【高考模拟】辽宁省沈阳市2018届高三第一次模拟考试数学(理)试题含答案
- 格式:doc
- 大小:1.36 MB
- 文档页数:9
东北育才学校高中部2018届 高三第一次模拟考试(数学文科)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}2,1,0,1{-=A ,}032{2<-+=x x x B ,则=B A ( ) A .}1{-B .}0,1{-C .}1,0,1{-D .}0,1,2{--2.已知R y x ∈,,i 为虚数单位,若i y xi 3)2(1--=+,则=+yi x ( ) A .2B .5C .3D .103.下列函数的图像关于y 轴对称的是( )A .x x y +=2B .x y 1-=C .x x y --=22D .x x y -+=22 4.已知平面向量),1(m a = ,)1,3(-=b 且b b a//)2(+,则实数m 的值为( )A .31B .31-C .32D .32- 5.在等差数列{}n a 中,n S 为其前n 项和,若34825a a a ++=,则9S =A .60B .75 C.90 D .1056.在抛物线px y 22=上,横坐标为4的点到焦点的距离为5,则p 的值为A.21B.1C.2D.4 7.某几何体的三视图如图所示,则其表面积为 A.83 B.43C.248+D.246+ 8.设点),(y x P 在不等式组⎪⎩⎪⎨⎧≤-+≤-≥03,02,0y x y x x 表示的平面区域上,则22)1(y x z +-=的最小值为A .1B .55 C. 2 D .552 9.若函数()()2log =+f x x a 与()()21=-+g x x a x ()45-+a 存在相同的零点,则a 的值为22俯视图侧视图A .4或52-B .4或2-C .5或2-D .6或52- 10.若将函数x x f 2cos 21)(=的图像向左平移6π个单位长度,则平移后图像的一个对称中心可以为( ) A .)0,12(πB .)0,6(πC .)0,3(πD .)0,2(π11.“1=a ”是“1-=x 是函数1)(223-+--=x a ax x x f 的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数()21sin 21x x f x x x -=+++,若正实数b a ,满()()490f a f b +-=,则11a b +的最小值是A.1B.29C.9D.18二.填空题:本大题共4小题,每小题5分. 13.在如右图所示程序框图中,任意输入一次)10(≤≤x x 与)10(≤≤y y 中奖!”的概率为 .14.已知方程1)2(22=-+y m mx 是 .15. 已知函数()sin xf x e x =,则)(x f 在0=x 处的切线方程为 .16. 若31)6sin(=+πx ,则=-)267sin(x π. 三.解答题:共70分。
东北育才学校高中部2018届 高三第一次模拟考试(数学文科)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}2,1,0,1{-=A ,}032{2<-+=x x x B ,则=B A ( ) A .}1{-B .}0,1{-C .}1,0,1{-D .}0,1,2{--2.已知R y x ∈,,i 为虚数单位,若i y xi 3)2(1--=+,则=+yi x ( ) A .2B .5C .3D .103.下列函数的图像关于y 轴对称的是( )A .x x y +=2B .x y 1-=C .x x y --=22D .x x y -+=22 4.已知平面向量),1(m a = ,)1,3(-=b 且b b a//)2(+,则实数m 的值为( )A .31B .31-C .32D .32- 5.在等差数列{}n a 中,n S 为其前n 项和,若34825a a a ++=,则9S =A .60B .75 C.90 D .1056.在抛物线px y 22=上,横坐标为4的点到焦点的距离为5,则p 的值为A.21.1 C 7.某几何体的三视图如图所示,则其表面积为 A.83 43.248+ D.246+ 8.设点),(y x P 在不等式组⎪⎩⎪⎨⎧≤-+≤-≥03,02,0y x y x x 表示的平面区域上,则22)1(y x z +-=的最小值为A .1B .55 C. 2 D .552 9.若函数()()2log =+f x x a 与()()21=-+g x x a x ()45-+a 存在相同的零点,则a 的值为 22俯视图侧视图结束)10(≤≤x x 任意输入)10(≤≤y y 任意输入是否输出“恭喜中奖!”输出“谢谢参与!”y x≤A .4或52-B .4或2-C .5或2-D .6或52- 10.若将函数x x f 2cos 21)(=的图像向左平移6π个单位长度,则平移后图像的一个对称中心可以为( ) A .)0,12(πB .)0,6(πC .)0,3(πD .)0,2(π11.“1=a ”是“1-=x 是函数1)(223-+--=x a ax x x f 的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数()21sin 21x x f x x x -=+++,若正实数b a ,满()()490f a f b +-=,则11a b +的最小值是B.29二.填空题:本大题共4小题,每小题5分.13.在如右图所示程序框图中,任意输入一次)10(≤≤x x 与)10(≤≤y y ,则能输出“恭喜中奖!”的概率为 .14.已知方程1)2(22=-+y m mx 表示双曲线,则m 的取值范围是 .15. 已知函数()sin xf x e x =,则)(x f 在0=x 处的切线方程为 .16. 若31)6sin(=+πx ,则=-)267sin(x π. 三.解答题:共70分。
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018届高三第一次模拟考试(文科)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}2,1,0,1{-=A ,}032{2<-+=x x x B ,则=B A ( )A .}1{-B .}0,1{-C .}1,0,1{-D .}0,1,2{--2.已知R y x ∈,,i 为虚数单位,若i y xi 3)2(1--=+,则=+yi x ( ) A .2B .5C .3D .103.下列函数的图像关于y 轴对称的是( )A .x x y +=2B .x y 1-=C .x x y --=22D .x x y -+=22 4.已知平面向量),1(m a = ,)1,3(-=b 且b b a//)2(+,则实数m 的值为( )A .31B .31-C .32D .32- 5.在等差数列{}n a 中,n S 为其前n 项和,若34825a a a ++=,则9S =A .60B .75 C.90 D .1056.在抛物线px y 22=上,横坐标为4的点到焦点的距离为5,则p 的值为 A.21B.1C.2D.4 7.某几何体的三视图如图所示,则其表面积为 A.83 B.43C.248+D.246+ 8.设点),(y x P 在不等式组⎪⎩⎪⎨⎧≤-+≤-≥03,02,0y x y x x 表示的平面区域上,则22)1(y x z +-=的最小值为A .1B .55 C. 2 D .552 9.若函数()()2log =+f x x a 与()()21=-+g x x a x ()45-+a 存在相同的零点,则a 的值为 A .4或52-B .4或2-C .5或2-D .6或52- 22俯视图侧视图10.若将函数x x f 2cos 21)(=的图像向左平移6π个单位长度,则平移后图像的一个对称中心可以为( ) A .)0,12(πB .)0,6(πC .)0,3(πD .)0,2(π11.“1=a ”是“1-=x 是函数1)(223-+--=x a ax x x f 的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数()21sin 21x x f x x x-=+++,若正实数b a ,满()()490f a f b +-=,则11a b +的最小值是A.1B.29C.9D.18二.填空题:本大题共4小题,每小题5分.13.在如右图所示程序框图中,任意输入一次)10(≤≤x x 与)10(≤≤y y 中奖!”的概率为 .14.已知方程1)2(22=-+y m mx 表示双曲线,则m 的取值范围是 .15. 已知函数()sin x f x e x =,则)(x f 在0=x 处的切线方程为 .16. 若31)6sin(=+πx ,则=-)267sin(x π. 三.解答题:共70分。
2018年辽宁省沈阳市高三教学质量检测理数试题第Ⅰ卷(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合(){}03<-=x x x A ,{}32101,,,,-=B ,则=B A ( ) A .{}1- B .{}21, C .{}30, D .{}3211,,,- 2.已知i 是虚数单位,复数i z i 21-=⋅,则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知平面向量()3,4a =,1(,)2b x =,若→→b a //,则实数x 为( )A . 32-B .32C .83D .83- 4.命题”:“21)21(,N ≤∈∀+x x P 的否定为( )A .+∈∀N x ,2121>x )(B .+∉∀N x ,2121>x )(C.+∉∃N x ,2121>x )( D .+∈∃N x ,2121>x )(5.已知直线)3(:+=x k y l 和圆1)1(:22=-+y x C ,若直线l 与圆C 相切,则=k ( ) A .0 B .3 C. 33或0 D .3或06.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的表面积是( )A .10636+B . 10336+ C. 54 D .277.将D C B A 、、、这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( ) A .21 B .41 C. 61 D .818.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N 除以正整数m 后的余数为n ,则记为)mod (m n N ≡,例如mod3)211(=.现将该问题以程序框图的算法给出,执行该程序框图,则输出的n 等于 ( )A .21B .22 C.23 D .249.将函数0)ω)(4πsin(ω2)(>+=x x f 的图象向右平移ω4π个单位,得到函数)(x g y =的图象,若)(x g y =在]3π6π[,-上为增函数,则ω的最大值为( )A .3B .2 C. 23 D .4510.已知C B A S 、、、是球O 表面上的不同点,⊥SA 平面ABC ,BC AB ⊥,1=AB ,2=BC ,若球O 的表面积为π4,则=SA ( )A .22B .1 C. 2D .2311.已知双曲线)0,0(1:2222>>=-b a by a x C 的左、右焦点分别为21F F 、,点M 与双曲线C 的焦点不重合,点M 关于21F F 、的对称点分别为B A 、,线段MN 的中点在双曲线的右支上,若12=-BN AN ,则=a( )A .3B .4 C.5 D .612.已知函数⎪⎩⎪⎨⎧>-≤+=1,)1(log 1,222)(2x x x x f x ,则函数()()[]()232--=x f x f f x F 的零点个数是( )A .4B .5 C. 6 D .7第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每小题5分,共20分. 把答案填在答题纸上)13. 二项式6)21xx +(的展开式中的常数项为 . 14. 若实数y x 、满足不等式组⎪⎩⎪⎨⎧≤-+≤+-≥03010y x y x x ,则目标函数y x z -=3的最大值为 .15. 已知ABC ∆的三个内角C B A 、、的对边分别为c b a 、、,面积为S ,且满足22)(4c b a S --=,8=+c b ,则S 的最大值为 .16. 设函数2)2()(x xg x f +=,曲线)(x g y =在点))1(1g ,(处的切线方程为019=-+y x ,则曲线)(x f y =在点))2(2f ,(处的切线方程为 .三、解答题 (本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分12分)已知数列{}n a 是公差不为0的等差数列,首项11=a ,且421a a a 、、成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 满足n an n a b 2+=,求数列{}n b 的前n 项和n T .18.(本小题满分12分)为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50各学生进行调查,得到如下22⨯列联表:(单位:人).(Ⅰ)据此样本,能否有99%的把握认为理科生报考“经济类”专业与性别有关?(Ⅱ)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X ,求随机变量X 的概率分布及数学期望.附:参考数据:(参考公式:21212211222112)(++++-=n n n n n n n n n χ)如图,在三棱柱111C B A ABC -中,侧面⊥C C AA 11底面ABC ,211=====BC AB AC C A AA ,且点O 为AC 中点.(Ⅰ)证明:⊥O A 1平面ABC ; (Ⅱ)求二面角11C B A A --的大小.20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a b y a x C 的左焦点为)0,6(1-F ,22+e .(Ⅰ)求椭圆C 的方程;(Ⅱ)如图,设),(00y x R 是椭圆C 上一动点,由原点O 向圆4)()(2020=-+-y y x x 引两条切线,分别交椭圆于点Q P 、,若直线OQ OP 、的斜率存在,并记为21k k 、,求证:21k k 为定值; (Ⅲ)在(Ⅱ)的条件下,试问22OQ OP +是否为定值?若是,求出该值;若不是,说明理由.已知函数21)(ax x e x f x ---=. (Ⅰ)当0=a 时,求证:0)(≥x f ;(Ⅱ)当0≥x 时,若不等式()0≥x f 恒成立,求实数a 的取值范围; (Ⅲ)若0>x ,证明2)1n(1)1x x e x >+-(.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线x y l =:,圆⎩⎨⎧+-=+-=ϕϕsin 2y cos 1:x C ,(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线l 与圆C 的极坐标方程;(Ⅱ)设直线l 与圆C 的交点为N M 、,求CMN ∆的面积.23.(本小题满分10分)选修4-5:不等式选讲 已知函数x a x x f 21)(--=,)0>a (. (Ⅰ)若3=a ,解关于x 的不等式0)(<x f ;(Ⅱ)若对于任意的实数x ,不等式2)()(2aa a x f x f +<+-恒成立,求实数a 的取值范围.2018年辽宁省沈阳市高三教学质量检测理数试题参考答案一、选择题:(本大题共12小题,每小题5分,在每小题四个选项中,只有一项是符合题目要求的)1-5: BCCDD 6-10: ABCCB 11、12:AA二、填空题(本大题共4小题,每小题5分,共20分)13.2514. 1 15. 8 16.062=++y x 三、解答题17. (本小题满分12分)解:(Ⅰ)设数列{}n a 的公差为d ,由题设,4122a a a =, .................2分即d d 31)1(2+=+,解得01d d ==或 .................4分 又∵0≠d ,∴1d =,可以求得n a n =. .................6分 (Ⅱ)由(Ⅰ)得n n n b 2+=123(12)(22)(32)(2)n n T n =++++++++2=(123222)nn ++++++++)( .................8分222)1(1-++=+n n n . .................12分 (分别求和每步给2分) 18. (本小题满分12分)解:(Ⅰ)635.65.12225302020303005030202030)33636(50222>==⨯⨯⨯⨯=⨯⨯⨯-⨯=χ .................2分 ∴有99%的把握认为理科生愿意报考“经济类”专业与性别有关. .................4分 (Ⅱ)估计该市的全体考生中任一人报考“经济类”专业的概率为202505p == .............6分 X 的可能取值为3,2,1,0,由题意,得)52,3(~B X)3,2,1,0(,)53()52()(33===-k C k X P k k k∴随机变量X 的分布列为.................10分 ∴随机变量X 的数学期望56=)(X E . .................12分 19.(本小题满分12分)解:(Ⅰ)证明:因为C A AA 11=,且O 为AC 的中点,所以AC O A ⊥1, .................2分 又∵侧面11AAC C ⊥底面ABC ,交线为AC ,且⊂O A1平面C C AA 11, ∴⊥O A 1平面ABC . .................4分(Ⅱ)如图,以O 为原点,1,,OA OC OB 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系. 由已知可得(0,0,0)O ,(0,1,0)A -,1A ,1(0,C ,B∴(3,1,0)AB =,1(3,0,A B =,11(0,2,0)AC = .................6分 设平面1AA B 的一个法向量为),,(111z y xm =,则有111110000m AB y m A B ⎧⎧⋅=+=⎪⎪⇒⎨⋅==⎪⎩令11=x ,得1y =,11z =∴)1,3,1(-=m . .................8分 设平面11BC A 的法向量为),,(222z y x =,则有21122120000y m AC m A B ⎧=⎧⋅=⎪⎪⇒⎨=⋅=⎪⎩令12=x ,则20y =,21z =,∴)1,0,1(=n .................10分 ∴510102,cos =>=<n m ∴所求二面角的大小为)510arccos(-. .................12分20. (本小题满分12分) 解:(Ⅰ)由题意得,22,6==e c ,解得32=a , .................1分 ∴椭圆方程为161222=+y x . (3)分(Ⅱ)由已知,直线OP :1y k x =,OQ :2y k x =,且与圆R 相切, ∴2121001=+-k y x k ,化简得()0424201002120=-+--y k y x k x同理()0424202002220=-+--y k y x k x , .................5分 ∴12,k k 是方程22000240k x y k y -+-=的两个不相等的实数根∴2040x -≠,0∆>,44202021--=x y k k .................7分∵点00(,)R x y 在椭圆C 上,所以16122020=+y x ,即2020216x y -= ∴21421220221-=--=x x k k . .................8分 (Ⅲ)22OP OQ +是定值18.设1122(,),(,)P x y Q x y ,联立⎪⎩⎪⎨⎧=+=1612,221y x x k y 解得⎪⎪⎩⎪⎪⎨⎧+=+=212121212121122112k k y k x ∴()2121212121112k k y x ++=+ 同理,得()2222222221112k k y x ++=+. .................10分 由1212k k =-,∴2222221122OP OQ x y x y +=+++()()222221212111221112k k k k +++++= ()1821361821212111221112212121212121=++=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-++++=k k k k k k综上:1822=+OQ OP . .................12分 21. (本小题满分12分)解:(Ⅰ)0a =时,'()1,()1xxf x e x f x e =--=-. .................1分 当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >. .................2分 故()f x 在(,0)-∞单调递减,在(0,)+∞单调递增,00)(min ==)(f x f ,∴()0f x ≥ .................3分 (Ⅱ)方法一:'()12xf x e ax =--.由(Ⅰ)知1x e x ≥+,当且仅当0x =时等号成立. 故'()2(12)f x x ax a x ≥-=- 从而当120a -≥,即12a ≤时,在区间[0,)+∞上,()0f x '≥,()f x 单调递增,()(0)f x f ≥,即()0f x ≥,符合题意. .................5分 又由1(0)xe x x >+≠,可得1(0)xe x x ->-≠.从而当12a >时,'()12(1)(1)(2)x x x x xf x e a e e e e a --<-+-=--在区间(0,ln 2)a 上,'()0f x <,()f x 单调递减,()(0)f x f <,即()0f x <,不合题意. .................7分 综上得实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦. .................8分方法二:()12x f x e ax '=--,令ax e x h x 21)(--=,则a e x h x2)(-='.1)当21a ≤时,在[)+∞,0上,()0h x '≥,)(x h 递增,)0()(h x h ≥,即0)0()(='≥'f x f)(x f ∴在[)+∞,0为增函数,0)0()(=≥∴f x f ,21≤∴a 时满足条件; .................5分 2)当12>a 时,令0)(='x h ,解得a x 2ln =,在当[)0,ln 2a 上,,0)(<'x h )(x h 单调递减,()a x 2ln ,0∈∴时,有0)0()(=<h x h ,即0)0()(='<'f x f ,∴)(x f 在区间)2ln ,0(a 为减函数,∴0)0()(=<f x f ,不合题意. .................7分综上得实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-21,. .................8分(Ⅲ)由(Ⅱ)得,当21=a 时,0>x ,212x x e x ++>,即212x x e x+>-欲证不等式2)1ln()1(x x e x>+-,只需证22)1ln(+>+x xx ..................10分 设22)1ln()(+-+=x x x x F ,则222)2)(1()2(411)(++=+-+=x x x x x x F ’0>x 时,0)('>x F 恒成立,且0)0(=F ,0)(>∴x F 恒成立.所以原不等式得证. .................12分 22. (本小题满分10分)解:(Ⅰ)将C 的参数方程化为普通方程为1)2()1(22=+++y x , .................1分cos ,sin x y ρθρθ==,∴直线l 的极坐标方程为4πθ=(∈ρR ), .................3分圆C 的极坐标方程为22cos 4sin 40ρρθρθ+++=. .................5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ+++=,得04232=++ρρ解得1ρ=-,2ρ=,|MN |=1|ρ-2|ρ, .................8分因为圆C 的半径为1,则CMN ∆的面积o 11sin 452⨯=12. .................10分(用直角坐标求解酌情给分)23. (本小题满分10分)解:(Ⅰ)当3=a 时,x x x f 21|3|)(--=,即021|3|<--x x , .................1分 原不等式等价于x x x 2132<-<-, .................3分 解得62<<x ,不等式的解集为}62|{<<x x . .................5分 (Ⅱ)2||||)()(ax a x a x f x f +--=+-,原问题等价于2||||a x a x <--,.................6分 由三角绝对值不等式的性质,得|||)(|||||a x a x x a x =--≤-- .. (8)分 原问题等价于2||a a <,又0>a ,2a a <∴,解得1>a . .................10分。
2018年辽宁省沈阳市高三模拟试卷(理科数学)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A={x|2x>1},B={x|0<x<1},则∁AB=()A.(0,1)B.(0,1] C.(1,+∞)D.[1,+∞)2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知平面向量满足,且,则向量与的夹角()A.B.C.D.4.设Sn 是等差数列{an}的前n项和,且a11=S13=13,则a9=()A.9 B.8 C.7 D.65.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为()A.x2+y2﹣2x﹣3=0 B.x2+y2+4x=0 C.x2+y2+2x﹣3=0 D.x2+y2﹣4x=06.在如图的程序框图中,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出“恭喜中奖!”的概率为()A.B.C.D.7.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC的面积为()A.B.2 C.3 D.8.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm 的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近( )A .3cmB .4cmC .5cmD .6cm9.我们知道:在平面内,点(x 0,y 0)到直线Ax+By+C=0的距离公式为d=,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为( )A .3B .5C .D .10.已知,则a 9等于( )A .﹣10B .10C .﹣20D .2011.已知点A 是抛物线M :y 2=2px (p >0)与圆在第一象限的公共点,且点A 到抛物线M 焦点F 的距离等于a .若抛物线M 上一动点到其准线与到点C 的距离之和的最小值为2a ,则p 为( )A .B .2C .D .412.函数y=kx+2与函数的图象至少有两个公共点,关于k 不等式(k ﹣2)a ﹣k >0有解,则实数a 的取值范围是( )A .B .C .a <﹣1D .a ≥1二.填空题:本大题共4小题,每小题5分.13.设实数x ,y 满足,则2y ﹣x 的最大值为 .14.已知数列{a n }的前n 项和为S n ,且=,a 2=5,则S 6= .15.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是.16.已知四面体ABCD中,∠BAC=∠BAD=60°,∠CAD=90°,,AC=3,AD=4,则四面体ABCD的体积V= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知=(sinx,cosx),=(,﹣1).(Ⅰ)若∥,求sin2x﹣6cos2x的值;(Ⅱ)若f(x)=•,求函数f(2x)的单调减区间.18.如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.19.传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A、B、C、D、E五个等级进行数据统计如下:根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.20.已知椭圆上的动点P与其顶点,不重合.(Ⅰ)求证:直线PA与PB的斜率乘积为定值;(Ⅱ)设点M,N在椭圆C上,O为坐标原点,当OM∥PA,ON∥PB时,求△OMN的面积.21.已知函数f(x)=lnx﹣a(x﹣1),a∈R.(Ⅰ)求函数f(x)在(1,f(1))处的切线方程;(Ⅱ)当x≥1时,f(x)≤恒成立,求a的取值范围;(Ⅲ)当x≥1时,求证:不等式e x﹣1﹣a(x2﹣x)≥xf(x)+1.请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;[选修4-4:坐标系与参数方程](共1小题,满分10分)22.在直角坐标系xOy中,直线l1的方程为y=x,曲线C的参数方程为(φ是参数,0≤φ≤π).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)分别写出直线l1与曲线C的极坐标方程;(2)若直线=0,直线l1与曲线C的交点为A,直线l1与l2的交点为B,求|AB|.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|2x+1|+|2x﹣3|,(1)若关于x的不等式f(x)>|1﹣3a|恒成立,求实数a的取值范围;(2)若关于t的一元二次方程有实根,求实数m的取值范围.2018年辽宁省沈阳市高三数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合题目要求.B=()1.已知集合A={x|2x>1},B={x|0<x<1},则∁AA.(0,1)B.(0,1] C.(1,+∞)D.[1,+∞)【考点】补集及其运算.【分析】分别求出关于A、B的不等式,求出B的补集即可.【解答】解:A={x|2x>1}={x|x>0},B={x|0<x<1},B={x|x≥1},∁A故选:D.2.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【分析】先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母变成一个实数,分子进行复数的乘法运算,整理成复数的标准形式,写出对应点的坐标,看出所在的象限.【解答】解:∵复数==1+i,∴复数对应的点的坐标是(1,1)∴复数在复平面内对应的点位于第一象限,故选A.3.已知平面向量满足,且,则向量与的夹角()A.B.C.D.【考点】数量积表示两个向量的夹角.【分析】根据平面向量的数量积公式与夹角公式,求出cos θ与θ的值.【解答】解:设向量与的夹角为θ,θ∈[0,π]由•(+)=3可得•+=3,代入数据可得2×1×cos θ+22=3,解得cos θ=﹣,∴θ=.故选:C .4.设S n 是等差数列{a n }的前n 项和,且a 11=S 13=13,则a 9=( ) A .9B .8C .7D .6【考点】等差数列的前n 项和.【分析】利用等差数列的通项公式与求和公式即可得出.【解答】解:设等差数列{a n }的公差为d ,∵a 11=S 13=13,∴a 1+10d=13a 1+d=13,解得a 1=﹣17,d=3. 则a 9=﹣17+8×3=7. 故选:C .5.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x+4y+4=0与圆C 相切,则圆C 的方程为( )A .x 2+y 2﹣2x ﹣3=0B .x 2+y 2+4x=0C .x 2+y 2+2x ﹣3=0D .x 2+y 2﹣4x=0 【考点】直线与圆的位置关系.【分析】由圆心在x 轴的正半轴上设出圆心的坐标(a ,0)a 大于0,然后利用点到直线的距离公式表示出圆心到直线3x+4y+4=0的距离,由直线与圆相切得到距离与半径相等列出关于a 的方程,求出方程的解即可得到a 的值.得到圆心的坐标,然后根据圆心坐标和半径写出圆的方程即可.【解答】解:设圆心为(a ,0)(a >0),由题意知圆心到直线3x+4y+4=0的距离d===r=2,解得a=2,所以圆心坐标为(2,0)则圆C的方程为:(x﹣2)2+y2=4,化简得x2+y2﹣4x=0故选D6.在如图的程序框图中,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出“恭喜中奖!”的概率为()A.B.C.D.【考点】程序框图.【分析】根据程序框图转化为几何概型进行计算即可.【解答】解:程序框图对应的区域的面积为1,则“恭喜中奖!满足条件为y≤,平面区域的面积S=dx==,则能输出“恭喜中奖!”的概率为,故选:D.7.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC 三个内角A、B、C所对的边分别为a、b、c,面积为S,则“三斜求积”公式为.若a2sinC=4sinA,(a+c)2=12+b2,则用“三斜求积”公式求得△ABC 的面积为( )A .B .2C .3D .【考点】类比推理.【分析】根据正弦定理:由a 2sinC=4sinA 得ac=4,则由(a+c )2=12+b 2得a 2+c 2﹣b 2=4,利用公式可得结论.【解答】解:根据正弦定理:由a 2sinC=4sinA 得ac=4,则由(a+c )2=12+b 2得a 2+c 2﹣b 2=4,则.故选A .8.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm 的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近( )A .3cmB .4cmC .5cmD .6cm 【考点】由三视图求面积、体积.【分析】由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r .【解答】解:由题意,该几何体为三棱柱,所以最大球的半径为正视图直角三角形内切圆的半径r ,则10﹣r+10﹣r=10cm ,∴r=10﹣5≈3cm .故选:A .9.我们知道:在平面内,点(x 0,y 0)到直线Ax+By+C=0的距离公式为d=,通过类比的方法,可求得:在空间中,点(2,4,1)到直线x+2y+2z+3=0的距离为( )A .3B .5C .D .【考点】类比推理.【分析】类比点P (x 0,y 0)到直线Ax+By+C=0的距离d=,可知在空间中,d==5【解答】解:类比点P (x 0,y 0)到直线Ax+By+C=0的距离d=,可知在空间中,点P (x 0,y 0,z 0)到直线Ax+By+Cz+D=0的距离d=点(2,4,1)到直线x+2y+2z+3=0的距离d==5.故选B .10.已知,则a 9等于( )A .﹣10B .10C .﹣20D .20【考点】二项式定理的应用.【分析】(1+x )10=[2﹣(1﹣x )]10=210﹣+…﹣+(1﹣x )10,即可得出.【解答】解:(1+x )10=[2﹣(1﹣x )]10=210﹣+…﹣+(1﹣x )10,可得a 9=﹣2=﹣20.故选:C .11.已知点A 是抛物线M :y 2=2px (p >0)与圆在第一象限的公共点,且点A 到抛物线M 焦点F 的距离等于a .若抛物线M 上一动点到其准线与到点C 的距离之和的最小值为2a ,则p 为( )A .B .2C .D .4【考点】圆与圆锥曲线的综合;圆锥曲线的综合.【分析】求得圆的圆心和半径,运用抛物线的定义可得A,C,F三点共线时取得最小值,且有A为CF的中点,设出A,C,F的坐标,代入抛物线的方程可得p,由抛物线的定义可得P.【解答】解:圆C:x2+(y﹣4)2=a2的圆心C(0,2),半径为a,|AC|+|AF|=2a,由抛物线M上一动点M到其准线与到点C的距离之和的最小值为2a,由抛物线的定义可得动点到焦点与到点C的距离之和的最小值为2a,点M在A处取最小值,可得A,C,F三点共线时取得最小值,且有A为CF的中点由D(0,2),F(,0),可得A(,),代入抛物线的方程可得2=2p×,解得p=2.故选:B12.函数y=kx+2与函数的图象至少有两个公共点,关于k不等式(k﹣2)a﹣k>0有解,则实数a的取值范围是()A.B.C.a<﹣1 D.a≥1【考点】根的存在性及根的个数判断.【分析】根据函数的图象得出k的范围,分离参数得出a<,求出右侧函数的最大值即可得出a的范围.【解答】解:作出y=kx+2与y=的函数图象,如图所示:联立方程组,得kx2+2x﹣1=0(x>0)或﹣kx2﹣2x﹣1=0(x<0),当x>0,令△=4+4k=0得k=﹣1,当x<0时,令△=4﹣4k=0得k=1.∴k=±1时,直线y=kx+2与y=的函数图象相切,∵函数y=kx+2与函数的图象至少有两个公共点,∴﹣1≤k≤1.∵(k﹣2)a﹣k>0有解,∴a<有解,设f(k)==1+,∴f(k)在[﹣1,1]上是减函数,(k)=f(﹣1)=.∴fmax∴a.故选:B.二.填空题:本大题共4小题,每小题5分.13.设实数x,y满足,则2y﹣x的最大值为 5 .【考点】简单线性规划.【分析】画出可行域,将目标函数变形画出相应的直线,将直线平移至A时纵截距最大,z最大.【解答】解:画出,的可行域如图:将z=2y ﹣x 变形为y=x+z 作直线y=x 将其平移至A 时,直线的纵截距最大,z 最大,由可得A (﹣1,2),z 的最大值为:5. 故答案为:5.14.已知数列{a n }的前n 项和为S n ,且=,a 2=5,则S 6= 722 .【考点】数列递推式;数列的求和.【分析】=,可得a n+1+1=3(a n +1),利用等比数列的通项公式与求和公式即可得出.【解答】解:∵=,∴a n+1+1=3(a n +1),∴5+1=3(a 1+1),解得a 1=1.∴数列{a n +1}是等比数列,公比为3,首项为2. ∴a n +1=2×3n ﹣1,解得a n =2×3n ﹣1﹣1,则S 6=﹣6=722.故答案为:722.15.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是跑步.【考点】进行简单的合情推理.【分析】由(4)可知,乙参加了铅球比赛,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,即可得出结论.【解答】解:由(4)可知,乙参加了铅球比赛,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,所以丙最高,参加了跑步比赛.故答案为跑步.16.已知四面体ABCD中,∠BAC=∠BAD=60°,∠CAD=90°,,AC=3,AD=4,则四面体ABCD的体积V= .【考点】棱柱、棱锥、棱台的体积.【分析】作∠CAD的平分线AE,交CD于E,作BO⊥平面ACD,交AE于O,作BM⊥AD,交AD 于M,作BF⊥AC,交AC于F,连结OM,OF,由三垂线定理得OM⊥AD,OF⊥AC,由此能求出四面体ABCD的体积.【解答】解:作∠CAD的平分线AE,交CD于E,作BO⊥平面ACD,交AE于O,作BM⊥AD,交AD于M,作BF⊥AC,交AC于F,连结OM,OF,∵四面体ABCD中,∠BAC=∠BAD=60°,∠CAD=90°,,AC=3,AD=4,∴CD=5,由三垂线定理得OM⊥AD,OF⊥AC,∴AM=AF==,BM=BF==,OM=OF==,BO==,∴四面体ABCD的体积:V===.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知=(sinx,cosx),=(,﹣1).(Ⅰ)若∥,求sin2x﹣6cos2x的值;(Ⅱ)若f(x)=•,求函数f(2x)的单调减区间.【考点】平面向量数量积的运算;正弦函数的单调性.【分析】(Ⅰ)根据向量的平行和角的三角函数的关系即可求出答案,(Ⅱ)先求出f(x),再得到f(2x)的解析式,根据正弦函数的性质即可得到函数的单调减区间.【解答】解:(Ⅰ)∵=(sinx,cosx),=(,﹣1),∥,∴﹣sinx=cosx,∴tanx=﹣,∴sin2x﹣6cos2x====﹣,(Ⅱ)f(x)=•=sinx﹣cosx=2sin(x﹣),∴f(2x)=2sin(2x﹣),∴+2kπ≤2x﹣≤π+2kπ,k∈Z,∴+kπ≤x≤+kπ,k∈Z.∴函数f(2x)的单调减区间[+kπ, +kπ],k∈Z.18.如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.【解答】(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z 轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B 1BD 的法向量为=(x ,y ,z ),由,得,取z=1,得=(0,,1),∴cos <,>===, 又∵该二面角为钝角,∴二面角A 1﹣BD ﹣B 1的平面角的余弦值为﹣.19.传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A 、B 、C 、D 、E 五个等级进行数据统计如下:根据以上抽样调查数据,视频率为概率.(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)由于这80人中,有12名学生成绩等级为B,所以可以估计该校学生获得成绩等级为B的概率为,即可得出该校高二年级学生获得成绩为B的人数.(2)由于这80名学生成绩的平均分为:(9×100+12×80+31×60+22×40+6×20).(3)成绩为A、B的同学分别有9人,12人,所以按分层抽样抽取7人中成绩为A的有3人,成绩为B的有4人.由题意可得:P(X=k)=,k=0,1,2,3.【解答】解:(1)由于这80人中,有12名学生成绩等级为B,所以可以估计该校学生获得成绩等级为B的概率为.…则该校高二年级学生获得成绩为B的人数约有1000×=150.…(2)由于这80名学生成绩的平均分为:(9×100+12×80+31×60+22×40+6×20)=59.…且59<60,因此该校高二年级此阶段教学未达标…(3)成绩为A、B的同学分别有9人,12人,所以按分层抽样抽取7人中成绩为A的有3人,成绩为B的有4人…则由题意可得:P(X=k)=,k=0,1,2,3.∴P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.10分)所以EX=0+1×+2×+3×=.10分)20.已知椭圆上的动点P 与其顶点,不重合.(Ⅰ)求证:直线PA 与PB 的斜率乘积为定值;(Ⅱ)设点M ,N 在椭圆C 上,O 为坐标原点,当OM ∥PA ,ON ∥PB 时,求△OMN 的面积. 【考点】椭圆的简单性质.【分析】(Ⅰ)设点设P (x 0,y 0),从而可得直线PA 与PB 的斜率乘积为(Ⅱ)设方程为y=kx+m ,由两点M ,N 满足OM ∥PA ,ON ∥PB 及(Ⅰ)得直线OM ,ON 的斜率乘积为﹣,可得到m 、k 的关系,再用弦长公式及距离公式,求出△OMN 的底、高,表示:△OMN 的面积即可.【解答】(本小题满分13分)解:(Ⅰ)证明:设P (x 0,y 0),则.所以直线PA 与PB 的斜率乘积为.…(Ⅱ)依题直线OM ,ON 的斜率乘积为.①当直线MN 的斜率不存在时,直线OM ,ON 的斜率为,设直线OM 的方程是,由得,y=±1.取,则.所以△OMN 的面积为.②当直线MN 的斜率存在时,设直线MN 的方程是y=kx+m ,由得(3k 2+2)x 2+6kmx+3m 2﹣6=0.因为M ,N 在椭圆C 上,所以△=36k 2m 2﹣4(3k 2+2)(3m 2﹣6)>0,解得3k 2﹣m 2+2>0.设M(x 1,y 1),N(x 2,y 2),则,.=.设点O到直线MN的距离为d,则.所以△OMN的面积为…①.因为OM∥PA,ON∥PB,直线OM,ON的斜率乘积为,所以.所以=.由,得3k2+2=2m2…②由①②,得.综上所述,.…21.已知函数f(x)=lnx﹣a(x﹣1),a∈R.(Ⅰ)求函数f(x)在(1,f(1))处的切线方程;(Ⅱ)当x≥1时,f(x)≤恒成立,求a的取值范围;(Ⅲ)当x≥1时,求证:不等式e x﹣1﹣a(x2﹣x)≥xf(x)+1.【考点】函数恒成立问题.【分析】(Ⅰ)根据导数的几何意义即可求出答案(Ⅱ)f(x)﹣=f(x)﹣=,令g(x)=xlnx﹣a(x2﹣1),(x≥1),g′(x)=lnx+1﹣2ax,令F(x)=g′(x)=lnx+1﹣2ax,F′(x)=,由此进行分类讨论,能求出实数a的取值范围.(Ⅲ)原不等式等价于e x﹣1≥xlnx+1,设φ(x)=e x﹣1﹣xlnx﹣1,x≥1,利用导数求出函数的最小值大于等于0即可【解答】解:(Ⅰ)∵x>0,f′(x)=﹣a,∴f′(1)=1﹣a,f(1)=0,∴切点是(1,0),∴切线方程为y=(1﹣a)(x﹣1),(Ⅱ)f(x)﹣=,令g(x)=xlnx﹣a(x2﹣1),(x≥1),g′(x)=lnx+1﹣2ax,令F(x)=g′(x)=lnx+1﹣2ax,∴F′(x)=,①若a≤0,F′(x)>0,g′(x)在[1,+∞)上递增,g′(x)≥g′(1)=1﹣2a>0,∴g(x)在[1,+∞)上递增,g(x)≥g(1)=0,从而f(x)﹣不符合题意.②若0<a<,当x∈(1,),F′(x)>0,∴g′(x)在(1,)上递增,从而g′(x)>g′(1)=1﹣2a,∴g(x)在[1,+∞)上递增,g(x)≥g(1)=0,从而f(x)﹣不符合题意.③若a≥,F′(x)≤0在[1,+∞)上恒成立,∴g′(x)在[1,+∞)上递减,g′(x)≤g′(1)=1﹣2a≤0,从而g(x)在[1,+∞)上递减,∴g(x)≤g(1)=0,f(x)﹣≤0,综上所述,a的取值范围是[,+∞).(Ⅲ)不等式e x﹣1﹣a(x2﹣x)≥xf(x)+1等价于e x﹣1﹣a(x2﹣x)≥xlnx﹣a(x2﹣x)+1,等价于e x﹣1≥xlnx+1,设φ(x)=e x﹣1﹣xlnx﹣1,x≥1,∴φ′(x)=e x﹣1﹣(1+lnx),x≥1,再设m(x)=e x﹣1﹣(1+lnx),∴m′(x)=e x﹣1﹣≥0恒成立,∴m(x)在[1,+∞)上单调递增,∴m(x)min=m(1)=1﹣1=0,∴φ′(x)≥0,在[1,+∞)上恒成立,∴φ(x)在[1,+∞)上单调递增,∴φ(x)min=φ(1)=1﹣0﹣1=0,故e x﹣1≥xlnx+1,故当x≥1时,不等式e x﹣1﹣a(x2﹣x)≥xf(x)+1成立请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;[选修4-4:坐标系与参数方程](共1小题,满分10分)22.在直角坐标系xOy中,直线l1的方程为y=x,曲线C的参数方程为(φ是参数,0≤φ≤π).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)分别写出直线l1与曲线C的极坐标方程;(2)若直线=0,直线l1与曲线C的交点为A,直线l1与l2的交点为B,求|AB|.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)根据tanθ=可得直线l1极坐标.利用x=ρcosθ,y=ρsinθ带入可得曲线C 的极坐标方程.(2)由题意,设A(ρ1,θ1),联立方程组求解,同理,设利用直线的极坐标的几何意义求解即可.【解答】解:(1)直线l1的方程为y=x,可得:tanθ==,∴直线l1的极坐标方程为.曲线C的普通方程为(x﹣1)2+y2=3,又∵x=ρcos θ,y=ρsin θ,所以曲线C 的极坐标方程为ρ﹣2ρcos θ﹣2=0(0≤θ≤π)(2)由题意,设A (ρ1,θ1),则有,解得:设B (ρ2,θ2),则有,解得: 故得|AB|=|ρ1﹣ρ2|=5.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f (x )=|2x+1|+|2x ﹣3|,(1)若关于x 的不等式f (x )>|1﹣3a|恒成立,求实数a 的取值范围;(2)若关于t 的一元二次方程有实根,求实数m 的取值范围.【考点】函数恒成立问题;根的存在性及根的个数判断.【分析】(1)利用绝对值的几何意义求出|2x+1|+|2x ﹣3|的最小值,得到a 的不等式求解即可.(2)通过△≥0,得到|2m+1|+|2m ﹣3|≤8,去掉绝对值求解即可.【解答】解:(1)因为f (x )=|2x+1|+|2x ﹣3|≥|(2x+1)﹣(2x ﹣3)|=4,所以|1﹣3a|<4,即,所以实数a 的取值范围为.…(2)△=32﹣4(|2m+1|+|2m ﹣3|)≥0,即|2m+1|+|2m ﹣3|≤8,所以不等式等价于或或所以,或,或,所以实数m 的取值范围是. …。
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
2018年辽宁省沈阳市高三第八次模拟考试数学(理)试题答题时间:120分钟 满分150分第Ⅰ卷(共60分)一、选择题:(本大题共12个小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U R =,集合{}|1A x x =≥-,集合{}|lg(2)B x y x ==-,则U A C B = A.[1,2)- B.[1,2]- C.[2,)+∞ D.[1,)-+∞2.已知i 是虚数单位,复数23zi-对应于复平面内一点(0,1),则||z =4 C.5D.3.已知等比数列{}n a 中,公比12q =,35764a a a ⋅⋅=,则4a = A.1 B.2 C.4 D.84.设实数x ,y 满足约束条件1400x y x y x y -≥⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则目标函数3z x y =-的取值范围为A.[12,1]-B.[12,0]-C.[2,4]-D.[1,4]5.某几何体的三视图如图所示,则该几何体的体积为A.483π-B.883π-C.24π-D.24π+6.已知函数()sin()f x x ωϕ=+(0ω>,||2πϕ<)的零点构成一个公差为2π的等差数列,(0)f =则()f x 的一个单调递增区间是 A.5ππ(,)1212-B.ππ(,)63-C.π5π(,)1212-D.π7π(,)12127.平面直角坐标系中,已知O 为坐标原点,点A 、B 的坐标分别为(1,1)、(3,3)-. 若动点P 满足OP OA OBλμ=+,其中λ、R μ∈,且1λμ+=,则点P 的轨迹方程为 A.0x y -= B.0x y +=主视图左视图俯视图C.230x y +-=D.22(1)(2)5x y ++-=8.已知双曲线与椭圆221925x y +=的焦点相同,且它们的离心率的乘积等于85,则此双曲线的方程为A.221412x y -=B.221412y x -=C.221124x y -=D.221124y x -= 9.运行如图所示的程序框图,输出的i 和S 的值分别为 A.2,15 B.3,15 C.2,7 D.3,710.把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法数为A.35B.70C.165D.186011.已知函数ln ,0()2,0x x f x ax x >⎧=⎨+≤⎩(a R ∈),若函数()y f x a =-有三个零点,则实数a 的取值范围是A.2a ≥-B.>2aC.01a <<D.12a ≤<12.已知定义在(0,)+∞上的函数()f x 的导函数为()f x ',满足2()()ln x f x xf x x '+=,1()f e e=,则()f x A.有极大值,无极小值 B.有极小值,无极大值 C.既有极大值又有极小值 D.既无极大值也无极小值第Ⅱ卷(共90分)二、填空题:(本大题共4小题,每小题5分,共20分. 把答案填在答题纸上.)13.已知二项式1)nx的展开式中含有2x 的项是第3项,则n = . 14.若正态变量ξ服从正态分布2(,)N μσ,则ξ在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内取值的概率分别是0.6826,0.9544,0.9973. 已知某大型企业为10 000名员工定制工作服,设员工的身高(单位:cm )服从正态分布2(172,5)N ,则适宜身高在177182cm 范围内员工穿的服装大约要定制 套.(用数字作答)15.已知等差数列{}n a 的前n 项和为n S ,若11a =,33S =-,则2nnS 的最小值为 .16.已知四面体ABCD 的顶点都在同一个球的球面上,BC =,4BD =,且满足BC BD ⊥,AC BC ⊥,AD BD ⊥. ,则该球的球面面积为 . 三、解答题:(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.(本小题满分12分)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c . (sin )b C C =. (Ⅰ)求角B 的大小;(Ⅱ)若2b =,求a c +的取值范围.18.(本小题满分12分)如图,三棱柱111ABC A BC -中,1AB AC CC ==,平面1BAC ⊥平面11ACC A ,1160ACC BAC ∠=∠=,11AC AC O =.(Ⅰ)求证:BO ⊥平面11AAC C ; (Ⅱ)求二面角11A BC B --的余弦值.司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.(Ⅰ)完成下面的22⨯列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望()E X.参考公式与数据:22()()()()()n ad bca b c d a c b dχ-=++++,其中n a b c d=+++.如图,椭圆1C :22221x y a b +=(0a b >>)的离心率为2,1C 的长半轴长等于抛物线2C :2y x b =-被x 轴所截得的线段长.(Ⅰ)求1C 的方程;(Ⅱ)设2C 与y 轴的交点为M ,过坐标原点O 的直线l 与2C 相交于点A 、B ,直线MA ,MB 分别与1C 相交于D ,E .(ⅰ)证明:MD ME ⊥;(ⅱ)记MAB △,MDE △的面积分别是1S ,2S .问:是否存在直线l ,使得121732S S =?若存在,求出直线l 的方程;若不存在,请说明理由.21.(本小题满分12分) 已知函数21()ln 2f x x x x x =+-的导函数为()f x '. (Ⅰ)判断()f x 的单调性; (Ⅱ)若关于x 的方程()f x m '=有两个实数根1x ,2x (12x x <),求证:2122x x <.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分. 在答题卡选答区域指定位...........置答题,并用......2B ..铅笔在答题卡上把所选题目的题号涂黑。
5.立体几何1.【2018年XX卷】已知四棱锥S−ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点),设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S−AB−C的平面角为θ3,则A. θ1≤θ2≤θ3B. θ3≤θ2≤θ1C. θ1≤θ3≤θ2D. θ2≤θ3≤θ1【答案】D从而因为,所以即,选D.点睛:线线角找平行,线面角找垂直,面面角找垂面.2.【2018年XX卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A. 2B. 4C. 6D. 8【答案】C【解析】分析:先还原几何体为一直四棱柱,再根据柱体体积公式求结果.详解:根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为选C.点睛:先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.3.【2018年理新课标I卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.学/科-网+4.【2018年理新课标I卷】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以与其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.5.【2018年全国卷Ⅲ理】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A. B. C. D.【答案】B详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大,此时,,,,点M为三角形ABC的重心,,中,有,,,故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.12i12i+=- A .43i 55-- B .43i 55-+C .34i 55--D .34i 55-+【解析】54341441)21)(21()21)(21(2121ii i i i i i i +-=+-+=+-++=-+ 【D 】 2.已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【解析】如右图所示,符合条件的整点个数为9个 【A 】3.函数()2e e x xf x x --=的图像大致为【解析】设x x e e x g --=)(,2)(x x q =,则)(x g 为奇函数,)(x q 为偶函数且不过x =0点。
所以,由复合函数的奇偶性知函数)(x f 为奇函数,排除A 。
2)1(1>-=-ee f 所以 【B 】4. 己知向量a , b 满足|a | = l ,a•b =-l,则a •(2a -b )= A. 4 B. 3 C. 2 D. 0【解析】a •(2a -b )=2a 2-a•b =2|a|2-(-1)=2+1=3 【B 】5. 双曲线12222=-by a x (a >0,b >0)的离心率为3则其渐近线方程为A. x y 2±=B. x y 3±=C. x y 22±= D.x y 23±= 【解析】3==ace ,223b a a c +==,2223b a a += 所以a b 2= 所以渐近线方程为x aby 2±=±= 【A 】6. 在△ABC 中,552cos=C ,BC = l, AC = 5,则AB = A. 24 B.30 C.29 D. 52【解析】53155212cos 2cos 22-=-⎪⎪⎭⎫ ⎝⎛=-=C C C BC AC BC AC AB cos 222⋅-+==)53(1521522-⨯⨯⨯-+=24【A 】7. 为计算10019914131211-++-+-= S ,设计了右侧的程序框图,则在空白框中应填入 A. 1+=i i B. 2+=i i C. 3+=i i D. 4+=i i 【解析】奇数项为正,偶数项为负,规律是差2个。
荆州中学2018年普通高等学校招生全国统一考试理科数学(模拟一)选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合,则A、 B、C、 D、【答案】D【解析】【分析】分别求出集合,,再利用交集定义就可求出结果【详解】则故选【点睛】本题主要考查了集合的交集及其运算,属于基础题、2、欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里特别重要,被誉为“数学中的天桥"、依照欧拉公式可知,表示的复数位于复平面中的A、第一象限 B。
第二象限 C、第三象限 D、第四象限【答案】B【解析】【分析】由欧拉公式(为虚数单位)可得:,再利用诱导公式化简,即可得到答案【详解】由欧拉公式(为虚数单位)可得:表示的复数对应的点为,此点位于第二象限故选【点睛】本题主要考查的是欧拉公式的应用,诱导公式,复数与平面内的点的一一对应关系,考查了学生的运算能力,转化能力。
3、要得到函数的图象,只需将函数的图象A。
向左平移个周期B、向右平移个周期C、向左平移个周期D、向右平移个周期【答案】D【解析】【分析】利用函数的图象变换规律,三角函数的周期性,得出结果【详解】将函数的图象向右平移个单位,可得的图象,即向右平移个周期故选【点睛】本题考查了三角函数图像的平移,运用诱导公式进行化简成同名函数,然后运用图形平移求出结果,本题较为基础。
4。
某地区空气质量监测表明,一天的空气质量为优良的概率是,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天空气质量为优良的概率是A。
B。
C、 D、【答案】A【解析】试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,因此,故选A、考点:条件概率。
视频5、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是A、 2 B。
2018年辽宁省沈阳市高三第三次模拟考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集R U =,集合}2|{≥=x x A ,}60|{<≤=x x B ,则集合=B A C U )(( )A .}20|{<<x xB .}20|{≤<x xC .}20|{<≤x xD .}20|{≤≤x x 2.在复平面内复数iiz -+=143(i 是虚数单位)对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.向量)1,(m a =,)1,(n b =,则1=nm是b a //的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.如下的程序框图,其作用是输入x 的值,输出相应的y 值,若y x =,则这样的x 值有( )A .1个B .2个 C. 3个 D .4个 5.已知一个三棱锥的三视图如右图所示,则该三棱锥的体积为( )A .9B .21C .25D .346.已知1F ,2F 分别是双曲线C :)0,0(12222>>=-b a by a x 的两个焦点,若在双曲线上存在点P 满足||||22121F F PF ≤+,则双曲线的离心率的取值范围是( )A .]2,1(B .]2,1( C. ),2[+∞ D .),2[+∞ 7.已知函数)2||,0)(sin()(πϕϕω<>+=A x A x f 的图象在y 轴左侧的第一个最高点为)3,6(π-,第一最低点为),32(m π-,则函数)(x f 的解析式为( ) A .)26sin(3)(x x f -=πB .)62sin(3)(π-=x x f C. )23sin(3)(x x f -=πD .)32sin(3)(π-=x x f8.若2sin cos 1=+αα,则=-ααsin 3cos ( )A .3-B .3 C. 59- D .599.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,辑录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201622017⨯ B .201522018⨯ C. 201522017⨯ D .201622018⨯10.直线01=++by ax 与圆122=+y x 相切,则ab b a ++的最大值为( ) A .1 B .1- C.212+D .12+ 11.若三棱锥ABC S -的底面是以AB 为斜边的等腰直角三角形,2====SC SB SA AB ,则该三棱锥的外接球的表面积为( ) A .316π B .38π C. 334πD .34π12.函数)(x f 的定义域是)2,0(π,)(x f 是它的导函数,且0)('tan )(>⋅+x f x x f 在定义域内恒成立,则( )A .)4(2)6(ππf f >B .)4()1(1sin 2πf f >C.)3(3)6(ππf f >D .)3(3)4(2ππf f > 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在区间)2,0(中随机地取出两个数,则两数之和小于1的概率是 .14.已知y x ,满足⎪⎩⎪⎨⎧≤≥-+≥++20301x y x y x ,若22y x +的最大值为m ,最小值为n ,则ny mx +的最小值为 .15.在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知5=c ,32π=B ,ABC ∆的面积为4315, 则=A 2cos .16.设)(x f 是定义在R 上的偶函数,17)2()2()(3-++=x f x x F ;23317)(++-=x x x G ,若)(x F 的图象与)(x G 的图象的交点分别为),(11y x ,),(22y x ,……,),(m m y x ,则=+∑=mi i iy x1)( .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列}{n a ,111-=a ,公差0≠d ,且652,,a a a 成等比数列. (1)求数列}{n a 的通项公式;(2)若||n n a b =,求数列}{n b 的前n 项和n T .18.有甲、乙两个班进行数学考试,按照大于等于120分为优秀,120分以下为非优秀统计成绩后,得到如下22⨯列联表:(单位:人).已知在全部105人中随机抽取1人成绩是优秀的概率为72. (1)请完成上面的22⨯列联表,并根据表中数据判断,是否有%95的把握认为“成绩与班级有关系”? (2)若甲班优秀学生中有男生6名,女生4名,现从中随机选派3名学生参加全市数学竞赛,记参加竞赛的男生人数为X ,求X 的分布列与期望.附:))()()(()(22d b c a d c b a bc ad n K ++++-=19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面⊥ABD 平面CBD ,若⊥AM 平面ABD ,且2=AM .(1)求证:⊥DM 平面ABC ; (2)求二面角D BM C --的大小.20.已知椭圆C :)0(12222>>=+b a by a x 的焦点为21,F F ,离心率为21,点P 为其上动点,且三角形21F PF 的面积最大值为3,O 为坐标原点. (1)求椭圆的C 的方程;(2)若点N M ,为C 上的两个动点,求常数m ,使m =⋅时,点O 到直线MN 的距离为定值,求这个定值.21. 已知函数1)4(ln 2)(2++-+=x a x x a x f (a 为常数) (1)若0>a ,讨论)(x f 的单调性;(2)若对任意的)2,1(∈a ,都存在]4,3(0∈x 使得不等式ea a a m a x f 4ln 2)(1ln )(20+->++成立,求实数m 的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴非负半轴为极轴建立极坐标系,已知曲线C :)0(cos 2sin 2>=a a θθρ,l :⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 22222(t 为参数). (1)求曲线C 的普通方程,l 的直角坐标方程;(2)设l 与C 交于N M ,两点,点)0,2(-P ,若|||,||,|PN MN PM 成等比数列,求实数a 的值.23.选修4-5:不等式选讲 已知函数|||1|)(a x x x f -+-=.(1)若函数)(x f 的值域为),2[+∞,求实数a 的值; (2)若)2()2(f a f ≥-,求实数a 的取值范围.2018年辽宁省沈阳市高三第三次模拟考试数学(理)试题答案一、选择题1-5:CBACB 6-10: DACBC 11、12:AB二、填空题13.81; 14.22; 15.9871 16.m 19-.[来源] 三、解答题17.解:(1)∵652,,a a a 成等比数列,∴6225a a a =,即)5)(()4(1121d a d a d a ++=+, ∴011221=+d d a ,又0≠d ,111-=a ,∴2=d ,∴1322)1(11-=⨯-+-=n n a n .(2)设数列}{n a 的前n 项和为n S ,则n n a a n S n n 122)(21-=+=, ∵132-=n a n ,∴6≤n 时,0<n a ;7≥n 时,0>n a ,∴当6≤n 时,2212112||||||n n S a a a a a a T n n n n -=-=----=+++=当7≥n 时,n n n a a a a a a a a a a T +++----=++++++= 76217621||||||||||721222666+-=-=-+-=n n S S S S S n n ,综上:⎪⎩⎪⎨⎧≥+-≤-=)7(7212)6(1222n n n n n n T n .18. (1)解:由已知,两个班的优秀学生人数为3072105=⨯,完成22⨯列联表如下:(单位:人)∴841.3109.65533675305055)45203010(10522>≈=⨯⨯⨯⨯-⨯⨯=K , ∴有%95的把握认为“成绩与班级有关系”. (2)X 的所有可能取值为0,1,2,33011204)0(31034====C C X P ,10312036)1(3102416====C C C X P ,2112060)2(3101426====C C C X P ,6112020)3(31036====C C X P所以X 的分布列为∴59613212101300)(=⨯+⨯+⨯+⨯=X E . 19.(1)设BD 的中点为N ,连接CN AN ,,则BD CN BD AN ⊥⊥,,∵平面⊥ABD 平面CBD ,平面 ABD 平面BD CBD =,⊂CN 平面CBD ,BD CN ⊥,∴⊥CN 平面ABD ,以A 为原点,AM AD AB ,,所在直线分别为z y x ,,轴建立空间直角坐标系如图,则)0,0,0(A ,)0,0,2(B ,)2,1,1(C ,)0,2,0(D ,)2,0,0(M ,)0,0,2(=,)2,1,1(=,)2,2,0(-=,∵0=⋅,022=+-=⋅,∴AB DM ⊥,AC DM ⊥又A AC AB = ,∴⊥DM 平面ABC .(2)以A 为原点,AM AD AB ,,所在直线分别为z y x ,,轴建立空间直角坐标系如图,则)0,0,2(B ,)2,1,1(C ,)0,2,0(D ,)2,0,0(M ,∴)2,0,2(-=,)2,1,1(-=,)0,2,2(-=,设平面CBM 的法向量为),,(1111z y x n =,则⎪⎩⎪⎨⎧=++-=+-0202211111z y x z x ,令11=x ,得21=z ,11-=y ,所以)2,1,1(1-=n ,设平面DBM 的法向量为),,(2222z y x n =,则⎩⎨⎧=+-=+-0220222222y x z x ,令12=x ,得22=z ,11=y ,所以)2,1,1(2=n ,∴2122211||||,cos 212121=⨯+-=>=<n n n n ,设二面角D BM C --的大小为θ,由图可知θ为锐角,所以21cos =θ,3πθ=,即二面角D BM C --的大小为3π. 20.解:(1)依题意知:⎪⎪⎩⎪⎪⎨⎧==+=213222a c bc ba c 解得⎩⎨⎧==32b a ,所以椭圆的方程为13422=+y x . (2)设),(),,(2211y x N y x M ,则m y y x x =+2121(*)当直线MN 的斜率存在时设其方程为n kx y +=,则点O 到直线MN 的距离11||222+=+=k n k n d , ⎩⎨⎧+==+nkx y y x 124322消y ,得01248)34(222=-+++n knx x k ,0>∆得03422>+-n k ,则 348221+-=+k kn x x ,341242221+-=k n x x ,代入(*)式:m n x x kn x x k n kx n kx x x =++++=+++2212122121)()1())((,整理得1)34(12172222+++=+k k m k n 为常数,则7212712,0===d m ,此时121722=+k n 满足0>∆ 当x MN ⊥轴时,由0=m 得1±=OMk ,⎩⎨⎧±==+xy y x 124322消y :7122=x ,7212||==x d 亦成立, 综上:0=m ,7212=d . 21.解:(1)x a x x a x x a x f )2)(2()4(22)('--=+-+=令0)('=x f 得2,221ax x ==①当4>a 时,22>a ,当22a x <<时,0)('<x f ;当20<<x 或2ax >时,0)('>x f ,此时)(x f 的单调递增区间为)2,0(,),2(+∞a ,单调递减区间为)2,2(a;②当4=a 时,22=a ,0)2(2)('2≥-=xx x f ,)(x f 在),0(+∞上单调递增; ③当40<<a 时,22<a ,当22<<x a 时,0)('<x f ;当20ax <<或2>x 时,0)('>x f ,此时)(x f 的单调递增区间为)2,0(a ,),2(+∞,单调递减区间为)2,2(a综上所述,当4>a 时,)(x f 的单调递增区间为)2,0(,),2(+∞a ,单调递减区间为)2,2(a ;当4=a 时,)(x f 的单调递增区间为),0(+∞;当40<<a 时,)(x f 的单调递增区间为)2,0(a,),2(+∞,单调递减区间为)2,2(a. (2)由(1)可知,当)2,1(∈a 时,)(x f 在]4,3(上单调递增,∴]4,3(∈x 时,142ln 4)4()(max +-==a a f x f ,依题意,只需e a a a m a x f 4ln 2)(1ln )(2max +->++即对任意的)2,1(∈a ,不等式02)2(ln 2>++-+a m ma a 恒成立, 设2)2(ln )(2++-+=a m ma a a h ,则0)1(=h ,a ma a m ma a a h )1)(12()2(21)('--=+-+=∵)2,1(∈a ,∴012>-aa ①当1≥m 时,对任意的)2,1(∈a ,01>-ma ,∴0)('>a h∴)(a h 在)2,1(上单调递增,0)1()(=>h a h 恒成立;②当1<m 时,存在)2,1(0∈a 使得当),1(0a a ∈时,01<-ma ,∴0)('<a h ,∴)(a h 单调递减, ∴0)1()(=<h a h ,∴)2,1(∈a 时,0)(>a h 不能恒成立 综上所述,实数m 的取值范围是),1[+∞. 22.解:(1) (1)由)0(cos 2sin2>=a a θθρ两边同乘以ρ得C :ax y 22=, :l 02=+-y x(2)将⎪⎪⎩⎪⎪⎨⎧=+-=t y t x 22222代入ax y 22=得:08222=+-a at t ,0>∆得4>a ,a t t 2221=+,a t t 821=,∵|||,||,|PN MN PM 成等比数列,∴||||21221t t t t =-,∴a a a 884)22(2=⨯-,5=a .23.解(1)∵|1||)()1(||||1|-=---≥-+-a a x x a x x ,∴2|1|=-a ,解得3=a 或1-=a .(2)由)2()2(f a f ≥-,得1|2||1|3≥---a a ,则⎩⎨⎧≥---≤1)2()1(31a a a 或⎩⎨⎧≥---≤≤1)2()1(321a a a解得0≤a 或223≤≤a 或2≥a , 综上,a 的取值范围是),23[]0,(+∞-∞ .。
2018年普通高等学校招生全国统一考试全国卷1 理科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、本试卷分为第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第Ⅰ卷1至3页,第II卷3至5页.2、答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3、全部答案在答题卡上完成,答在本试题上无效.4、考试结束后,将本试题和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设121iz i i-=++,则z = A. 0 B. 12C. 1D.解析:2(1)22i z i i -=+=,所以|z |1=,故答案为C.2. 已知集合{}220A x x x =-->,则R C A = A. {}12x x -<<B. {}12x x -≤≤ C.}{}{2|1|>⋃-<x x x xD.}{}{2|1|≥⋃-≤x x x x解析:由220x x -->得(1)(2)0x x +->,所以2x >或1x <-,所以R C A ={}12x x -≤≤,故答案为B.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:由已知条件经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,37%274%⨯=,所以尽管种植收入所占的比例小了,但比以往的收入却是增加了.故答案为A.4. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A. 12- B. 10- C. 10 D. 12解析:由323s s s =+得3221433(32=2242222d d d ⨯⨯⨯⨯+⨯++⨯+)即3(63)127d d +=+,所以3d =-,52410a d =+=- 52410a d =+=-,故答案为B.5. 设函数()()321f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点()0,0处的切线方程为A. 2y x =-B. y x =-C. 2y x =D. y x =解析:由()f x 为奇函数得1a =,2()31,f x x '=+所以切线的方程为y x =.故答案为D. 6. 在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=A.AC AB 4143- B. AC AB 4341- C.AC AB 4143+ D.AC AB 4341+ 解析:11131()22244EB AB AE AB AD AB AB AC AB AC=-=-=-⋅+=-故答案为A.7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A. 172B.52C. 3D. 2解析:如图画出圆柱的侧面展开图,在展开图中线段MN 的长度52即为最短长度,故答案为B.8.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅A. 5B.6C. 7D. 8解析:联立直线与抛物线的方程得M(1,2),N(4,4),所以=⋅FN FM 8,故答案为D.9.已知函数(),0,ln ,0,x e x f x x x ⎧≤=⎨>⎩,()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是 A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞解析:∵()()g x f x x a =++存在2个零点,即()y f x =与y x a =--有两个交点,)(x f 的图象如图,要使得y x a =--与)(x f 有两个交点,则有1a -≤即1a ≥-,故答案为 C.10.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AC AB ,.ABC ∆的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为321,,p p p ,则 A. 21p p = B.31p p = C. 32p p = D. 321p p p +=解析:取2AB AC ==,则BC =∴区域Ⅰ的面积为112222S =⨯⨯=,区域Ⅲ的面积为231222S ππ=⋅-=-, 区域Ⅱ的面积为22312S S π=⋅-=,故12p p =.故答案为A.11.已知双曲线13:22=-y x C ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为N M ,.若OMN ∆为直角三角形,则=MN A.23B. 3C. 32D. 4解析:渐近线方程为:2203x y -=,即y x =,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴NM k =,直线MN方程为2)y x =-.联立32)y x y x ⎧=-⎪⎨⎪=-⎩∴3(,)22N -,即ON =,∴3M O N π∠=,∴3MN =,故答案为B.12. 已知正方体的棱长为1,每条棱所在的直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.433 B.332 C.423 D. 23解析:由于截面与每条棱所成的角都相等,所以平面α中存在平面与平面11AB D 平行(如图),而在与平面11AB D 平行的所有平面中,面积最大的为由各棱的中点构成的截面EFGHMN ,而平面EFGHMN的面积162S =⨯.故答案为A.第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_______________.解析:画出可行域如图所示,可知目标函数过点(2,0)时取得最大值,max 32206z =⨯+⨯=.故答案为6.14.记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =_______________.解析:由已知得1121,21,n n n n S a S a ++=+⎧⎨=+⎩作差得12n n a a +=,所以{}n a 为公比为2的等比数列,又因为11121a S a ==+,所以11a =-,所以12n n a -=-,所以661(12)6312S -⋅-==--,故答案为-63.15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有__________种。
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-=A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与轴,轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.3 9.ABC △的内角A B C ,,的对边分别为,,,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543 11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为的直线与C 交于A ,B 两点.若 90AMB =︒∠,则k =________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异? 附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.050 0.0100.0013.8416.635 10.82819.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AM D ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为的直线与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差. 21.(12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求.(二)选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(为参数),过点()02-,且倾斜角为α的直线与O ⊙交于A B ,两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. 23.选修4—5:不等式选讲](10分)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b +≤,求a b +的最小值.参考答案:1 2 3 4 5 6 7 8 9 10 11 12 CDABCADBCBCB13.1214.3- 15. 16.2 17.(12分)解:(1)设{}n a 的公比为,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m=,解得6m =. 综上,6m =.18.(12分)解:(1)第二种生产方式的效率更高. 理由如下:(i )由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii )由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv )由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.19.(12分) 解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以 DM ⊥CM . 又 BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz .当三棱锥M −ABC 体积最大时,M 为CD 的中点.由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)D A B C M ,(2,1,1),(0,2,0),(2,0,0)AM AB DA =-== 设(,,)x y z =n 是平面MAB 的法向量,则 0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n , 25sin ,5DA =n , 所以面MAB 与面MCD 所成二面角的正弦值是255. 20.(12分)解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x y m ++==,于是 34k m=-.①由题设得302m <<,故12k <-.(2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =.于是222211111||(1)(1)3(1)242x x FA x x y =-+=-+-=-.同理2||22x FB =-. 所以121||||4()32FA FB x x +=-+=. 故2||||||FP FA FB =+,即||,||,||FA FP FB 成等差数列.设该数列的公差为d ,则1122212112||||||||||()422FB FA x x x x x x d =-=-=+-.② 将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得321||28d =.所以该数列的公差为32128或32128-. 21.(12分)解:(1)当0a =时,()(2)ln(1)2f x x x x =++-,()ln(1)1xf x x x'=+-+. 设函数()()ln(1)1x g x f x x x '==+-+,则2()(1)xg x x '=+. 当10x -<<时,()0g x '<;当0x >时,()0g x '>.故当1x >-时,()(0)0g x g ≥=,且仅当0x =时,()0g x =,从而()0f x '≥,且仅当0x =时,()0f x '=. 所以()f x 在(1,)-+∞单调递增.学#又(0)0f =,故当10x -<<时,()0f x <;当0x >时,()0f x >. (2)(i )若0a ≥,由(1)知,当0x >时,()(2)ln(1)20(0)f x x x x f ≥++->=,这与0x =是()f x 的极大值点矛盾.(ii )若0a <,设函数22()2()ln(1)22f x xh x x x ax x ax==+-++++. 由于当1||min{1,}||x a <时,220x ax ++>,故()h x 与()f x 符号相同. 又(0)(0)0h f ==,故0x =是()f x 的极大值点当且仅当0x =是()h x 的极大值点. 2222222212(2)2(12)(461)()1(2)(1)(2)x ax x ax x a x ax a h x x x ax x ax x ++-++++'=-=++++++. 如果610a +>,则当6104a x a +<<-,且1||min{1,}||x a <时,()0h x '>,故0x =不是()h x 的极大值点.如果610a +<,则224610a x ax a +++=存在根10x <,故当1(,0)x x ∈,且1||min{1,}||x a <时,()0h x '<,所以0x =不是()h x 的极大值点.如果610a +=,则322(24)()(1)(612)x x h x x x x -'=+--.则当(1,0)x ∈-时,()0h x '>;当(0,1)x ∈时,()0h x '<.所以0x =是()h x 的极大值点,从而0x =是()f x 的极大值点综上,16a =-.22.选修4—4:坐标系与参数方程](10分)【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,与O 交于两点. 当2απ≠时,记tan k α=,则的方程为2y kx =-.与O 交于两点当且仅当22||11k<+,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,)44π3π.(2)的参数方程为cos ,(2sin x t t y t αα=⎧⎪⎨=-+⎪⎩为参数,44απ3π<<.设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A B P t tt +=,且A t ,B t 满足222sin 10t t α-+=.于是22sin A B t t α+=,2sin P t α=.又点P 的坐标(,)x y 满足cos ,2sin .P P x t y t αα=⎧⎪⎨=-+⎪⎩ 所以点P 的轨迹的参数方程是2sin 2,222cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α为参数,44απ3π<<.23.选修4—5:不等式选讲](10分)【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[0,)+∞成立,因此a b +的最小值为.。
2018届高三第一次模拟考试(理科)试题使用时间:9月9日 命题人:高三数学备课组一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}2,1,0,1{-=A ,}032{2<-+=x x x B ,则=B AA .}1{-B .}0,1{-C .}1,0,1{-D .}0,1,2{--2.已知R y x ∈,,i 为虚数单位,若i y xi 3)2(1--=+,则=+yi x A .2 B .5 C .3 D .103.在等差数列{}n a 中,n S 为其前n 项和,若34825a a a ++=,则9S = A .60 B .75 C.90 D .1054.在区间[]0,π上随机地取两个数x 、y ,则事件“sin y x ≤”发生的概率为 A.1π B.2π C.21π D.22π5.某几何体的三视图如图所示,则其表面积为 A.83 B.43C.248+D.246+ 6.下列判断错误..的是 A .“22bm am<”是“b a <”的充分不必要条件B .命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ”C .若q p ,均为假命题,则q p Λ为假命题D .命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 或1-≠x ,则12≠x7.设点),(y x P 在不等式组⎪⎩⎪⎨⎧≤-+≤-≥03,02,0y x y x x 表示的平面区域上,则22)1(y x z +-=的最小值为A .1B .55 C. 2 D .552 8.若将函数x x f 2cos 21)(=的图像向左平移6π个单位长度,则平移后图像的一个对称中心可以为22俯视图侧视图线于点A B 、,交其准线于点C ,若||3||BF BC =,且4||=AF , 则p 为 A .34B .2C . 38D .316 12.已知函数()21sin 21x x f x x x -=+++,若正实数b a ,满足()()490f a f b +-=,则11a b+的最小值为A.1B.29C.9D.18 二.填空题:本大题共4小题,每小题5分. 13.在8)21(xx -的展开式中,2x 项的系数为 . 14.抛掷两个骰子,至少有一个4点或5点出现时,就说这次试验成功,则在8次试验中,成功次数ξ的期望是 .15.已知椭圆)0(1:2222>>=+b a by a x C ,B A ,是C 的长轴的两个端点,点M 是C 上的一点,满足︒︒=∠=∠45,30MBA MAB ,设椭圆C 的离心率为e ,则=2e ______.16.已知ABC ∆是边长为2的等边三角形,P 是平面ABC 内一点,则)2(+⋅的最小值为 .三.解答题:共70分。
解答应写出文字说明、解答过程或演算步骤。
第21~17题为必做题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
17.(本小题满分12分) 已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2x g x k =-.(Ⅰ)求m 的值;(Ⅱ)当[1,2]x ∈时,记()f x ,()g x 的值域分别为集合,A B ,设命题A x p ∈:,命题B x q ∈:,若命题p 是q 成立的必要条件,求实数k 的取值范围.18.(本小题共12分)已知在△ABC 中,32π=∠C . (Ⅰ)若225c a ab =+,求sin sin BA; (Ⅱ)求sin sin A B ⋅的最大值.19.(本小题满分12分)私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:图;(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不.赞成..“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.20.(本小题共12分)如图,边长为3的正方形ABCD 所在平面与等腰直角三角形ABE 所在平面互相垂直,AB AE ⊥,且2=,AN AB 3=.(Ⅰ)求证://MN 平面BEC ; (Ⅱ)求二面角C ME N --的大小.21.(本小题满分12分) 已知函数()2ln pf x px x x=--. (Ⅰ) 若函数)(x f 在其定义域内为增函数,求正实数p 的取值范围; (Ⅱ) 设函数2()eg x x=,若在[1,]e 上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围.选做题(请考生在第22、23题中任选一题作答,如果多选,则按所做的第一题计分) 22.(本小题满分10分)选修4—5;极坐标与参数方程23.已知直线l 的参数方程为⎩⎨⎧-=+-=ty tx 4231(t 为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为)4cos(22πθρ-=.(Ⅰ)求直线l 的普通方程及曲线C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于B A ,两点,求AB . 23.(本小题满分10分)选修4—5;不等式选讲 已知函数|1||12|)(-+-=x a x x f(Ⅰ)当1=a 时,解关于x 的不等式4)(≥x f ;(Ⅱ)若|2|)(-≥x x f 的解集包含]2,21[,求实数a 的取值范围.高三第一次模拟考试(数学理科)答案一、选择题1. B2.D3. B4. D5. C6. D7. D8. A9.A 10.C 11.C 12.A 二、填空题 13.7- 14.940 15. 331- 16. 37- 三、解答题17解:(Ⅰ)依题意得:2(1)1,0m m -=⇒=或2m =当2m =时,2()f x x -=在(0,)+∞上单调递减,与题设矛盾,舍去∴0m =. ……………5分(Ⅱ)当[1,2]x ∈时,()f x ,()g x 单调递增,∴[1,4],[2,4]A B k k ==--, 由命题p 是q 成立的必要条件,得B A ⊆,∴210144k k k -≥⎧⇒≤≤⎨-≤⎩. ……………12分18。
解:(Ⅰ)由余弦定理及题设22225c a b ab a ab =++=+,得2b a =.由正弦定理sin sin a b A B =,sin sin b B a A =, 得sin 2sin BA=. (Ⅱ)由(Ⅰ)知3A B π∠+∠=. sin sin sin sin()3A B A A π⋅=⋅-1sin sin )2A A A =⋅-112cos 244A A =+- 11sin(2)264A π=+- 因为03A π<∠<,所以当6A π∠=,sin sin A B ⋅取得最大值1419.解:(Ⅰ)各组的频率分别为1.0,1.0,2.0,3.0,2.0,1.0所以图中各组的纵坐标分别是01.0,01.0,02.0,03.0,02.0,01.0(Ⅱ)由表知年龄在[15,25)内的有5人,不赞成的有1人,年龄在[25,35) 内的有10人,不赞成的有4人,恰有2人不赞成的概率为:()111224644422225105104246666222=,1045104522575C C C C C p C C C C ξ⋅==⋅+⋅=⋅+⋅=……………7分 (Ⅲ)ξ的所有可能取值为:0,1,2,3……………6分()22642251061545150=,104522575C C p C C ξ==⋅=⋅=()21112646442222510510415624102341=,1045104522575C C C C C p C C C C ξ⋅==⋅+⋅=⋅+⋅= ()124422510461243=,104522575C C p C C ξ==⋅=⋅=所以ξ的分布列是:……………………………………………10分所以ξ的数学期望65E ξ=. ………………………………………………12分20.【答案】(Ⅰ)略; (Ⅱ)1122arccos【解析】(Ⅰ)证明:过M 作DC MF //交CE 于F ,连接.,BF MF 因为DC MF //,2=,所以.32//DC MF ……2分又3=,所以.32//DC NB 故NB MF //,……4分所以四边形NBFM 为平行四边形,故//MN BF , 而BF ⊆平面BEC ,MN ⊄平面BEC , 所以//MN 平面BEC ;……6分(Ⅱ)以A 为坐标原点,.,所在方向为z y x ,,轴正方向,建立平面 直角坐标系,则)0,0,3(E ,)0,1,0(N ,)2,0,1(M ,)3,3,0(C 平面MEC 的法向量为)1,0,1(=,设平面MNE 的法向量为),,(111z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅00n EM ,即 ⎩⎨⎧=+-=+-022031111z x y x ,不妨设11=x ,则)1,3,1(=n 11221122||||,cos ==>=<n m 所求二面角的大小为1122arccos……12分 【考点】线面平行,求二面角的大小. 21.已知函数()2ln pf x px x x=--. (Ⅰ) 22222'()p px x pf x p x x x-+=+-=, 220px x p ∴-+≥即221xp x ≥+,对0x ∀>恒成立, 设22()(0)1x h x x x =>+,222222222422'()(1)(1)x x x h x x x +--==++()h x 在(0,1)上增,(1,)+∞减,则max ()(1)1h x h == (1)1p h ∴≥=,即[1,)p ∈+∞………………4分(Ⅱ) 设函数2()()()2ln p ex f x g x px x xϕ+=-=--,[1,]x e ∈ 则原问题⇔在[1,]e 上至少存在一点0x ,使得0()0x ϕ>⇔max ()0x ϕ>.………5分222222(2)'()p e px x p e x p x x x ϕ+-++=+-= 22210'()0x ep x xϕ-+==> ,则()x ϕ在[1,]x e ∈增,max ()()40x e ϕϕ==-<,舍;………………7分20p < ,12()()2ln ex p x x x x ϕ=---,[1,]x e ∈ ,120,0,ln 0ex x x x∴-≥>>,则()0x ϕ<,舍;………………9分22(1)2()30'()0p x e x p x xϕ++->=>, 则()x ϕ在[1,]x e ∈增,max ()()40p x e pe e ϕϕ==-->,整理得241e p e >-………11分综上,24(,)1ep e ∈+∞-………12分 22.【答案】(Ⅰ):4320l x y +-=,22:220C x y x y +--=; (2).2=AB【解析】(Ⅰ)直线l :⎩⎨⎧-=+-=t y t x 4231(t 为参数),消去t 得)1(342+-=-x y ,即4320.x y +-=……2分曲线C :)4cos(22πθρ-=,即θθρsin 2cos 2+=,……3分又cos ,sin x y ρρθρθ===,22cos 2sin ρρθρθ=+……4分故曲线C :22220.x y x y +--=……5分(Ⅱ)直线l 的参数方程为⎩⎨⎧-=+-=t y t x 4231(t 为参数)⇒直线l 的参数方程为⎪⎩⎪⎨⎧+=--=//542531t y t x (/t 为参数),……7分代入曲线C :22220x y x y +--=,消去y x ,得034/2/=++t t 1,3/2/1-=-=⇒t t ,……9分由参数/t 的几何意义知,.213/2/1=+-=-=t t AB ……10分【考点】方程互化,圆的弦长问题.23.(Ⅰ)),2[]32,(+∞⋃--∞————————————————5分 (Ⅱ)x x a 331-≥-∴对]2,21[∈x 恒成立121<≤x 时,x x a 33)1(-≥-3≥∴a 21≤≤x 时,x x a 33)1(-≥-3-≥∴a综上:3≥a —————————————————————10分。