第3章 线性代数方程组的解法
- 格式:ppt
- 大小:1.73 MB
- 文档页数:137
第三章 线性方程组第一章中的克莱姆法则解决了部分线性方程组的求解问题。
当系数矩阵行列式||0A =,或方程组的个数与未知量个数不相等时,克莱姆法则就无法给出解的存在性。
另外即使可用克莱姆法则求解的线性方程组,其计算量也非常大,这一章主要解决一般线性方程组的求解问题。
§1 解的有关概念对于一般线性方程组11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩, 记()ij m n A a ⨯=,12(,,,)T n X x x x =,12(,,,)T m B b b b =,则线性方程组可写成矩阵形式AX B =。
记(|)A A B =,称为线性方程组的增广矩阵。
如果0X 满足0AX B =,则称0X 为线性方程组AX B =的解;如果对任意X ,AX B =均不成立,称线性方程组AX B =无解。
有解的线性方程组也称为相容的线性方程组,无解的线性方程组称为不相容的线性方程组。
定义1:设有线性方程组11 (I)A X B =和22(II)A X B =,如果(I)的解全是(II)的解,且(II)的解也是(I)的解,则称线性方程组(I)与(II)同解。
如果线性方程组的解能用统一的形式来表示,称该解为线性方程组一般解(或通解);相对应的具体的解称为特解。
求解线性方程组就是把线性方程组经过同解变换化成容易求解的方程组。
从而写出方程组的解。
§2 线性方程组的解法定义2:下列变换称为方程组的初等变换: 1) 交换两个方程位置; 2) 某一方程的非零k 倍;3) 某一方程的k 倍加到另一方程上。
性质1:方程组的初等变换是同解变换。
按同解的定义验证每经过一次方程组的初等变换均不改变方程组的解即可。
性质2:方程组的初等变换,对应于增广矩阵的初等行变换。
第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。
例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。
关于线性方程组的数值解法一般有两类:直接法和迭代法。
1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。
迭代法适用于解大型的稀疏矩阵方程组。
为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。
3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。
()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⇔∈⨯nn n n n n ij nm a a a a a aa a a a ΛΛΛΛΛΛ212222111211A R A 此实数排成的矩形表,称为m 行n 列矩阵。
⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⇔∈n n x x x M 21x R x x 称为n 维列向量矩阵A 也可以写成)(n 21a ,,a ,a A Λ= 其中 a i 为A 的第i 列。
同理⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T T n 21b b b A M其中Ti b 为A 的第i 行。
矩阵的基本运算:(1) 矩阵加法 )( ,n m n m R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c . (2) 矩阵与标量的乘法 ij j a ci αα== ,A C (3) 矩阵与矩阵乘法 p nk kj ikb acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T nm a c ==∈⨯ , ,A C RA(5) 单位矩阵 ()nn ⨯∈=Re ,,e ,e I n 21Λ,其中()Tk e 0,0,1,0,0ΛΛ= k=1,2,…,n(6) 非奇异矩阵 设n n ⨯∈R A ,n n ⨯∈R B 。