了一些基本定理的运用和证明。
在教学设计中,我采取了多种教学方法和形式,如讲解、案例分析、小组讨论等,注重培养学生的思维能力和团队合作意识。
但是还需注意,在小组讨论和案例演示环节中,需关注每个小组的参与度和发言机会,让每个学生都能学有所获,提高教学效果。
华东师大版八年级上册数学教学设计《定理与证明》一. 教材分析华东师大版八年级上册数学教材在《定理与证明》这一章节中,主要向学生介绍定理与证明的概念、方法和过程。
本章内容是学生继学习几何初步知识后,进一步深化对几何图形性质和规律的理解,培养学生逻辑思维和论证能力。
本章的主要内容包括定理的定义、定理的证明、公理化体系等。
通过本章的学习,使学生掌握定理与证明的基本概念和方法,提高学生分析问题和解决问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了基本的几何知识,具备一定的逻辑思维能力。
但部分学生对抽象的逻辑论证过程可能存在理解上的困难,因此,在教学过程中需要关注这部分学生的学习情况,加强对其逻辑思维和论证能力的培养。
同时,学生对于新知识的学习兴趣和积极性较高,可以通过引导和激励,激发学生学习本章内容的兴趣。
三. 教学目标1.知识与技能:使学生掌握定理与证明的基本概念和方法,学会阅读和理解几何论证过程。
2.过程与方法:培养学生逻辑思维和论证能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的抽象思维和创新意识。
四. 教学重难点1.教学重点:定理与证明的基本概念和方法,几何论证过程的阅读和理解。
2.教学难点:定理证明的逻辑推理过程,学生逻辑思维和论证能力的培养。
五. 教学方法1.引导法:通过问题引导,激发学生思考,培养学生逻辑思维和论证能力。
2.案例分析法:分析典型几何论证案例,使学生掌握定理与证明的方法。
3.小组合作学习法:引导学生进行合作交流,共同探讨几何论证问题,提高学生分析问题和解决问题的能力。
六. 教学准备1.教学课件:制作多媒体课件,帮助学生直观地理解定理与证明的概念和方法。
2.教学案例:准备一些典型的几何论证案例,用于分析和讲解。
3.练习题:设计一些有关定理与证明的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习几何基本知识,引导学生思考几何论证的过程,引出本章内容——定理与证明。
命题、定理与证明知识讲解【学习目标】1.了解命题、定理的含义,会区分命题的题设(条件)和结论,会在简单情况下判断一个命题的真假;2.能用基本的逻辑术语、几何证明的步骤、格式和规范进行几何证明;3.了解证明的含义,理解证明的必要性,体会证明的过程要步步有据.【要点梳理】要点一、命题、基本事实与定理1. 命题一般地,判断某一件事情的语句叫命题.正确的命题叫做真命题;不正确的命题叫做假命题.命题通常由条件、结论两个部分组成,条件是已知事项,结论是由已知事项得到的事项.通常命题可以写成“如果……那么……”的形式,其中以“如果“开始的部分是条件,”那么“开始的部分是结论.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.当证明一个命题是假命题时只要举出一个反例就可以.2.基本事实人们经过长期实践后公认为正确的命题,作为判断其他命题的依据,也可称为公理.如:(1)两点确定一条直线;(2)两点之间,线段最短等.3.定理数学中,有些命题可以从基本事实或者其他真命题出发,用逻用推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.要点诠释:满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.要点二、证明1.证明根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.2.证明表述格式证明几何命题时,表述格式一般如下:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.要点诠释:在解决几何问题时,有时需要添加辅助线,添辅助线的过程要写入证明中,辅助线通常要画出虚线.【典型例题】类型一、命题1. 判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4)a ,b 两条直线平行吗?(5)鸟是动物; (6)若24a =,求a 的值;(7)若22a b =,则a =b .【答案与解析】句子(1)(3)(5)(7) 对事情作了判断,其中 (1)(3)(5)判断是正确的,(7)判断是错误的. 句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句.【总结升华】主要考察命题的定义.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题?(1)若a b <,则<-b a -;(2)三角形的三条高交于一点;(3)在ΔABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程2230x x --=;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.2. 下列命题是真命题的是( )A .如果|a|=1,那么a=1B .有两条边相等的三角形是等腰三角形C .如果a 为实数,那么a 是有理数D .有两边和一角相等的两个三角形全等;【答案】C【解析】如果|a|=1,那么a=±1,故A 错误;如果a 为有理数,那么a 是实数,故C 错误;有两边和夹角相等的两个三角形全等,故D 错误;而B 根据等腰三角形的定义可判断正确;【总结升华】主要考查命题的真假,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义.举一反三:【变式】下列命题中,真命题的个数有( )①对顶角相等 ②同位角相等 ③4的平方根是2 ④若a >b ,则-2a >-2bA .3个B .1个C .4个D .2个【答案】B3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。
优质资料---欢迎下载课题:13.1 命题、定理与证明第二课时定理与证明&.教学目标:1、理解公理与命题,公理与定理之间的关系。
2、了解定理的作用,并初步学会运用公理、定理或真命题来证明其他的真命题。
&.教学重点、难点:重点:公理、定理、命题之间的关系以及定理的作用。
难点:从公理、定理出发,用逻辑推理的方法进行简单的证明。
&.教学过程:一、问题引入1、复习回顾:一个命题是由哪几部分组成的?2、根据你学过的知识填空.(1)一条直线截两条平行线所得的同位角相等;(2)两条直线被第三条直线所截,如果同位角相等,那么,这两条直线互相平行;(3)全等三角形的对应边、对应角分别相等。
二、探究新知思考:上述三个命题是真命题吗?以上三个都是真命题,以上的三个真命题均作为本书的公理。
(引出标题)§.公理:数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理。
注意:(1)公理是真命题,而真命题不一定是公理。
(2)公理可以作为判断其他命题真假的原始依据。
§.探究定理的概念:观察下列判断真命题的推理过程,并在后面括号内填写适当的理由。
(1)命题:垂直于同一条直线的两条直线互相平行.如图所示,ab⊥,ac⊥.求证:cb//证明:∵ab⊥,ac⊥(已知)∴︒=∠901,︒=∠902(垂直的定义)∴21∠=∠(等量代换)a1 2b c∴c b //(同位角相等,两直线平行)(2)如图所示,已知ABC Rt ∆中,︒=∠90C ,点D 为AB 上任一点,BC DE ⊥. 求证:A ∠=∠1证明:∵︒=∠90C ,BC DE ⊥(已知)∵DE AC //(垂直于同一条直线的两条直线互相平行) ∴A ∠=∠1(两直线平行,同位角相等) §.定理:数学中有些命题可以从公理或其他真命题出发,用逻辑推理的方法证明它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理。
13.1 命题、定理与证明(第一课时)一、说教材1、教材的地位和作用命题是数学教学的基本依据,经过推理证实的命题如定理可以作为继续推理的依据,所以认识命题的定义、结构、真假是数学学习的主要任务之一。
而正确找出命题的题设和结论,是基础,特别是题设和结论不明显的命题,和难以判断真假的命题,是学习的重点。
本节课将通过一些具体的例子来了解基本概念,不必深究,不钻难题。
二、说教学目标知识与技能目标:了解命题、真命题、假命题、定理的含义能识别真假命题。
会区分命题的题设和结论。
过程与方法目标:通过命题的真假,培养分类思想。
通过命题的构成,培养学生分析法。
通过命题的构成,培养语言推理技能。
情感态度与价值观目标:通过命题、定理的具体含义,让学生体会到数学的严谨性。
通过学习命题真假,培养学生尊重科学、实事求是的态度。
通过学习命题的构成,使学生获得成功的体验,锻炼克服困难的意志,建立自信心。
三、教学重点:定义、命题、公理、定理的概念;四、教学难点:判定什么定义、命题、定理、公理,及找出命题的题设和结论。
五、说教法学法通过“目标定向,自主合作”,以实现学习目标为目的,以问题为载体给学生提供探索的空间,引导学生积极探索。
教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。
本节课的学习任务是让学生了解命题的概念,能区分命题的题设和结论,并初步认识真、假命题。
因此就内容看来,可能会较为枯燥、单调;因此在教学设计时,根据不同的学习任务进行了不同的教学设计。
在命题的概念教学中,与以往直接的告知学生概念不同,采用了让学生对两组语句进行比较、区别,然后再学生充分讨论的感性认识基础上,在提出命题的概念,能有效促进学生对命题概念的理解,然后再通过学生举例来加强巩固概念。
在命题的构成这一环节中,通过一个问题的思考与探讨,让学生了解到命题是由题设和结论两部分构成,同时感受到命题的常用表述形式,然后教师再加以总结分析,使学生对知识的认识更加透彻。