2014——2015郑州市初三第一次质量检测数学
- 格式:doc
- 大小:603.32 KB
- 文档页数:8
2015年九年级第一次质量预测数学模拟试卷(一)(满分120分,考试时间100分钟)学校:___________ 班级:_________ 姓名:________ 分数:__________一、选择题(每小题3分,共24分)1.与-3的差为0的数是()A.3 B.-3 C.1 3D.13-2.下列图形中,不是轴对称图形的是()A.B. C. D.3.国家统计局公布2013年中国国内生产总值568 845亿元,同比增长7.7%,完成了年初设定的7.5%的目标.请你以亿元为单位用科学记数法表示2013年我国的国内生产总值为(结果保留两个有效数字)()A.5.6×1013B.5.7×1013C.5.7×105D.5.6×1054.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,则它的俯视图为()A.B.C.D.5.不等式4-3x≥2x-6的非负整数解有()A.1个B.2个C.3个D.4个6.如图,双曲线myx=与直线y kx b=+相交于点M,N,且点M的坐标为(1,3),点N的纵坐标为-1.根据图象信息可得关于x的方程mkx bx=+的解为()A.-3,1 B.-3,3 C.-1,1 D.-1,37.如图,正方形OABC的两边OA,OC分别在x轴、y轴的正半轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D'的坐标是()A.(2,10)B.(-2,0) C.(2,10)或(-2,0)D.(10,2)或(-2,0)8.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长,交⊙O于点E,连接CE.若AB=8,CD=2,则CE的长为()A.215B.8C.210D.213二、填空题(每小题3分,共21分)9.当x=_______时,分式55xx--无意义.10.菱形ABCD中,若对角线AC=8cm,BD=6cm,则边长AB=_______cm.11.已知圆锥的底面半径为1,全面积为4π,则圆锥的母线长为_______.12.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_______.13.如图,平行四边形OABC的顶点O在坐标原点,顶点A,C在反比例函数kyx=(0x>)的图象上,点A的横坐标为4,点B的横坐标为6,且平行四边形OABC的面积为9,则k的值为_________.yxOABCFED CBANMEDCBA第13题图第14题图第15题图14.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=12∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________.15.如图,在矩形ABCD中,AD AB>,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积之比为1:4,则MNBM的值为_________.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:2311221x xx x x x-⎛⎫-÷-⎪+++⎝⎭,其中x满足x2-x-1=0.NMxyOxyODC BAEDC BAO第6题图第7题图第8题图O EDC BA P x y O F ED CBA GP ABC DE H Oy x17. (9分)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图1和图2,请根据有关信息,解答下列问题:m %10%20%30%25%38号37号34号35号36号图18106412人数鞋号1224610838号37号34号35号36号图2(1)本次接受随机抽样调查的学生人数为_______,图1中m 的值是_____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 18. (9分)如图,矩形ABCD 的对角线AC ,BD 相交于 点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为菱形;(2)连接AE ,BE ,AE 与BE 相等吗?请说明理由.19. (9分)如图,将透明三角形纸片P AB 的直角顶点P 落在第四象限,顶点A ,B 分别落在反比例函数ky x=图象的两支上,且PB ⊥x 轴于点C ,P A ⊥y 轴于点D ,AB 分别与x 轴,y 轴相交于点F ,E .已知B (1,3). (1)k =_________;(2)试说明AE =BF ; (3)当四边形ABCD 的面积为214时,求点P 的坐标.20. (9分)钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A ,B 的距离,如图,勘测飞机在距海平面垂直高度为1公里的点C 处,测得端点A 的俯角为45°,然后沿着平行于AB 的方向飞行3.2公里到点D ,并测得端点B 的俯角为37°,求钓鱼岛两端A ,B 的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41)37°45°NCDBMA21. (10分)某工程机械厂根据市场需求,计划生产A ,B 两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B 成本(万元/台) 200 240 售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B 型挖掘机的售价不会改变,每台A 型挖掘机的售价将会提高 m 万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价-成本) 22. (10分)如图,在△ABC 中,∠B =45°,O 为AC 上一个动点,过O 作∠POQ =135°,且∠POQ与AB 交于P ,与BC 交于Q .(1)如图1,若11AB AOBC CO ==,,则OP OQ=______. (2)如图2,若1132AB AO BC CO ==,,求OP OQ 的值,写出求解过程. (3)如图3,若1325AB OP BC OQ ==,,则AOCO =_____.图3图2图1A COPQ B ACO PQB Q POCBA23. (11分)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A ,D 两点,与y轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4).已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式.(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度.(3)在(2)的条件下,是否存在这样的点P ,使得以P ,B ,G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.。
九年级第一次月考数学试卷考生注意:本试卷共八大题,计23小题,满分150分,考试时间120分钟。
一、选择题(本大题共10小题,每小题4分,满分40分)1.二次函数y=x 2的图象向下平移2个单位,得到新图象的二次函数表达式………( ) A .y =x 2-2 B .y =(x -2)2C .y =x 2+2 D .y =(x +2)22.若二次函数y=2x 2-2mx+2m 2-2的图象的顶点在y 轴上,则m 的值是………………( ) A.0 B.±1 C.±2 D.±23.已知(-1,y 1)(-2,y 2)(-4,y 3)是抛物线y=-2x 2-8x+m 上的点,则………………( )A. y 1<y 2<y 3B. y 3<y 2<y 1C. y 2>y 1>y 3D. y 2>y 3>y 1 4.已知反比例函数y =xm2-1的图像上有两点A(x 1,y 1)、B(x 2,y 2),当x 1<0<x 2时, 有y 1<y 2。
则m 的取值范围是 ………………………………………………………( ) A 、m <0 B.、m >0 C 、m >21 D 、m <21 5.等边三角形的一条中线与一条中位线的比值是………………………………… ( ) A 、1:3 B 、2:3 C 、3:1 D 、1:36.下列各组线段:①a=1,b=2,c=3,d=4;②a=1,b=2,c=2,d=4;③a=2,b=5,c=8,d=20;④a=3, b=2,c=3,d=2;其中各组线段的长度成比例的有………………………………………………………………………………………( ) A .1组 B. 2组 C. 3组 D. 4组7. 下列关于二次函数的说法错误..的是………………………………………………( ) A.抛物线1322++-=x x y 的对称轴是直线x =34; B.点A(3,0)不在抛物线322--=x x y 的图象上; C.二次函数y=(x +2)2-2的顶点坐标是(-2,-2);D.函数y=2x 2+4x-3的图象的最低点在(-1,-5)8.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是 ………………………………………………………………( ) 9.抛物线2y a x b x c =++ 上部分点的横坐标x ,纵坐标y 的对应值如表所示.给出下列说法:①抛物线与y 轴的交点为(0,6); ②抛物线的对称轴是在y 轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y 随x 增大而减小。
2014年九年级第一次质量预测数学试题卷(满分120分,考试时间100分钟)一、选择题(本题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 15-的相反数是( )A .15-B .15C .5D .5-2. 网上购物已成为现代人消费的趋势,2013年天猫“11·11”购物狂欢节创造了一天350.19亿元的支付宝成交额.其中350.19亿用科学记数法可以表示为( ) A .350.19×108 B .3.501 9×109 C .35.019×109D .3.501 9×10103. 妈妈昨天为小杰制作了一个正方体礼品盒,该礼品盒的六个面上各有一个字,连起来就是“宽容是种美德”,其中“宽”的对面是“是”,“美”的对面是“德”,则它的平面展开图可能是( )A .B .C .D .4. 小华所在的九年级(1)班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.68米,下列说法错误..的是( ) A .班上比小华高的学生人数不超过25人 B .1.65米是该班学生身高的平均水平 C .这组身高数据的中位数不一定是1.65米 D .这组身高数据的众数不一定是1.65米5. 小明在2013年暑假帮某服装店买卖T 恤衫时发现:在一段时间内,T 恤衫按每件80元销售时,每天销售量是20件,而单价每降低4元,每天就可以多销售8件,已知该T 恤衫进价是每件40元.请问服装店一天能赢利1 200元吗?如果设每件降价x 元,那么下列所列方程正确的是( ) A .(80)(20) 1 200x x -+= B .(80)(202) 1 200x x -+= C .(40)(20) 1 200x x -+=D .(40)(202) 1 200x x -+=德美种是容宽德美种是容宽德美种是容宽德美种是容宽6. 如图,直线l 上摆有三个正方形a ,b ,c ,若a ,c 的面积分别为10和8,则b 的面积是( ) A .16B .20C .18D .24第6题图 第7题图 第8题图7. 如图为手的示意图,在各个手指间标记字母A ,B ,C ,D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当字母B 第2 014次出现时,恰好数到的数是( ) A .4 028B .6 042C .8 056D .12 0848. 如图,一条抛物线与x 轴相交于A ,B 两点,其顶点P 在折线CD -DE 上移动,若点C ,D ,E 的坐标分别为(-2,8),(8,8),(8,2),点B 的横坐标的最小值为0,则点A 的横坐标的最大值为( ) A .5B .6C .7D .8二、填空题(本题共7个小题,每小题3分,共21分) 9. 计算16=_________.10. 已知反比例函数6y x=-的图象经过点P (2,a ),则a =_____________.11. 《爸爸去哪儿》有一期选择住房,一排五套房子编号分别为1,2,3,4,5.五个家庭每家只能选择一套房不能重复,Kimi 和王诗龄代表各自家庭选房,他俩选择的住房编号相邻的概率是___________.12. 如图,半径为5的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的正弦值为___________.13. 数学的美无处不在,数学家们研究发现弹拨琴弦发出声音的音调高低取决于弦的长度,如三根弦长之比为15:12:10,把它们绷得一样紧,用同样的力度弹拨,它们将分别发出很调和的乐声:do 、mi 、so ,研究15,12,10这三个数的倒数发现:111112151012-=-,此时我们称15,12,10为一组调和数,现有一组调和数:x ,5,3(5x >),则整数x 的值为___________.lcbaDC B Axy PCED B OA Cy xO BA14. 如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕,当D ′F ⊥CD 时,CGBG =_________.第14题图 第15题图15. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =6,BD =8,E 为AD 中点,点P 在x 轴上移动.请你写出所有使△POE 为等腰三角形的P 点坐标:__________________. 三、解答题(本题共8个小题,共75分)16. (8分)化简:22111a a ab a ab --⋅+÷,并选择你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:2(1)(1)11解:原式÷……①a a a ab a ab +--=⋅+ 211(1)(1)……②a a ab a a ab +-=⨯⋅+-1……③ab=当a =1,b =1时,原式=1.……④以上过程有两处错误,第一次出错在第_______步(填序号),原因:________________;还有第_______步出错(填序号),原因:____________________. 请你写出此题的正确解答过程.D'A'GFE DCB A y xEO D CBA17.(9分)某校有学生3 600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门.为了解学生的报名意向,学校随机调查了一些学生,并制成如下统计表和统计图:课程类别频数频率法律360.09礼仪550.1375环保m a感恩1300.325互助490.1225合计n 1.00(1)在这次调查活动中,学校采取的调查方式是_________(填写“普查”或“抽样调查”),a=_________;m=_________;n=_________.(2)请补全条形统计图;如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为_______度.(3)请估算该校3 600名学生中选择“感恩”校本课程的学生约有多少人.18.(9分)星期天,小丽和同学们来碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们肃然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案测量纪念碑的高(画出示意图),并说明理由.491305536校本课程报名意向条形统计图人数/人180160140120100806040200课程类别互助感恩环保礼仪法律19. (9分)我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移m 个单位、再向上或向下平移k 个单位得到,我们称函数2y a x =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数”2y ax =的“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离22m k +称为朋友距离. 如一次函数25y x =-是基本函数2y x =的朋友函数,由25y x =-可化成2(1)3y x =--,于是,朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离221310=+=.(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径:由基本函数2y x =先向_____,再向下平移7个单位,相应的朋友距离为_____; (2)探究二:将函数451x y x +=+化成y =__________,使其和它的基本函数1y x=成为朋友函数,并写出朋友路径,求相应的朋友距离.20. (9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A 观测到∠P AB =67.5°,同时,巡逻船B 观测到∠PBA =36.9°,两巡逻船相距63海里,求此时巡逻船A 与落水人P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)21. (10分)某小区有一长100m ,宽80m 的空地,现将其建成花园广场,设计图案如图,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动67.5°36.9°PAB区,且四周出口一样宽,宽度不小于50m ,不大于60m ,预计活动区每平方米造价60元,绿化区每平方米造价50元.设一块绿化区的长边为x (m ). (1)设工程总造价为y (元),直接写出工程总造价y (元)与x (m )的函数关系式:__________________.(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x 为整数的所有工程方案;若不能,请说明理由.(参考值3 1.732 )22. (10分)如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接FC ,观察并猜测tan ∠FCN 的值,并说明理由;出口出口出口出口(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB =m ,BC =n (m ,n 为常数),E 是射线BC 上一动点(不含端点B ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan ∠FCN 的值.图1 图223. (11分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为Q (-2,-1),且与y 轴交于点C (0,3),与x 轴交于A ,B 两点(点A 在点B 的左侧),点AB CDEFGM NABCD EFGM NP 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交直线AC 于点D . (1)求该抛物线的函数关系式.(2)当△ADP 是直角三角形时,求点P 的坐标.(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A ,P ,E ,F 为顶点的平行四边形?若存在,请直接写出点F 的坐标;若不存在,请简单说明理由.2014年九年级第一次质量预测QxyOA B D PC数学 参考答案一、选择题(每小题3分,共24分) 1. B 2.D3.C4. A5. D6.C7. B8.C二、填空题(每小题3分,共21分) 9.410. -3 11.52 12.21 13.1514.332 15. )0,1625)(0,4)(0,5.2)(0,5.2(-三、解答题(共75分)16.(8分)③,约分错 (只要合理即可)…………………………………2分④,a 取值不能为1,a =1时分式无意义.(合理就给分)……………4分正确解题过程:原式= == . …………………………………7分当a =2,b =1时,原式=1(只要a ≠±1或0;b ≠0都可根据计算给分)………8分17. (9分)(1)抽样调查; 0.325; 130; 400;……………………4分(2)如图:117;…………………………7分(3)3600×0.325=1170人.答:该校3600名学生中选择“感恩”校本课程的约有1170人.…………………………9分18. (9分) 设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高. ………………3分21)1)(1(1aba a a a ab -∙-++⨯b1211)1)(1(aba a a a ab -∙+-+÷人数(人)493655课程类别 法律礼仪环保感恩互助100608012014016018040200130130AC…………………6分理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE∽△CDE. 根据 ,即可算出AB 的高. …………………9分(说明:此题方法很多,只要合理,即可根据上述例子的给分标准对应给分.) 19.(9分)(1)左平移1个单位 ,25; …………………………4分 (2)y 411++=x ,…………………………6分 朋友路径为先向左平移1个单位,再向上平移4个单位.相应的朋友距离为174122=+ . …………………………9分20. (9分)过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………2分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………4分∵AC +BC =AB =63,∴54215123x x +=⨯ 63,解得x = 36.…………6分 ∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里).∴巡逻船A 与落水人P 的距离为39海里.………………9分21. (10分)解:(1)480000400402++-=x x y …………………………………4分 (2) 投资46.9万元能完成工程任务. …………………………………5分 依题意,可得到2025x ≤≤.…………………………7分240400480000469000x x -++=, ∴2102750x x --=.1020351032x ±∴==±.(负值舍去). 510322.32x ∴=+≈.DEBECD AB =G∴投资46.9万元能完成工程任务,工程方案如下:方案一:一块矩形绿地的长为23m ,宽为13m ;方案二:一块矩形绿地的长为24m ,宽为14m ;方案三:一块矩形绿地的长为25m ,宽为15m .…………………… 10分22. (10分) 解:(1)tan ∠FCN =1. …………2分理由是:作FH ⊥MN 于H .∵∠AEF =∠ABE =90º,∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º.∴∠FEH =∠BAE .又∵AE =EF ,∠EHF =∠EBA =90º,∴△EHF ≌△ABE . …………4分∴FH =BE ,EH =AB =BC ,∴CH =BE =FH.∵∠FHC =90º,∴∠FCH =45º. tan ∠FCH =1. …………6分(2)作FH ⊥MN 于H .由已知可得∠EAG =∠BAD =∠AEF =90º.结合(1)易得∠FEH =∠BAE =∠DAG.又∵G 在射线CD 上,∠GDA =∠EHF =∠EBA =90º,∴△EFH ≌△AGD ,△EFH ∽△AEB . ……8分∴EH =AD =BC =n ,∴CH =BE.∴EH AB =FH BE =FH CH. ∴在Rt △FEH 中,tan ∠FCN =FH CH =EH AB =mn . ∴当点E 沿射线CN 运动时,tan ∠FCN =mn .……10分 23. (11分)解:(1)∵抛物线的顶点为Q (-2,-1),∴设抛物线的函数关系式为1)2(2-+=x a y .将C (0,3)代入上式,得 1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x x y .……………………4分(2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x .解之,得11-=x , 32-=x .M B E A C D F G N H∵点A 在点B 的左边, ∴B(-1,0), A (-3,0). ∴P 1(-1,0). …………………………………………5分 ②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC = 90, ∴∠OAD 2= 45. 当∠D 2AP 2= 90时, ∠OAP 2= 45, ∴AO 平分∠D 2AP 2 . 又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分 设直线AC 的函数关系式为b kx y +=. 将A (-3,0), C (0,3)代入上式得⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分 ∵D 2在3+=x y 上, P 2在342++=x x y 上, ∴设D 2(x ,3+x ), P 2(x ,342++x x ). ∴(3+x )+(342++x x )=0.0652=++x x , ∴21-=x , 32-=x (舍). ∴当x =-2时, 342++=x x y=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分(3)解:存在. …………9分F 1(-22-,1), F 2(-22+,1). …………………………………11分(理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于点F . 当AP =FE 时,四边形PAFE 是平行四边形.∵P (-2,-1), ∴可令F (x ,1). ∴1342=++x x .解之得: 221--=x , 222+-=x . ∴F 点存在有两点,F 1(-22-,1), F 2(-22+,1). )。
2014年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分) 1. B 2.D 3.C 4. A 5. D 6.C 7. B 8.C二、填空题(每小题3分,共21分) 9.410. -3 11.52 12.2113.15 14.332 15. )0,1625)(0,4)(0,5.2)(0,5.2(-三、解答题(共75分)16.(8分)③,约分错 (只要合理即可)…………………………………2分 ④,a 取值不能为1,a =1时分式无意义.(合理就给分)……………4分正确解题过程:原式=== . …………………………………7分当a =2,b =1时,原式=1(只要a ≠±1或0;b ≠0都可根据计算给分)………8分 17. (9分)(1)抽样调查; 0.325; 130; 400;……………………4分 (2)如图:117;…………………………7分(3)3600×0.325=1170人.答:该校3600名学生中选择“感恩”校本课程的约有1170人.…………………………9分 18. (9分) 设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高. ………………3分…………………6分理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE ∽△CDE.根据 ,即可算出AB 的高. …………………9分 (说明:此题方法很多,只要合理,即可根据上述例子的给分标准对应给分.)21)1)(1(1ab a a a a ab -•-++⨯b1211)1)(1(ab a a a a ab -•+-+÷人数(人)DEBE CD AB=AB CD19.(9分)(1)左平移1个单位 ,25; …………………………4分 (2)y 411++=x ,…………………………6分 朋友路径为先向左平移1个单位,再向上平移4个单位.相应的朋友距离为174122=+ . …………………………9分20. (9分)过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt△APC 中,∵tan∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………2分 在Rt△PCB 中,∵tan∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………4分 ∵AC +BC =AB =63,∴54215123x x+=⨯ 63,解得x = 36.…………6分 ∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里).∴巡逻船A 与落水人P 的距离为39海里.………………9分21. (10分)解:(1)480000400402++-=x x y …………………………………4分 (2) 投资46.9万元能完成工程任务. …………………………………5分 依题意,可得到2025x ≤≤.…………………………7分240400480000469000x x -++=, ∴2102750x x --=.1020351032x ±∴==±.(负值舍去).510322.32x ∴=+≈.∴投资46.9万元能完成工程任务,工程方案如下: 方案一:一块矩形绿地的长为23m ,宽为13m ; 方案二:一块矩形绿地的长为24m ,宽为14m ;方案三:一块矩形绿地的长为25m ,宽为15m .…………………… 10分22. (10分) 解:(1)tan ∠FCN =1. …………2分理由是:作FH ⊥MN 于H . ∵∠AEF =∠ABE =90º,∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º.∴∠FEH =∠BAE .又∵AE =EF ,∠EHF =∠EBA =90º,∴△EHF ≌△ABE . …………4分 ∴FH =BE ,EH =AB =BC ,∴CH =BE =FH.∵∠FHC =90º,∴∠FCH =45º. tan ∠FCH =1. …………6分 (2)作FH ⊥MN 于H .由已知可得∠EAG =∠BAD =∠AEF =90º. 结合(1)易得∠FEH =∠BAE =∠DAG. 又∵G 在射线CD 上,∠GDA =∠EHF =∠EBA =90º,∴△EFH ≌△AGD ,△EFH ∽△AEB . ……8分 ∴EH =AD =BC =n ,∴CH =BE.∴EH AB =FH BE =FH CH.M B EA C DFGNHN M B C A EDFGH∴在Rt △FEH 中,tan ∠FCN =FH CH =EH AB =m n.∴当点E 沿射线CN 运动时,tan ∠FCN =mn.……10分 23. (11分)解:(1)∵抛物线的顶点为Q (-2,-1), ∴设抛物线的函数关系式为1)2(2-+=x a y . 将C (0,3)代入上式,得1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x x y .……………………4分(2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x . 解之,得11-=x , 32-=x .∵点A 在点B 的左边, ∴B(-1,0), A (-3,0).∴P 1(-1,0). …………………………………………5分 ②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC =90, ∴∠OAD 2=45.当∠D 2AP 2=90时, ∠OAP 2=45, ∴AO 平分∠D 2AP 2 .又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分 设直线AC 的函数关系式为b kx y +=. 将A (-3,0), C (0,3)代入上式得⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分 ∵D 2在3+=x y 上, P 2在342++=x x y 上, ∴设D 2(x ,3+x ), P 2(x ,342++x x ). ∴(3+x )+(342++x x )=0.0652=++x x , ∴21-=x , 32-=x (舍).∴当x =-2时, 342++=x x y=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分 (3)解:存在. …………9分 F 1(-22-,1), F 2(-22+,1). …………………………………11分(理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时, 平移直线AP 交x 轴于点E ,交抛物线于点F . 当AP =FE 时,四边形PAFE 是平行四边形. ∵P (-2,-1), ∴可令F (x ,1). ∴1342=++x x . 解之得: 221--=x , 222+-=x .∴F 点存在有两点,F 1(-22-,1), F 2(-22+,1). )。
2014年郑州市九年级第一次质量检测及答案2014年九年级第一次质量预测数学试题卷(满分120分,考试时间100分钟)一、选择题(本题共8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 15-的相反数是( )A .15-B .15C .5D .5-2. 网上购物已成为现代人消费的趋势,2013年天猫“11·11”购物狂欢节创造了一天350.19亿元的支付宝成交额.其中350.19亿用科学记数法可以表示为( )A .350.19×108B .3.501 9×109C .35.019×109D .3.501 9×10103. 妈妈昨天为小杰制作了一个正方体礼品盒,该礼品盒的六个面上各有一个字,连起来就是“宽容是种美德”,其中“宽”的对面是“是”,“美”的对面是“德”,则它的平面展开图可能是( )德美种是容宽德美种是容宽德美种是容宽德美种是容宽A .B .C .D .4. 小华所在的九年级(1)班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.68米,下列说法错误..的是( ) A .班上比小华高的学生人数不超过25人B.1.65米是该班学生身高的平均水平C.这组身高数据的中位数不一定是1.65米D.这组身高数据的众数不一定是1.65米5.小明在2013年暑假帮某服装店买卖T恤衫时发现:在一段时间内,T恤衫按每件80元销售时,每天销售量是20件,而单价每降低4元,每天就可以多销售8件,已知该T恤衫进价是每件40元.请问服装店一天能赢利1 200元吗?如果设每件降价x元,那么下列所列方程正确的是()A.(80)(20) 1 200x x-+=B.(80)(202) 1 200x x-+= C.(40)(20) 1 200x x-+=D.(40)(202) 1 200x x-+=6.如图,直线l上摆有三个正方形a,b,c,若a,c的面积分别为10和8,则b的面积是()A.16 B.20 C.18 D.24lcbaDCBA第6题图第7题图第8题图7.如图为手的示意图,在各个手指间标记字母A,B,C,D.请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A开始数连续的正整数1,2,3,4,…,当字母B第2 014次出现时,恰好数到的数是()A.4 028 B.6 042 C.8 056 D.12 0848.如图,一条抛物线与x轴相交于A,B两点,其顶点P在折线CD-DE上移动,若点C,D,E的坐标分别为(-2,8),(8,8),(8,2),点B的横坐标的最小值为0,则点A的横坐标的最大值为()A .5B .6C .7D .8二、填空题(本题共7个小题,每小题3分,共21分) 9..10. 已知反比例函数6y x=-的图象经过点P (2,a ),则a =_____________.11. 《爸爸去哪儿》有一期选择住房,一排五套房子编号分别为1,2,3,4,5.五个家庭每家只能选择一套房不能重复,Kimi 和王诗龄代表各自家庭选房,他俩选择的住房编号相邻的概率是___________.12. 如图,半径为5的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的正弦值为___________.13. 数学的美无处不在,数学家们研究发现弹拨琴弦发出声音的音调高低取决于弦的长度,如三根弦长之比为15:12:10,把它们绷得一样紧,用同样的力度弹拨,它们将分别发出很调和的乐声:do 、mi 、so ,研究15,12,10这三个数的倒数发现:111112151012-=-,此时我们称15,12,10为一组调和数,现有一组调和数:x ,5,3(5x >),则整数x 的值为___________.14. 如图,在菱形纸片ABCD 中,∠A =60°.将纸片折叠,点A ,D 分别落在点A ′,D ′处,且A ′D ′经过点B ,EF 为折痕,当D ′F ⊥CD 时,CGBG=_________.D'A'GFE DCB A第14题图 第15题图15. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =6,BD =8,E 为AD 中点,点P 在x 轴上移动.请你写出所有使△POE 为等腰三角形的P 点坐标:__________________.三、解答题(本题共8个小题,共75分)16. (8分)化简:22111a a ab a ab --⋅+÷,并选择你喜欢的整数a ,b 代入求值.小刚计算这一题的过程如下:2(1)(1)11解:原式÷……①a a a ab a ab +--=⋅+ 211(1)(1)……②a a ab a a ab +-=⨯⋅+-1……③ab=当a =1,b =1时,原式=1.……④以上过程有两处错误,第一次出错在第____步(填序号),原因: ; 还有第_______步出错(填序号),原因:____________________.请你写出此题的正确解答过程.17. (9分)某校有学生3 600人,在“文明我先行”的活动中,开设了“法律、礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门.为了解学生的报名意向,学校随机调查了一些学生,并制成如下统计表和统 计图:(1)在这次调查活动中,学校采取的调查方式是_________(填写“普查”或“抽样调查”),a =_________;m =_________;n =_________. (2)请补全条形统计图;如果要画一个“校本课程报名意向扇形统计图”,那么“环保”类校本课程所对应的扇形圆心角应为_______度.(3)请估算该校3 600名学生中选择“感恩”校本课程的学生约有多少人.校本课程报名意向条形统计图课程类别互助感恩环保礼仪法律18. (9分)星期天,小丽和同学们来碧沙岗公园游玩,他们来到1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们肃然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案测量纪念碑的高(画出示意图),并说明理由.19. (9分)我们知道,对于二次函数2()y a x m k =++的图象,可由函数2y ax =的图象进行向左或向右平移m 个单位、再向上或向下平移k 个单位得到,我们称函数2y ax =为“基本函数”,而称由它平移得到的二次函数2()y a x m k =++为“基本函数”2y ax =的“朋友函数”.左右、上下平移的22m k +称为朋友距离. 如一次函数25y x =-是基本函数2y x =的朋友函数,由25y x =-可化成2(1)3y x =--,于是,朋友路径可以是向右平移1个单位,再向下平移3个单位,朋友距离221310=+=.(1)探究一:小明同学经过思考后,为函数25y x =-又找到了一条朋友路径:由基本函数2y x =先向____,再向下平移7个单位,相应的朋友距离为_____;(2)探究二:将函数451x y x +=+化成y =_________,使其和它的基本函数1y x=成为朋友函数,并写出朋友路径,求相应的朋友距离.20. (9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A 观测到∠PAB =67.5°,同时,巡逻船B 观测到∠PBA =36.9°,两巡逻船相距63海里,求此时巡逻船A 与落水人P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)67.5°36.9°PAB21. (10分)某小区有一长100m ,宽80m 的空地,现将其建成花园广场,设计图案如图,阴影区域为绿化区(四块绿化区是全等矩形),空白区域为活动区,且四周出口一样宽,宽度不小于50m ,不大于60m ,预计活动区每平方米造价60元,绿化区每平方米造价50元.设一块绿化区的长边为x (m ). (1)设工程总造价为y (元),直接写出工程总造价y (元)与x (m )的函数关系式:__________________.(2)如果小区投资46.9万元,问能否完成工程任务,若能,请写出x 为整数的所有工程方案;若不能,请说明理由.1.732 )22. (10分)如图1,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E是射线BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接FC ,观察并猜测tan ∠FCN 的值,并说明理由;(2)如图2,将图1中正方形ABCD 改为矩形ABCD ,AB =m ,BC =n (m ,n 为常数),E 是射线BC 上一动点(不含端点B ),以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上,当点E 沿射线CN 运动时,请用含m ,n 的代数式表示tan ∠FCN 的值.AB C DE FGM NABCD EFGM N图1 图223.(11分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(-2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的左侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交直线AC于点D.(1)求该抛物线的函数关系式.(2)当△ADP是直角三角形时,求点P的坐标.(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A,P,E,F为顶点的平行四边形?若存在,请直接写出点F的坐标;若不存在,请简单说明理由.2014年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分)1. B2.D3.C4. A5. D6.C7. B8.C二、填空题(每小题3分,共21分)9.4 10. -3 11. 52 12.21 13.1514.332 15. )0,1625)(0,4)(0,5.2)(0,5.2( 三、解答题(共75分)16.(8分)③,约分错 (只要合理即可)…………………………………2分④,a 取值不能为1,a =1时分式无意义.(合理就给分)……………4分正确解题过程:原式=== . …………………………………7分当a =2,b =1时,原式=1(只要a ≠±1或0;b≠0都可根据计算给分)………8分17. (9分)(1)抽样调查; 0.325; 130;400;……………………4分(2)21)1)(1(1aba a a a ab -•-++⨯b1211)1)(1(aba a a a ab -•+-+÷117;…………………………7分(3)3600×0.325=1170人.答:该校3600名学生中选择“感恩”校本课程的约有1170人.…………………………9分18. (9分) 设计方案例子:如图,在距离纪念碑AB 的地面上平放一面镜子E ,人退后到D 处,在镜子里恰看见纪念碑顶A .若人眼距地面距离为CD ,测量出CD 、DE 、BE 的长,就可算出纪念碑AB 的高. ………………3分AB C D E…………………6分理由:测量出CD 、DE 、BE 的长,因为∠CED =∠AEB ,∠D =∠B =90°,易得△ABE ∽△CDE. 根据 ,即可算出AB 的高. …………………9分(说明:此题方法很多,只要合理,即可根据上述例子的给分标准对应给分.)19.(9分)(1)左平移1个单位 ,25; …………………………4分(2)y 411++=x ,…………………………6分 朋友路径为先向左平移1个单位,再向上平移4个单位. 相应的朋友距离为174122=+ . …………………………9分20. (9分)过点P 作PC ⊥AB ,垂足为C ,设PC = x 海里.在Rt△APC 中,∵tan∠A =PC AC,∴AC DEBECD AB ==5tan 67.512PC x=︒.…………2分 在Rt△PCB 中,∵tan∠B =PC BC,∴BC =4tan 36.93x x =︒.…………4分 ∵AC +BC =AB =63,∴54215123x x+=⨯ 63,解得x = 36.…………6分∵PA PC A =∠sin ,∴1213365.67sin 36sin ⨯=︒=∠=A PC PA =39(海里).∴巡逻船A 与落水人P 的距离为39海里.………………9分 21.(10分)解:(1)480000400402++-=x x y …………………………………4分(2) 投资46.9万元能完成工程任务. …………………………………5分依题意,可得到2025x ≤≤.…………………………7分Q 240400480000469000x x -++=,∴2102750x x --=.1020351032x ±∴==±.(负值舍去).510322.32x ∴=+≈.∴投资46.9万元能完成工程任务,工程方案如下:方案一:一块矩形绿地的长为23m ,宽为13m ; 方案二:一块矩形绿地的长为24m ,宽为14m ; 方案三:一块矩形绿地的长为25m ,宽为15m .…………………… 10分22. (10分) 解:(1)tan ∠FCN =1. …………2分理由是:作FH ⊥MN 于H .∵∠AEF =∠ABE =90º,∴∠BAE +∠AEB =90º,∠FEH +∠AEB =90º.∴∠FEH =∠BAE .GNM B AE DFGH又∵AE=EF,∠EHF=∠EBA=90º,∴△EHF≌△ABE . …………4分∴FH=BE,EH=AB=BC,∴CH=BE=FH.∵∠FHC=90º,∴∠FCH=45º. tan ∠FCH=1. …………6分(2)作FH⊥MN于H .由已知可得∠EAG=∠BAD=∠AEF=90º.结合(1)易得∠FEH=∠BAE=∠DAG.又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90º,∴△EFH≌△AGD,△EFH∽△AEB. (8)分∴EH=AD=BC=n,∴CH=BE.∴EHAB=FHBE=FHCH.∴在Rt△FEH中,tan∠FCN=FHCH=EHAB=mn .∴当点E沿射线CN运动时,tan∠FCN=mn.……10分23. (11分)解:(1)∵抛物线的顶点为Q (-2,-1), ∴设抛物线的函数关系式为1)2(2-+=x a y .将C (0,3)代入上式,得1)20(32-+=a .1=a .∴()122-+=x y , 即342++=x xy (4)分(2)分两种情况:①当点P 1为△ADP 的直角顶点时,点P 1与点B 重合.令y =0, 得0342=++x x .解之,得11-=x, 32-=x.∵点A 在点B 的左边, ∴B(-1,0),A (-3,0).∴P 1(-1,0). …………………………………………5分②当点A 为△ADP 的直角顶点时.∵OA =OC , ∠AOC =ο90, ∴∠OAD 2=ο45.当∠D 2AP 2=ο90时, ∠OAP 2=ο45, ∴AO 平分∠D 2AP 2 .又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO , ∴P 2、D 2关于x 轴对称.……………………6分设直线AC 的函数关系式为b kx y +=. 将A (-3,0), C (0,3)代入上式得⎩⎨⎧=+-=.3,30b b k , ∴⎩⎨⎧==.3,1b k ∴3+=x y . ………………………………7分∵D 2在3+=x y 上, P 2在342++=x x y 上,∴设D 2(x ,3+x ), P 2(x ,342++x x ).∴(3+x )+(342++x x)=0. 0652=++x x , ∴21-=x, 32-=x(舍). ∴当x =-2时, 342++=x xy=3)2(4)2(2+-⨯+-=-1.∴P 2的坐标为P 2(-2,-1)(即为抛物线顶点).∴P 点坐标为P 1(-1,0), P 2(-2,-1). …………8分(3)解:存在. …………9分F 1(-22-,1),F 2(-22+,1). …………………………………11分(理由:由题(2)知,当点P 的坐标为P 1(-1,0)时,不能构成平行四边形.当点P 的坐标为P 2(-2,-1)(即顶点Q )时,平移直线AP 交x 轴于点E ,交抛物线于点F .当AP =FE 时,四边形PAFE 是平行四边形.∵P (-2,-1), ∴可令F (x ,1). ∴1342=++x x.解之得: 221--=x, 222+-=x.∴F 点存在有两点,F 1(-22-,1),F 2(-22+,1). )。
2015年郑州市九年级第一次质量预测模拟(数学)(答案)一、选择题(每题3分,共24分)题号12345678答案D C B D A B C B二、填空题(每题3分,共21分)题号9101112131415答案485621x-<<-19321或2三、解答题(本大题8分,共75分)16.原式=====,∵x2﹣1≠0,x+3≠0,x﹣1≠0,x+1≠0,∴取x=2,代入得:原式==.17. 解:(1)本次抽样测试的学生人数是:124030%=(人),故答案为:40;(2)根据题意得:360°×640=54°,C级的人数是:40﹣6﹣12﹣8=14(人),如图:(3)根据题意得:3500×840=700(人),(4)根据题意画树形图如下:共有12种情况,选中小明的有6种,则P(选中小明)=612=12.18. 解:设CD 为x 米. ∵∠ACD=90°,∴在直角△ADC 中,∠DAC=30°,AC=CD ÷tan30°=3x , 在直角△BCD 中,∠DBC=45°,BC=CD=x ,BD=2x 37x x -=又∵2≈1.414,3≈1.732, ∴x=10米,则小明此时所收回的风筝的长度为:AD-BD=2x-2x 所以x=6米19.20. 证明:在正方形ABCD 中,AB=BC ,∠ABC=∠B, 在△ABM 和△B CP 中, AB BC ABC B CP BM =⎧⎪∠=∠⎨⎪=⎩, ∴△ABM ≌△BCP (SAS ), ∴AM=BP ,∠BAM=∠CBP , ∵∠BAM+∠AMB=90°, ∴∠CBP+∠AMB=90°, ∴AM ⊥BP ,∵AM 并将线段AM 绕M 顺时针旋转90°得到线段MN , ∴AM ⊥MN ,且AM=MN , ∴MN ∥BP ,∴四边形BMNP 是平行四边形; (2)解:BM=MC .理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°, ∴∠BAM=∠CMQ , 又∵∠B=∠C=90°, ∴△ABM ∽△MCQ , ∴AB MC =AM MQ , ∵△MCQ ∽△AMQ , ∴△AMQ ∽△ABM , ∴AB AM BM MQ =, ∴AB AB MC BM =, ∴BM=MC .21. 根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,. 所求一次函数的表达式为120y x =-+.⑵22(60)(120)1807200(90)900W x x x x x =-⋅-+=-+-=--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤, ∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元. ⑶由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,. 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤. 22. 解析:(2)AE=CD ,AE ⊥CD , ∵∠DBE=∠ABC=90°, ∴∠ABE=∠DBC , 在△AEB 和△CDB 中,∴△AEB ≌△CDB ,∴AE=CD ,∠EAB=∠DCB ,∵∠DCB+∠COB=90°,∠AOK=∠COB , ∴∠KOA+∠AOK=90°, ∴∠AKC=90°, ∴AE ⊥CD ;(3)AE=1kCD ,AE ⊥CD ,∵BC=kAB ,DB=kEB ,∴ABBC=BEBD=1k,∴BE BD AB BC=,∵∠DBE=∠ABC=90°,∴∠ABE=∠DBC,∴△AEB∽△CDB,∴1AE ABCD BC k==,∠EAB=∠DCB,∴AE=1k CD,∵k>1,∴AE≠CD,∵∠DCB+∠COB=90°,∠AOK=∠COB,∴∠KAO+∠AOK=90°,∴∠AKC=90°,∴AE⊥CD.23. 解:(1)令y=0,解得x1=﹣1或x2=3,∴A(﹣1,0),B(3,0),将C点的横坐标x=2,代入y=x2﹣2x﹣3,得:y=﹣3,∴C(2,﹣3);∴直线AC的函数解析式是:y=﹣x﹣1;(2)设P点的横坐标为x(﹣1≤x≤2),则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),∵P点在E点的上方,PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣12)2+94,∴当12x=时,PE的最大值=94;(3)存在4个这样的点F,分别是:F1(1,0),F2(﹣3,0),F3(4+,0),F4(4﹣,0).①如图1,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(﹣3,0);②如图2,AF=CG=2,A点的坐标为(﹣1,0),因此F点的坐标为(1,0);③如图3,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中,即可得出G点的坐标为(1±,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为:y=﹣x+h,将G点代入后,可得出直线的解析式为:y=﹣x+7.因此直线GF与x轴的交点F的坐标为:(4+,0);④如图4,同③可求出F的坐标为:(4﹣,0);综合四种情况可得出,存在4个符合条件的F点. .。
一选择题(每小题3分,共24分,下列各小题均有四个答案,其中只有一个是正确)1.-5的绝对值是() A.15- B.15C. 5-D. 52.下列四个交通标志中,轴对称图形是()3.不等式组:2011xx+≥⎧⎨-<⎩的解集在数轴上正确的是()4.某校有21名学生参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A.最高分B。
平均分 C.极差 D.中位数5.一个几何体的三视图如图所示,则这个几何体摆放的位置是()6.三角形两边的长是3和4,第三边的长是方程212350x x-+=的根,则该三角形的周长为()A. 14B. 12C. 14 或12D.以上都不对7.如图,线段AB是⊙O的直径,弦C D⊥AB,∠CAB =20°,则∠AOD等于()A. 160°B. 150°C. 140°D.120°8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N从A点出发沿折线AD→DC→CB以每秒3cm的速度运动,到达B时运动同时停止,设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是()二、填空题(每小题3分,共21分)9.1)=______________10.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M,如果∠ADF=100°,那么∠BMD为_____________度11.如图,A、B两点在双曲线4yx=上,分别经过A、B两点向坐标轴作垂线,已知S阴影=1,则12S S+=__________________12.如图,经过点B(-2,0)的直线y kx b=+与直线42y x=+相交于点A(-1,-2),则不等式4x+2<kx+b<0的解集为__________________13.三辆车按1,2,3编号,舟舟和嘉嘉两人可任意选坐一辆车,则两人同坐3号车的概率是______14.如图,在R t△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为___________15.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q,若PQ=AE,则AP等于___________cm.三、16.(8分)请你化简22236911211x x xx x x x+++÷+--++,再取恰当x的值代入求值。
2014—2015学年度九年级上期质量检测数学试题(试题卷) 姓名 成绩(全卷共25题,满分150分,考试时间120分钟)一、选择题:(本大题共10个小题,每小题4分,共40分) 1.从1到9这九个自然数中任取一个,是偶数的概率是( )A .B .C .D .2.线段d c b a 、、、是成比例线段,224===c b a 、、,则d 的长为( ) A .1 B .2 C .3 D. 4 3.一元二次方程092=-x 的根是( )A .3B .3±C .9D .9± 4.下列函数中,图象经过点)2 1(-,的是( ) A .x y 1=B .x y 1-=C .xy 2= D. x y 2-=5.(2013•包头)3tan30°的值等于( )A .B . 3C .D .6.用配方法解方程122=-x x 时,配方后所得的方程为( )A .0)1(2=+xB .0)1(2=-xC .2)1(2=+xD .2)1(2=-x 7.已知点) 2(1y A ,-,) 1(2y B ,-和) 3(3y C ,都在反比例函数xy 3=的图象上,则321y y y 、、的大小关系是( ) A .321y y y << B .123y y y << C .312y y y << D .231y y y <<8. 如图,小强自制了一个小孔成像装置,其中纸筒的长度为cm 15,他准备了一支长为cm 20的蜡烛,想要得到高度为cm 4的像,蜡烛与纸筒的距离应该为( )A .cm 60B . cm 65C .cm 70D . cm 759. 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB OE ⊥,垂足为E ,若︒=∠130ADC ,则A OE ∠的大小是( )A .︒75B .︒65C .︒55D .︒5010如图,正方形ABCD 位于第一象限,22=AC ,顶点C A 、在直线x y =上,且A 的横坐标为1,若双曲线)0(≠=k xky 与正方形ABCD 有交点,则k 的取值范围是( ) A .10≤<k 或6≥k B .61≤≤k C .91≤≤k D .10≤<k 或9≥k二、填空题:(本大题共6个小题,每小题4分,共24分)11.如图,已知在Rt△ACB 中,∠C=90°,AB=13,AC=12,则cosB 的值为 . 12.如图,点B 在反比例函数xy 2=()0>x 的图象上,过点B 向x 轴作垂线,垂足为A ,连接OB ,则OAB ∆的面积为__________;13.如图,在矩形ABCD 中,点F E 、分别是CD AB 、的中点,连接DE 和BF ,分别取BF DE 、的中点N M 、,连接MN CN AM 、、.若3=AB ,52=BC ,则图中阴影部分的面积为___________;14.如图,将DEF △缩小为原来的一半,操作方法如下:任意取一点P ,连接DP ,取DP 的中点A ,再连接EP FP 、,取它们的中点B C 、,得到ABC △,则下列说法正确的有___________ ①ABC △与DEF △是位似图形; ②ABC △与DEF △是相似图形;③ABC △与DEF △的周长比是1:2; ④ABC △与DEF △的面积比是1:2.15.从3211 3---、、、、这五个数中,取一个数作为函数xk y 2-=和关于x 的方程 012)1(2=+++kx x k 中k 的值,恰好使所得函数的图象经过第二、四象限,且方程有实根,满足要求的k 的值共有__________个; 16. 如图,正方形OABC 的顶点O 是坐标原点,顶点A 在x 轴的正半轴上,3=OA ,点D 是BC 边的中点,连接OD ,点E 在OC 上且1:2:=OE CE ,过点E 作EF ∥OA 交OD 于点G ,交AB 于点F ,连接DF ,过点G 作DF GH ⊥,垂足为H ,若BC 边上有一点P 与点H 在同一反比例函数的图象上,则点P 的坐标为_____________;三、解答题:(共86分)解答时每小题必须给出必要的演算过程或推理步骤.17.(7分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张。
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
新世纪教育网精选资料版权全部@新世纪教育网郑州市 2014 年九年级第一次质量展望数学试题卷2014.1.(满分 120分,考试时间100分钟)一、选择题(此题共8个小题,每题 3分,共 24分)1.1)的相反数是(511C. 5 D .5 A . B .552.网上购物已成为现代人花费的趋向, 2013年天猫“11·11”购物狂欢节创建了一天 350.19亿元的支付宝成交额.此中350.19亿用科学记数法能够表示为()A . 350.19×108B. 3.501 9× 109C.35.019 × 109D. 3.501 9× 10103. 妈妈昨天为小杰制作了一个正方体礼物盒,该礼物盒的六个面上各有一个字,连起来就是“宽容是种美德”,此中“宽”的对面是“是”,“美”的对面是“德”,则它的平面睁开图可能是()宽容宽宽是种容是种美容美种德宽容是美德德是种美德A.B.C.D.4.小华所在的九年级( 1)班共有 50名学生,一次体检丈量了全班学生的身高,由此求得该班学生的均匀身高是 1.65米,而小华的身高是 1.68米,以下说法错误的选项是()A .班上比小华高的学生人数不超出25人B. 1.65米是该班学生身高的均匀水平C.这组身高数据的中位数不必定是 1.65米D.这组身高数据的众数不必定是 1.65米5. 小明在 2013年暑期帮某服饰店买卖T恤衫时发现:在一段时间内,T恤衫按每件 80元销售时,每日销售量是20件,而单价每降低4元,每日就能够多销售8件,已知该 T恤衫进价是每件40元.请问服饰店一天能盈利 1 200元吗?假如设每件降价x元,那么以下所列方程正确的是()A. (80x)(20x) 1 200B. (80x)(202x) 1 200C. (40x)(20x) 1 200D. (40x)(202x) 1 2006. 如图,直线 l上摆有三个正方形 a,b,c,若 a,c的面积分别为10和 8,则 b的面积是()A.16B. 20C. 18D. 24yC P Da bc E第6第7第87.如手的表示,在各个手指字母A, B, C,D .你按中箭所指方向(即A→B→ C→ D→ C→ B→ A→ B→ C→⋯的方式)从A开始数的正整数1,2,3,4,⋯,当字母 B第 2 014次出,恰巧数到的数是()A.4 028B.6 042C.8 056D.12 0848.如,一条抛物与 x订交于 A, B两点,其点 P在折 CD - DE上移,若点 C, D, E的坐分( 2, 8), (8, 8) , (8, 2),点 B的横坐的最小0,点 A的横坐的最大()A . 5B. 6C. 7D. 8二、填空(本共7个小,每小3分,共 21分)9. 算16 =_________.10.已知反比率函数 y 6的象点 P(2,a), a=_____________ .x11.《爸爸去哪儿》有一期住宅,一排五套房屋号分1, 2, 3, 4,5.五个家庭每家只好一套房不可以重复,Kimi 和王代表各自家庭房,他的住宅号相的概率是___________.12.如,半径 5的⊙ A点 C(0, 5)和点 O(0, 0), B是 y右⊙ A弧上一点,∠ OBC的正弦___________.yCAOxB13.数学的美无不在,数学家研究琴弦作声音的音高低取决于弦的度,如三根弦之比15: 12: 10,把它得一,用同的力度,它将分出很和的声: do、mi 、 so,研究 15, 12, 10三个数的倒数:1111121510,此12我称 15, 12, 10一和数,有一和数:x, 5, 3 (x5),整数 x的___________.14.如,在菱形片 ABCD 中,∠ A=60°.将片折叠,点 A, D分落在点 A′, D′ ,且A′ D′ 点 B, EF 折痕,当 D ′ F⊥ CD,CG_________.BGDyAFEACD xEBOGCA'B D'第 14第 1515. 如 ,在菱形 ABCD 中, 角 AC ,BD 订交于点 O ,AC=6,BD =8,E AD 中点,点 P 在x 上移 . 你写出全部使△POE 等腰三角形的P 点坐 : __________________ .三、解答 (本 共8个小 ,共 75分)÷ a 2 1 a1aba1 ab216. ( 8分)化 :a ,b 代入求 .,并 你喜 的整数小 算 一 的 程以下:解:原式ab ÷(a1)(a 1) a1⋯⋯ ①a 1ab 2aba 1 a1⋯⋯ ②(a 1)(a 1) ab 21⋯⋯ ③ab当a=1, b=1 ,原式 =1.⋯⋯④以上 程有两 ,第一次出 在第_______步(填序号),原由:________________ ;有第 _______步出 (填序号),原由:____________________ .你写出此 的正确解答 程.17. ( 9分)某校有学生 3 600人,在 “文明我先行 ”的活 中,开 了 “法律、礼 、 保、感恩、相助 ”五校本 程, 定每位学生必 且只好 一 . 认识学生的 名意愿,学校随机 了一些学生,并制成以下 表和 :(1)在 次 活 中,学校采纳的 方式是_________(填写 “普 ”或 “抽 ”),a=_________ ; m=_________ ; n=_________.(2) 全条形 ;假如要画一个“校本 程 名意愿扇形 ”,那么 “ 保 ” 校本 程所 的扇形 心角_______度.( 3) 估量 校 3 600名学生中 “感恩 ”校本 程的学生 有多少人.程 数 率法律360. 09校本课程报名意愿条形统计图550. 137 5礼仪人数 /人180160130140120100805549603640200法律礼仪环保感恩相助课程类型环保m a感恩1300. 325相助490. 122 5共计n 1.0018.(9分)礼拜天,小丽和同学们来碧沙岗公园游乐,他们到达 1928年冯玉祥将军为纪念北伐军阵亡将士所立的纪念碑前,小丽和同学们寂然起敬,小丽问:“这个纪念碑有多高呢?”.请你利用初中数学知识,设计一种方案丈量纪念碑的高(画出表示图),并说明原由.19. ( 9分)我们知道,关于二次函数y a( xm)2k的图象,可由函数yax2的图象进行向左或向右平移m个单位、再向上或向下平移k个单位获得,我们称函数yax2为“基本函数”,而称由它平移获得的二次函数y a ( x m)2k y ax2的为“基本函数”“朋友函数”.左右、上下平移的路径称为朋友路径,对应点之间的线段距离m2k 2称为朋友距离.如一次函数y2x 5是基本函数y2x的朋友函数,由y2x 5 可化成y 2 (x1) 31个单位,再向下平移3个单位,朋友,于是,朋友路径能够是向右平移距离123210 .(1)研究一:小明同学经过思虑后,为函数y2x5又找到了一条朋友路径:由基本函数y 2 x先向 _____,再向下平移7个单位,相应的朋友距离为_____;4x51 y1 化成yy(2)研究二:将函数x__________ ,使其和它的基本函数x成为朋友函数,并写出朋友路径,求相应的朋友距离.20. ( 9分)我南海巡逻船接到有人落水求救信号,如图,巡逻船A观察到∠ PAB=67.5 °,同时,巡逻船B观察到∠ PBA=36.9 °,两巡逻船相距63海里,求此时巡逻3312船 A与落水人 P的距离?(参照数据: sin36.9 ≈°5,tan36.9 °≈4,sin67.5 °≈13,tan67.5 °12≈5)B36.9 °P67.5 °A21.( 10分)某小区有一长 100m,宽 80m的空地,现将其建成花园广场,设计图案如图,暗影地区为绿化区(四块绿化区是全等矩形),空白地区为活动区,且周围出口同样宽,宽度不小于 50m,不大于 60m,估计活动区每平方米造价 60元,绿化区每平方米造价 50 元.设一块绿化区的长边为 x( m).(1)设工程总造价为 y(元),直接写出工程总造价 y(元)与 x( m)的函数关系式:__________________.(2)假如小区投资46.9万元,问可否达成工程任务,若能,请写出x为整数的全部工程方案;若不可以,请说明原由.(参照值3 1.732)出口出口出口出口22.(10分)如图 1,已知正方形 ABCD 在直线 MN 的上方, BC在直线 MN上, E是射线 BC上一点,以 AE为边在直线 MN 的上方作正方形 AEFG .(1)连结 FC ,察看并猜想 tan∠ FCN 的值,并说明原由;(2)如图 2,将图 1中正方形 ABCD 改为矩形 ABCD , AB=m, BC=n( m, n为常数), E 是射线 BC上一动点(不含端点B),以 AE为边在直线 MN 的上方作矩形 AEFG ,使极点G恰巧落在射线 CD上,当点 E沿射线 CN运动时,请用含 m,n的代数式表示 tan∠FCN 的值.GGFFA DA DMB C E N MB C E N图 1图 223.( 11分)如图,已知抛物线 y=ax2+bx+c( a≠ 0)的极点坐标为 Q(- 2, - 1),且与 y轴交于点C(0, 3),与 x轴交于 A, B两点(点 A在点 B的左边),点 P是该抛物线上一动点,从点C沿抛物线向点 A运动(点 P与 A不重合),过点P作PD∥ y轴,交直线 AC于点 D.(1)求该抛物线的函数关系式.(2)当△ ADP 是直角三角形时,求点 P的坐标.(3)在问题( 2)的结论下,若点E在 x轴上,点 F在抛物线上,问能否存在以A, P,E,F为极点的平行四边形?若存在,请直接写出点 F 的坐标;若不存在,请简单说明原由.yCDPA B O xQ新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
FCB AE D 第5题图FCBAED GH第7题图郑州市2015年九年级第一次质量预测数学试题一.选择题(3分×8=24分)1.下列各组数中,互为相反数的两个数是( ) A -3和 +2 B 5和15 C -6和6 D 13-和122.如图所示的几何体是由一个正方体切去一个小正方体形成的,从正面看到的平面图形为( )正面第2题图ABCD3.黄河农场各用10块面积相同的试验田种植甲、乙两种麦子,收获后对两种麦子产量(单位:吨/亩)的数据统计如下:220.61,0.59,S 0.01,S 0.002x x ====甲乙甲乙,则由上述数据推断乙种麦子产量比较稳定的依据是( )A x x >甲乙B 22S S >甲乙C 2S x >甲甲D 2S x >乙乙 4.下列各式计算正确的是( )A 2223a a += B ()236bb -=- C 235c c c = D ()222m n m n -=-5.如图,△ABC 中,BE 、CF 分别是∠ABC 、∠ACB 的角平分线,∠A=50°,那么∠BDC 的度数是( ) A 105° B 115° C 125° D 135°6.第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有3名来自莫斯科国立大学,有5名来自圣彼得堡鼓励大学,现从这8名志愿者中随机抽取1人,这名志愿者来自莫斯科国立大学的概率是( ) A14 B 15 C 18 D 387.如图,D 是△ABC 内一点,BD ⊥CD ,AD=12,BD=8,CD=6,E 、F 、G 、H 分别 是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是( )A 14B 18C 20D 228.观察二次函数2y ax bx c =++()0a ≠的图像,下列四个结论:①240ac b ->;②42a c b +<;③0b c +<;④()()1n ab b b a n +-<≠.正确结论的个数是( ) A 4个 B 3个 C 2个 D 1个二.填空题(3分×7=21分)FC BAED B 'A '第14题图9.计算2sin 30︒= .10.中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为 .11.请你写出一个大于1而小于5 的无理数 . 12.在平面直角坐标系中,直线211y x =-+与直线1533y x =+的交点坐标为(4,3),则方程组 21135x y x y +=⎧⎨-=-⎩的解为 .13.冯老师为了响应市政府“绿色出行”的号召,上下班由自驾车改为骑自行车.已知冯老师家距学校15km ,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多13h.如果设骑自行车的速度为x km/h ,则由题意可列方程为 .14.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB=2, BC=3,则'FCB 与'B DG 的面积之比为 .15.在平面直角坐标系中,已知点A (-4,2),B (-2,-2),以原点O 为位似中心,把 △ABO 放大为原来的2倍,则点A 的对应点'A 的坐标是 . 三.解答题(本大题共8个小题,共75分)16.(8分)课堂上,王老师出了这样一道题:已知201553x =-,求代数式22213111x x x x x -+-⎛⎫÷+ ⎪+-⎝⎭的值. 小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与x 无关” 解答过程如下: 原式 =()()()2113111x x x x x x -++-÷-++……… ①=()()11x x -÷+ ……… ②=()()()11121x x x x -+⨯+- ……… ③= 12 ……… ……… ……… ④⑴从原式到步骤①,用到的数学知识有: ;⑵步骤②中的空白处的代数式为: ;⑶从步骤③到步骤④,用到的数学知识有: .17.(9分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.郑州市的一个社区随机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A 、B 两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.月消费额分组统计表组别 消费额(元)A 10100x ≤<B 100200x ≤<C 200300x ≤<D 300400x ≤<E400x ≥(1)A 组的频数是 ,本次调查样本的容量是 ; (2)补全直方图(需标明各组频数);(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?18.(9分)如图1,小颖将一组平行的纸条折叠,点A 、B 分别落在在A ′,B ′处,线段FB ′与AD 交于点M. ⑴试判断△MEF 的形状,并证明你的结论; ⑵如图②,将纸条的另一部分CFMD 沿MN 折叠, 点C ,D 分别落在C ′,D ′处,且使MD ′经过点F ,试判断四边形MNFE 的形状,并证明你的结论; ⑶当∠BFE=_____度时,四边形MNFE 是菱形.19.(9分)住在郑东新区的小明知道“中原第一高楼”有多高, 他登上了附近的另一座高层酒店的顶层某处.已知小明所处位置 距离地面有160米高,测得“中原第一高楼”顶部的仰角为37°, 测得“中原第一高楼”底部的俯角为45°,请你用初中数学 知识帮小明解决这个问题.(请你画出示意图,并说明理由) (参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)20.(9分)如图,已知反比例函数11k y x=(10k <)与一次函数221y k x =+(20k ≠)相交于A 、B 两点,AC ⊥x 轴于点C ,若△OAC 的面积为1,且tan AOC 2∠=. ⑴求反比例函数与一次函数的表达式;⑵请直接写出B 点的坐标,并指出当x 为何值时,反比例函数1y 的 值小于一次函数2y 的值.21.(10分)某旅馆有客房120间,每间房的日租金为160元,每天都客满.旅馆装修后要提高租金,经市场调查,如果一间客房日租金每增加10元,则客房每天少出租6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金的总收入增加多少元?22.(10分)如图①,正方形AEFG 的边长为1,正方形ABCD 的边长为3,且点F 在AD 上. (1)求DBFS;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBFS ;(3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBFS 存在最大值与最小值,请直接写出最大值 ,最小值 .23.(11分)已知抛物线2y ax bx c =++()0a ≠与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,OB=2,OC=8,抛物线的对称轴是直线x=-2. (1)求此抛物线的表达式; (2)连接AC 、BC 、,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 做EF//AC 交与点F ,连接CE ,设AE 的长为m ,⊿CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(3)在(2)的基础上说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此点E 的坐标,判断此时⊿BCE 的形状;若不存在,请说明理由.2015年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分)1. C2. A3. B4. C5. B6. D7. D8. C 二、填空题(每小题3分,共21分)9. 1; 10. 8210⨯; 11. 答案不唯一,如π、2等; 12. 43x y =⎧⎨=⎩;13.1515123x x -=; 14. 16:9 ; 15.A '(8-,4)或A '(8,4-). 三、解答题(本大题共8小题,共75分) 16.解:(1)因式分解,通分,分解因式中的完全平方公式和平方差公式,分式的基本性质; (写对一个即可) ……………… 3分 (2)221x x -+(或2(1)1x x -+);………6分 (3)约分(或分式的基本性质). ………………8分17. 解:(1)A 组的频数是: 2;调查样本的容量是: 50 ; ……………………… 4分 (2)C 组的频数是:50×40%=20,如图.…………………6分(3)∵1500×(28%+8%)=540, ∴全社区捐款不少于300元的户数是540户.…………………9分 18. 解:(1)△MEF 是等腰三角形;…………… 2分 (2)四边形MNFE 为平行四边形,…………… 3分 理由如下:∵AD ∥BC , ∴∠MEF=∠EFB .由折叠知∠MFE=∠EFB , 故∠MEF=∠MFE .∴ME =MF ,同理NF =MF .…………… 5分 ∴ME =NF . 又∵ME ∥NF ,∴四边形MNFE 为平行四边形.…………… 7分 (3) 60.…………… 9分19.解:如图所示,…………… 2分AB 代表小明所处位置到地面的距离,即160AB =米, CD 代表“中原第一高楼”, ………………… 3分 作AE ⊥CD 于点E.由题意可知,四边形ABD E 是矩形,所以160AB DE ==米. 在Rt △ADE 中,∵tan DEDAE AE∠=,160DE =, ∴160tan 451AE==,∴160AE =.…………… 5分 在R t △AEC 中,∵tan CEAEC AE∠=,160AE =,∴tan 370.75160CE==,∴120CE =,…………… 7分 ∴120160280CD CE DE =+=+=(米), ∴“中原第一高楼”高280米. ……………9分20.解:(1)∵点A 在11k y x=的图象上,S △ACO =1,∴1212k =⨯=,又∵10k <,∴12k =-. ∴反比例函数的表达式为12y x=-.……………2分设点A (a ,2a-),0a <, ∵在R t △AOC 中,tan 2ACAOC OC ∠==,∴22a a-=-, ∵0a <, ∴1a =-. ∴A (1-,2).∵点A (1-,2)在221y k x =+上,∴221k =-+,∴21k =-.∴一次函数的表达式为21y x =-+. ……………5分 (2)点B 坐标为(2,1-),……………7分 观察图象可知,当1x <-或02x <<时,反比例函数1y 的值小于一次函数2y 的值. …………… 9分21.设每间客房的日租金提高10x 元,则每天客房出租数会减少6x 间.设装修后客房日租金总收入为y ,……………1分则y =(160+10x )(120-6x ),……………4分即y =-60(x -2)2+19 440. ∵x ≥0,且120-6x >0, ∴0≤x <20.当x =2时,y max =19 440. ……………7分这时每间客房的日租金为160+10×2=180(元). ……………8分装修后比装修前日租金总收入增加19 440-120×160=240(元). ……………9分答:每间客房的日租金提高到180元时,客房日租金的总收入最高;装修后比装修前日租金总收入增加240元. ……………10分22. 解:(1)∵点F 在AD 上, ∴2AF =,∴32DF =-,∴11932(32)2222DBF S DF AB =⨯⨯=-=-△××3.……………3分 (2)连结AF , 由题意易知AF BD ∥,∴92DBF ABD S S ==△△.…………… 6分(3)152;32.…………… 10分 23. 解:(1)∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,2OB =,8OC =,∴点B 的坐标为(2,0),点C 的坐标为(0,8). ……… 2分又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2, ∴由抛物线的对称性可得点A 的坐标为(-6,0). ∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上, ∴c =8,将A (-6,0)、B (2,0)分别 代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧0=36a -6b +80=4a +2b +8 ⎩⎨⎧a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83x +8. ………3分(2)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,由勾股定理得AC =10,∵EF ∥AC , ∴△BEF ∽△BAC . ∴EF AC =BEAB .即EF 10=8-m8 . ∴EF =40-5m 4.过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45.∴FG EF =45. ∴FG =45×40-5m 4=8-m . ∴S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=-12m 2+4m . …………… 7分自变量m 的取值范围是0<m <8. …………… 8分 (3)存在. …………… 9分 理由:∵S =-12m 2+4m =-12(m -4)2+8,且-12<0,∴当m =4时,S 有最大值,S 最大值=8.此时,点E 的坐标为(—2,0) …………… 11分。