第7课时分式与分式方程
- 格式:doc
- 大小:34.50 KB
- 文档页数:2
分式的概念及运算一、知识梳理知识点1:. 分式:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。
三个热点:①有意义;②无意义;③值为0知识点2:1.分式的基本性质:2.分式的变号法则:知识点3:分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.二、例题(一)、分式定义及有关题型题型一:考查分式的定义【例题1】、下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有:.题型二:考查分式的三个热点【例题2】、当x有何值时,下列分式①有意义;②无意义;③值为0?(1)42||2--x x(2)232+x x (3)3||6--x x【例题3】、若2||323x x x ---的值为零,则x 的值是.MB M A M B M A B A ÷÷=⨯⨯=bab a b a b a =--=+--=--题型三:考查分式的值为正、负的条件【例题4】、(1)当x为何值时,分式x-84为正;(2)当为何值时,分式为负;(3)当为何值时,分式为非负数.(二)分式的基本性质及有关题型题型一:化分数系数、小数系数为整数系数【例题5】、不改变分式的值,把分子、分母的系数化为整数. (1) (2)题型二:分数的系数变号【例题6】、不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx yx --+-(2)ba a ---(3)题型三:化简求值题【例题7】、已知:,求y xy x yxy x +++-2232的值.x 2)1(35-+-x x x 32+-x x y x y x 41313221+-ba ba +-04.003.02.0ba ---511=+yx【例题8】、已知:,求的值.三)分式的运算题型一:通分【例题9、将下列各式分别通分.(1);(2);(3);(4)题型二:约分【例题10】、约分:(1);(3);(3)2244xy yx x--+21=-xx221xx+cbacababc225,3,2--abbbaa22,--22,21,1222--+--xxxxxxx aa-+21,2 322016xyyx-nmmn--22题型三:分式的混合运算化简求值题【例题11】、计算:化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x --B .82x - C . D .题型四:【例题12】、先化简,再求值4421642++-÷-x x x x ,其中 x = 3 .题型五:求待定字母的值【例5】若111312-++=--x N x M x x ,试求NM ,的值.三、课堂练习1.要使分式有意义,则x 应满足的条件是( ) A .1x ≠B .1x ≠-C .0x ≠D .1x >2.若分式33x x -+的值为零,则x 的值是( ) A .3 B .3- C .3± D .03.化简222a b a ab -+的结果为( )A .b a -B .a b a -C .a b a +D .82x -+82x +11x +b -4.化简的结果是( ) A . B . C .2a b - D .2b a+5.计算22()ab a b-的结果是( )A .aB .bC .1D .-b6.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-”小明的做法是:原式;小亮的做法是:原式;小芳的做法是:原式. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的7.化简的结果是( ) A .2a b -- B .2b a - C .2a b - D .2b a +二、填空题1.当时,分式无意义.2. a 、b 为实数,且ab =1,设P =,Q =,则PQ (填“>”、“<”或“=”).3.某单位全体员工在植树节义务植树240棵.原计划每小时植树a 棵。
分式方程概念总汇1、分式方程的定义分母里含有未知数的方程叫分式方程。
说明:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。
(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程。
2、分式方程的解法(1)解分式方程的基本思想把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。
(2)解分式方程的一般方法和步骤第一步:去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。
第二步:解这个整式方程。
第三步:验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根。
说明:(1)分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。
(2)增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。
当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。
3、分式方程的应用分式方程的应用主要就是列方程解应用题,它与学习一元一次方程时列方程解应用题的基本思路和方法是一样的,不同的是,表示关系的代数式是分式而已。
一般地,列分式方程(组)解应用题的一般步骤:第一步:审清题意;第二步:设未知数;第三步:根据题意找等量关系,列出分式方程;第四步:解分式方程,并验根;第五步:检验分式方程的根是否符合题意,并根据检验结果写出答案.方法引导一、解分式方程的方法例1、与异分母相关的分式方程解方程=难度等级:A解:7x=5(x-2),解得x=-5经检验,x=-5是原分式方程的根。
第17章 分式(第7课时)姓 名:学习课题:分式方程的应用学习目标:1、学会列分式方程解应用题(列表法);2、理解检验的必要性,并会进行检验;学习重点:可化为一元一次方程的分式方程的解法。
学习难点:对应用题的理解。
学习过程:一、准备练习1、货车行驶25千米与小车行驶35千米所用的时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A 、25x =35x -20B 、25x -20=35xC 、25x =35x +20D 、25x +20=35x2、分式方程的解答,区别于整式方程的是 。
二、要点突破例1 轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.分析:如果设轮船在静水中航行的速度是x 千米/时,水流的速度是3千米/时,则轮船在顺水中航行的速度是 千米/时;轮船在顺水中航行的速度是 千米/时,先完成表格后解题。
解:设轮船在静水中航行的速度是x 千米/时,由题意得: 380+x =360-x 方程两边同乘以(x +3)(x -3),得 80(x -3)=60(x +3) 解之得:x =21 经检验,x =21是原方程的解且符合题意。
答:轮船在静水中的速度为21千米/时例2 某校招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位程序操作员各向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.问这两个操作员每分钟各能输入多少名学生的成绩?解: 分析:小结:列表法是列方程(组)解应用题的常用方法之一,把已知条件和所求未知纳入表格,从而找出各种数量之间的关系;三、自我检测1、供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.路程 速度 时间 顺水 80 x +3 380+x 逆水 60 x -3 360-x 总量 速度 时间 甲 乙2、一台电子收报机,它的译电效率相当人工译电效率的75倍,译电3 000个字比人工少用2小时28分.求这台收报机与人工每分钟译电的字数.3、某大商场家电部送货人员与销售人员人数之比为1:8,今年由于家电销售明显增多,家电部从销售人员中抽调了22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有多少人为送货人员和销售人员?4、甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.5、学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?。
如何理解分式方程和分式方程的根学习分式方程和求解分式方程的根时,容易产生一些模糊的认识,要真正弄懂学好,应注意以下几点:1. 分式方程是分母含未知数的有理方程。
这告诉我们:①分式方程是形式上的定义。
如方程12=xx 与1=x 是不同的两个方程,前者为分式方程,后者为整式方程。
②分式方程强调分母是含未知数而不是含有字母,这与分式定义中分母规定不一定。
如关于x 的方程221m x m -=+,它不是分式方程,而是整式方程。
③分式方程是有理方程。
如方程1=x x 不是分式方程。
2. 解分式方程时,去分母的方法不一定要乘最简公分母,但乘以最简公分母意义在于它不仅能使去分母具有可行性,同时演算简洁,有时还可减少增根个数。
如:解方程112212=++++x x x x ,若方程两边乘以)12)(1(2+++x x x ,解得1±=x ,而1-=x 为增根;若方程两边乘以122++x x ,解得1=x 为原方程的根。
3. 分式方程与它变形之后的整式方程的关系表现在:一方面,分式方程的根是从整式方程中求出来的,它一定是整式方程的根。
但整式方程的根不一定是分式方程的根,若是它的根的条件是要使分母不为零。
另一方面,分式方程的要求解要依靠整式方程,只不过其中排除分母不为零这一因素。
如关于x 的方程111=++x k 的解为负数,求k 的范围。
分式方程变形后得整式方程为k x =,若整式方程解为负时,则0<k 。
但分式方程解为负数时,不仅0<k 且01≠+x 即0<k 且1-≠k 。
4. 解分式方程时常常出现增根,我们要全面认识它。
①分式方程增根产生的原因是在分式方程左右两边乘的最简公分母为了零。
如分式方程21152=+x 一定不会产生增根,因为最简公分母0)1(22≠+x 。
②使最简公分母为零的未知数的值均可能是增根,且增根也只可能在这些值中。
如分式方程xx x x x x 12122+=+-+,0=x 与1-=x 均有可能为它的增根,解后知增根为1-=x 。
《分式及分式方程》教材分析一、课标要求课程总目标和学段目标不再缀述,本章内容《课标》要求如下:1.了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分,能进行简单的分式加减乘除运算。
2.能根据具本问题中的数量关系列出分式方程,体会分式方程是刻画现实世界数量关系的有效模型。
3.能理解可化为一元一次方程的分式方程的分式方程。
4.以根据具体问题的实际意义,检验方程的解是否合理。
根据《课标》要求,确定如下学习目标二、学习目标1. 经历用分式、分式方程表示现实情境中数量关系的过程,了解分式、最简分式、分式方程的概念,体会分式、分式方程的模型思想,进一步发展符号意识。
2.经历通过观察、归纳、类比、猜想,获得分式基本性质、分式乘除法则、分式加减法则的过程,发展合情推理的能力与代数式恒等变形能力,积累类比活动经验。
3.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,会求分式的值,会解可化为一元一次方程的分式方程,会检验分式方程的根,发展运算能力。
4.能解决一此与分式、分式方程有关的实际问题、发展分析问题、解决问题的能力和应用意识。
三、教析分析教材总设计了4节内容第一节:“认识分式”。
通过土地沙化、上海世博会等实例中存在的数量关系引入分式概念,体会分式的模型作用;通过类比分数的基本性质,理解分式的基本性质。
第二节“分式的乘除法”通过类比分数的乘除法则,获得分式乘除法的法则,并会用法则进行分式运算。
第三节“分式的加减法”。
通过类比分数加减法的法则,获得分式加减法的法则,并会用法则进行分式的运算。
第四节“分式方程”通过列出刻画行程、捐款等实例的方程,分析所列出的方程工共同特征,理解分式方程的概念,进而学习怎样解分式方程,并会用分式方程解决简单的实际问题。
四、教学建议1.要让学生充分经历字母表求实际问题中的数量关系的过程,发展学生的符号意识,体会模型思想。
在《课标》前言中就提到:在数学课程中应发展学生的符号意识,符号意识主要是指能够运用符号表示数、数量关系和变化规律;知道符号可以进行运算和推理,得到的结论具有一般性。
分式方程————————————————————————————————作者:————————————————————————————————日期:分式方程一、分式方程:1、识别一个方程是分式方程的关键是方程分母中有未知数。
2、解分式方程的基本思想是:“把分式方程的分母去掉,使分式方程化为整式方程,就可以利用整式方程的解法求解”。
这就是“转化思想”。
3、将分式方程转化为整式方程,转化的条件是“去分母”。
其方法是在分式的两边同乘以分式方程中各分式的最简公分母。
4、在方程变形中,有时可能产生不适合原方程的根,这种根叫做原方程的“增根”。
应当舍去。
因此,解得整式方程的根后,要代入原分式方程检验,适合原方程即为分式方程的根,不适合,就说明原方程无解。
也可以代入去分母时乘以的最简公分母中,使公分母≠0时为原方程的解,使公分母=0时为增根舍去。
例5,解方程:。
分析:本题方程中分母含有未知数x,是分式方程,解分式方程的关键是去分母,将分式方程化为整式方程,首先要将各个分母能因式分解的多项式先做因式分解,再找最简公分母。
解:将原方程变形:去分母:方程两边同乘以2(x+3)得:4+3(x+3)=7,去括号:4+3x+9=7移项:3x=7-4-9合并同类项:3x=-6系数化为1:x=-2检验:把x=-2代入原方程左边==2+=,右边==,∵左边=右边,∴x=-2是原方程的解。
注:把求得的未知数的值代入原方程检验,不仅可以检验出是不是增根,还可以检查在解方程过程中计算是否有错误。
例6,解方程:=1-。
分析:本题方程中分母含有未知数,是分式方程,解分式方程的关键是去分母,此题中分母应先按x的降幂排列,再因式分解,这样便于找最简公分母。
解:原方程变形:=1-去分母:方程两边同乘以(x-7)(x-1),得:(x-3)(x-7)-(x-5)(x-1)=(x-7)(x-1)-(x2-2)去括号:x2-10x+21-x2+6x-5=x2-8x+7-x2+2合并同类项:-4x+16=-8x+9移项:-4x+8x=9-16合并同类项:4x=-7系数化为1:∴x=-检验:将x=-代入(x-7)(x-1)∵(x-7)(x-1)=( --7)(--1)≠0,∴x=-是原方程的解。
分式与分式方程一.选择题1.(2015•淄博第10题,4分)若关于x 的方程+=2的解为正数,则m 的取值范围是( )A . m <6B .m >6C . m <6且m ≠0D . m >6且m ≠8考点: 分式方程的解..分析: 先得出分式方程的解,再得出关于m 的不等式,解答即可. 解答: 解:原方程化为整式方程得:2﹣x ﹣m =2(x ﹣2), 解得:x =2﹣, 因为关于x 的方程+=2的解为正数,可得:,解得:m <6,因为x =2时原方程无解, 所以可得,解得:m ≠0. 故选C .点评: 此题考查分式方程,关键是根据分式方程的解法进行分析. 2、(2015•四川自贡,第3题4分)方程-=+2x 10x 1的解是( ) A .1或-1 B .-1 C .0 D .1 考点:解分式方程、分式方程的解.分析:解分式方程关键是去分母化为整式方程来解,但整式方程的解不一定是分式方程的解,要注意代入最简公分母验根(代入最简公分母后所得到值不能为0).略解:去分母:-=2x 10,解得:,==-12x 1x 1;把,==-12x 1x 1代入+=x 10后知=-x 1不是原分式方程的解,原分式方程的解=x 1.故选D .3. (2015•浙江金华,第2题3分)要使分式1x 2+有意义,则x 的取值应满足【 】A . x 2=-B . x 2≠-C . x 2>-D . x 2≠- 【答案】D .【考点】分式有意义的条件.【分析】根据分式分母不为0的条件,要使1x 2+在实数范围内有意义,必须x 20x 2+≠⇒≠-.故选D .5. (2015•四川省内江市,第5题,3分)函数y =+中自变量x 的取值范围是( )A . x ≤2B .x ≤2且x ≠1 C . x <2且x ≠1 D . x ≠1考点: 函数自变量的取值范围..分析: 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解答: 解:根据二次根式有意义,分式有意义得:2﹣x ≥0且x ﹣1≠0, 解得:x ≤2且x ≠1. 故选:B .点评: 本题考查函数自变量的取值范围,涉及的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6. (2015•浙江省绍兴市,第6题,4分)化简xx x -+-1112的结果是A . 1+xB .11+x C . 1-x D . 1-x x考点:分式的加减法.. 专题:计算题.分析:原式变形后,利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣===x +1.故选A点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.7.(2015·南宁,第12题3分)对于两个不相等的实数a 、b ,我们规定符号Max {a ,b }表示a 、b 中的较大值,如:Max {2,4}=4,按照这个规定,方程{}xx x x Max 12,+=-的解为( ).(A )21- (B )22- (C )2121-+或 (D )121-+或 考点:解分式方程.. 专题:新定义.分析:根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可. 解答:解:当x <﹣x ,即x <0时,所求方程变形得:﹣x =,去分母得:x 2+2x +1=0,即x =﹣1;当x >﹣x ,即x >0时,所求方程变形得:x =,即x 2﹣2x =1,解得:x =1+或x =1﹣(舍去),经检验x =﹣1与x =1+都为分式方程的解.故选D .点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8. (2015山东济宁,8,3分)解分式方程时,去分母后变形正确的为( )A .2+(x +2)=3(x -1)B .2-x +2=3(x -1)C .2-(x +2)=3D . 2-(x +2)=3(x -1) 【答案】D 【解析】试题分析: 根据分式方程的特点, 原方程化为:,去分母时,两边同乘以x-1,得:.故选D考点:分式方程的去分母9. (2015•浙江衢州,第18题6分)先化简,再求值:,其中.【答案】解:原式=,当时,原式=【考点】分式的化简求值.【分析】将被除式因式分解,除法变乘法,约分化简,最后代求值即可. 10.(2015•甘肃武威,第20题4分)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.11.(2015•广东佛山,第17题6分)计算:﹣.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算,约分即可得到结果.解答:解:原式=﹣==.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.12.(2015•广东广州,第19题10分)已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.考点:分式的化简求值;一元一次不等式组的整数解.分析:(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.解答:解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.点评:(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.13、(2015·湖南省常德市,第7题3分)分式方程23122xx x+=--的解为:A、1B、2C、13D、0【解答与分析】这是分式方程的解法:答案为A14.(2015·湖南省益阳市,第6题5分)下列等式成立的是()A.+=B.=C.=D.=﹣考点:分式的混合运算.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D 、原式==﹣,错误,故选C点评: 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2015·湖南省衡阳市,第4题3分)若分式的值为0,则的值为( ).A .2或-1B .0C .2D .-1二.填空题1.(2015·湖北省孝感市,第11题3分)分式方程351+=x x 的解是 ☆ . 考点:解分式方程.. 专题:方程思想.分析:观察可得最简公分母是x (x +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x (x +3),得 x +3=5x , 解得x =.检验:把x =代入x (x +3)=≠0.∴原方程的解为:x =. 故答案为:x =.点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2015·湖南省衡阳市,第16题3分)方程的解为.[w*ww~. ^3、(2015·湖南省常德市,第10题3分)若分式211xx-+的值为0,则x=【解答与分析】这其实就分式方程的解法:211xx-+=0,解之得答案为:x=14.(2015•江苏无锡,第12题2分)化简得.考点:约分.分析:首先分别把分式的分母、分子因式分解,然后约去分式的分子与分母的公因式即可.解答:解:==故答案为:.点评:此题主要考查了约分问题,要熟练掌握,解答此题的关键是要明确:①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.5.(2015•广东梅州,第16题5分)若=+,对任意自然数n都成立,则a= ,b﹣;计算:m=+++…+= .考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a 与b的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(2015•广东佛山,第12题3分)分式方程的解是3 .考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(2015•甘肃武威,第12题3分)分式方程的解是 x =2 .考点: 解分式方程.分析:观察可得最简公分母是x (x +3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答: 解:方程的两边同乘x (x +3),得 2(x +3)=5x , 解得x =2.检验:把x =2代入x (x +3)=10≠0,即x =2是原分式方程的解. 故原方程的解为:x =2. 故答案为:x =2. 点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根. 8.(2015·南宁,第14题3分)要使分式11-x 有意义,则字母x 的取值范围是 .点:分式有意义的条件..分析:分式有意义,分母不等于零.解答:解:依题意得 x ﹣1≠0,即x ≠1时,分式有意义.故答案是:x ≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零; (2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.9.(2015·贵州六盘水,第14题4分)已知0654≠==ab c ,则a c b +的值为 .考点:比例的性质..分析:根据比例的性质,可用a 表示b 、c ,根据分式的性质,可得答案.解答:解:由比例的性质,得 c =a ,b =A .===.故答案为:.点评:本题考查了比例的性质,利用比例的性质得出a 表示b 、c 是解题关键,又利用了分式的性质.10. (2015·河南,第16题8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .【分析】解答本题应从运算顺序入手,先将括号里通分,能因式分解的进行因式分解,然后将除法变乘法,最后约分化简成最简分式后,将a ,b 的值代入求解.解:原式=abba b a b a -÷--)(22)(……………………………………………………(4分) =b a abb a -⋅-2 =2ab.……………………………………………………(6分)当1,1a b ==时,原式=22152)15(15=-=-+)(.…………(8分)11. (2015·黑龙江绥化,第14题 分)若代数式6265x 2-+-x x 的值等于0 ,则x =_________.考点:分式的值为零的条件..分析:根据分式的值为零的条件可以求出x 的值.解答:解:由分式的值为零的条件得x 2﹣5x +6=0,2x ﹣6≠0,由x 2﹣5x +6=0,得x =2或x =3, 由2x ﹣6≠0,得x ≠3, ∴x =2, 故答案为2.点评:本题考查了分式值为0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.(2015•广东省,第12题,4分)分式方程321=+x x 的解是 ▲ . 【答案】2=x . 【考点】解分式方程【分析】去分母,得:()321=+x x , 解得:2=x ,经检验,2=x 是原方程的解, ∴原方程的解是2=x .13.(2015•广东梅州,第15题,3分)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m . 考点:分式的加减法.. 专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a 与b 的值即可;原式利用拆项法变形,计算即可确定出m 的值. 解答:解:=+=,可得2n (a +b )+a ﹣b =1,即,解得:a =,b =﹣;m =(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(2015•安徽省,第14题,5分)已知实数a 、b 、c 满足a +b =ab =c ,有下列结论: ①若c ≠0,则 1 a + 1b =1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 (把所有正确结论的序号都选上). 考点:分式的混合运算;解一元一次方程..分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a +b =ab ≠0,∴+=1,此选项正确;②∵a =3,则3+b =3b ,b =,c =,∴b +c =+=6,此选项错误;③∵a =b =c ,则2a =a 2=a ,∴a =0,abc =0,此选项正确;④∵a 、b 、c 中只有两个数相等,不妨a =b ,则2a =a 2,a =0,或a =2,a =0不合题意,a =2,则b =2,c =4,∴a +b +c =8,此选项正确. 其中正确的是①④. 故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.15.(2015•甘肃兰州,第17题,4分)如果k fed c b a ===(0≠++f d b ),且)(3f d be c a ++=++,那么k =_____【 答 案 】3【考点解剖】本题考查比例的基本性质【解答过程】因为k f e d c b a ===,且0≠++f d b ,所以fd b ec a f ed c b a k ++++====,而)(3f d b e c a ++=++,即3=++++fd b ec a ,所以3=k 。
第7课时 分式与分式方程
班级: 姓名: 组别: 评价:
1.掌握分式方程的概念.
2.理解分式方程产生增根的原因.
3.会列分式方程解应用题.
1.分式有无意义时求取值范围.
2.分式值为0时求未知数的值.
3.解分式方程.
4.分式的约分,通分.
5.分式的基本性质.
6. 列分式方程解应用题.
1:解分式方程:
(1)
143231=+--x x (2) 114112=---+x x x
1.同步训练P17.自我尝试1—12题(答案写在下面)
1.计算:)3
a a 3a a 3(+--·a 9a 2-= . 2.化简121112+-÷⎪⎭⎫ ⎝
⎛-+a a a a 的结果是( ) A . 1+a B . 11-a C . a
a 1- D . 1-a 3.在我市某一城市美化工程招标时,有甲乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若有甲队单独先做20天,剩下的工程由甲乙合作24天可完成.
(1)乙队单独完成这项工作需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元,若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱,还是由甲乙两队全程合作完成该工程省钱?。