初中数学人教版九年级下册实用资料第4课时 用计算器求锐角三角函数值教案
- 格式:doc
- 大小:74.50 KB
- 文档页数:3
28.1 锐角三角函数第4课时用计算器求锐角三角函数值及锐角学习目标1. 会使用科学计算器求锐角的三角函数值.2. 会根据锐角的三角函数值,借助科学计算器求锐角的大小.3. 熟练运用计算器解决锐角三角函数中的问题.教学重难点1. 使用科学计算器求锐角的三角函数值2. 根据锐角的三角函数值,借助科学计算器求锐角的大小一、导入新课复习引入填写下表:特殊角时,可以求得这些特殊角的锐角三角函数值;如果锐角A 不是这些特殊角,怎样得到它的锐角三角函数值呢?二、讲授新课1.用计算器求锐角的三角函数值或角的度数例1 (1) 用计算器求sin18°的值;(2) 用计算器求tan30°36′ 的值;(3) 已知 sin A = 0.501 8,用计算器求∠A 的度数.解:(1)第一步:按计算器键;第二步:输入角度值18;屏幕显示结果sin18°= 0.309 016 994.(2)方法①:第一步:按计算器键;第二步:输入角度值30.6 (因为30°36′ = 30.6°);屏幕显示答案:0.591 398 351.方法②:第一步:按计算器键;第二步:输入角度值30,分值36 (使用键);屏幕显示答案:0.591 398 351.(3)第一步:按计算器键;第二步:然后输入函数值0. 501 8;屏幕显示答案:30.119 158 67°(按实际需要进行精确).还可以利用键,进一步得到∠A =30°07′08.97 ″ (这说明锐角A 精确到1′ 的结果为30°7′,精确到1″ 的结果为30°7′9″).三、练一练1. 用计算器求下列各式的值(精确到0.0001):(1) sin47°;(2) sin12°30′;(3) cos25°18′;(4) sin18°+cos55°-tan59°.答案:(1) 0.7314 ;(2) 0.2164 ;(3) 0.9041;(4) -0.7817.2. 已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数(结果精确到0.1°):(1) sin A=0.7,sin B=0.01;(2) cos A=0.15,cos B=0.8;(3) tan A=2.4,tan B=0.5.答案:(1) ∠A ≈ 44.4°;∠B ≈ 0.6°.(2) ∠A ≈ 81.4°;∠B ≈ 36.9°.(3) ∠A ≈ 67.4°;∠B ≈ 26.6°.2.利用计算器探索三角函数的性质例2通过计算 (可用计算器),比较下列各对数的大小,并提出你的猜想:① sin30°____2sin15°cos15°;② sin36°____2sin18°cos18°;③ sin45°____2sin22.5°cos22.5°;④ sin60°____2sin30°cos30°;⑤ sin80°____2sin40°cos40°.猜想:(1)已知0°<α<45°,则sin2α___2sinαcosα.(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请利用面积方法验证 (1) 中的结论.3. (1) 利用计算器求值,并提出你的猜想:sin20°= ,cos20°= ,sin220°= ,cos220°= ;sin35°= ,cos35°= ,sin235°= ,cos235°= ;猜想:(1)已知0°<α<90°,则 sin2α + cos2α = .(2) 如图,在Rt△ABC 中,∠C=90°,请验证你在(1)中的结论.四、当堂练习1. 用计算器求sin24°37′18″的值,以下按键顺序正确的是( ) A.B.C.D.2. 下列式子中,不成立的是 ( )A.sin35°= cos55°B.sin30°+ sin45°= sin75°C.cos30°= sin60°D.sin260°+ cos260°=13. 利用计算器求值:(1) sin40°≈ (精确到0.0001);(2) sin15°30′≈ (精确到 0.0001);(3) 若sinα = 0.5225,则α≈ (精确到0.1°);(4) 若sinα = 0.8090,则α≈ (精确到0.1°).4. 已知:sin232°+ cos2α =1,则锐角α = .5. 用计算器比较大小:20sin87°___ tan87°.6. 在 Rt △ABC 中,∠C = 90°,∠BAC = 42°24′,∠A 的平分线 AT = 14.7cm ,用计算器求 AC 的长(精确到0.001).解:∵ AT 平分∠BAC ,且∠BAC = 42°24′,∴ ∠CAT =12∠BAC = 21°12′. 在 Rt△ACT 中 cos ∠CAT = AC AT , ∴ AC = AT · cos∠CAT = 14.7×cos21°12′≈13.705(cm).五、课堂小结。
第4课时用计算器求三角函数值和锐角度数教师备课素材示例●复习导入 1.填空:(1)sin30°=__12__,sin45°=2,sin60°=2;(2)cos30°=2,cos45°=2,cos60°=__12__;(3)tan30°=3,tan45°=__1__,tan60°=.2.当锐角A是30°,45°或60°等特殊角时,可以求出这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角时,怎样得到它的三角函数值呢?【教学与建议】教学:由复习特殊角的三角函数值到导入不是特殊角怎样求三角函数值,从而导入课题用计算器求三角函数值.建议:提前准备计算器,认识其功能键.●类比导入 1.我们怎样求sin30°,sin45°的值?作图测量.2.请用作图测量的方法求sin18°的值.学生汇报结果,出现结果有误差,而且不简便.经过数学家不断改进,不同角的三角函数值被制成了函数常用表,随着社会的进步,如今的三角函数表被带有sin,cos,tan功能键的计算器取代.【教学与建议】教学:学生用作图、测量、正弦定义计算sin18°的值,再导入用函数常用表,通过使用计算器计算,体会了计算器的好处.建议:学生分组计算sin18°的值,进一步理解三角函数值的几何意义.用计算器求锐角三角函数值,关键是明确按键顺序,先按功能键,再输入角度值.【例1】用计算器求sin24°37′18″的值,以下按键顺序正确的是(A)A.sin24°‴37°‴18°‴=B.24°‴37°‴18°‴sin=C.2ndF sin24°‴37°‴18°‴=D.sin24°‴37°‴18°‴2ndF=【例2】用计算器求sin27°,cos26°,tan25°的值,它们的大小关系是(C)A.tan25°<cos26°<sin27°B.tan25°<sin27°<cos26°C.sin27°<tan25°<cos26°D.cos26°<tan25°<sin27°先按2ndF键,然后再按sin或cos或tan键,再输入数值,得到的结果为度数的形式.若计算结果要求为度、分、秒的形式,则再继续按2ndF °′″键.【例3】已知cosθ=0.7415926,则θ约为(C)A.40°B.41°C.42°D.43°【例4】根据下列三角函数值,用计算器求锐角A的度数.(结果精确到0.01°)(1)sinA=0.9333;解:∠A≈68.96°;(2)cosA=0.8032.解:∠A≈36.56°.高效课堂教学设计掌握用计算器求锐角三角函数值以及已知一个锐角的某一三角函数值,利用计算器求出这个锐角的度数的方法.▲重点运用计算器求锐角三角函数值或锐角.▲难点用计算器进行有关直角三角形的计算.◆活动1 新课导入,tan60°=,cos245°1.计算:cos30°·sin30°=4+tan30°·sin60°=__1__.2.当锐角A 是30°,45°,60°时,可以求出这些角的正弦、余弦、正切值,当锐角A 不是这些特殊值时,怎样得到它的三角函数值?◆活动2 探究新知1.教材P 67 练习下面部分内容. 提出问题:(1)计算器上的sin 键,cos 键,tan 键的功能是什么? (2)利用计算器完成下表:2.教材P 68 上面部分内容. 提出问题:(1)请注意计算器上的2ndF 键,它有什么作用?(2)已知sinA =0.5018,用计算器求锐角A 的按键顺序是什么?已知cosA =0.6252,tanA =3.7416,求锐角A 时按键顺序又分别是什么呢?学生完成并交流展示. ◆活动3 知识归纳1.由锐角求三角函数值的按键顺序为:接要求先按功能键或或,再输入__角度__.2.由三角函数值求锐角的按键顺序为:先按键,然后再按或或,再输入数值,得到的结果为__度数__的形式.3.锐角α的__正弦和正切__值随α的增大而增大;锐角α的__余弦__值随α的增大而减小.◆活动4 例题与练习例1 利用科学计算器计算2cos55°,按键顺序正确的是( C )A .2×cos 55=B .2cos 550=C .2×cos 55=D .255cos =例2 如图,请根据图示数据,计算角α(精确到1′).解:∵FG=83-(150-124)=57,∴tan α=FG AF =57140≈0.4071,∴锐角α≈22°9′.例 3 如图,某校自行车车棚的人字架顶棚为等腰三角形,D 是AB 的中点,中柱CD =1m ,∠A =27°,求跨度AB 的长.(精确到0.1m)解:∵tanA =CD AD ,∴AD =1tan27°≈1.96(m),∴AB =2AD≈3.9(m).练习1.教材P 68 练习第1,2题.2.已知tan α=0.3249,则α约为( B )A .17°B .18°C .38°D .39° 3.下列各式一定成立的是( A )A .tan78°>tan52°>tan23°B .sin70°<sin36°<sin18°C .cos70°>cos50°>cos24°D .tan65°<tan46°<tan20°4.如图,在△ABC 中,∠BAC =45°,AD ⊥BC 于点D ,且AD =6,BD =3,求∠C 的度数.(精确到1′)解:由tanB =ADBD=2,得锐角∠B≈63°26′,∴∠C ≈71°34′.◆活动5 完成附赠手册◆活动6 课堂小结1.利用计算器求锐角三角函数值.2.已知锐角三角函数值,利用计算器求角.1.作业布置(1)教材P69习题28.1第5,7,8题;(2)学生用书对应课时练习.2.教学反思。
28.1锐角三角函数第4课时用计算器求锐角三角函数值及锐角1.初步掌握用计算器求三角函数值的方法;(重点)2.熟练运用计算器求三角函数值解决实际问题.(难点)一、情境导入教师讲解:通过上面几节课的学习我们知道,当锐角∠A是30°、45°或60°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角∠A不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.二、合作探究探究点一:用计算器求锐角三角函数值及锐角【类型一】已知角度,用计算器求函数值用计算器求下列各式的值(精确到0.0001):(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)sin18°+cos55°-tan59°.解析:熟练使用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.解:根据题意用计算器求出:(1)sin47°≈0.7314;(2)sin12°30′≈0.2164;(3)cos25°18′≈0.9041;(4)sin18°+cos55°-tan59°≈-0.7817.方法总结:解决此类问题的关键是熟练使用计算器,使用计算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】已知三角函数值,用计算器求锐角的度数已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数(结果精确到0.1°):(1)sin A=0.7,sin B=0.01;(2)cos A=0.15,cos B=0.8;(3)tan A=2.4,tan B=0.5.解析:由三角函数值求角的度数时,用到sin,cos,tan键的第二功能键,要注意按键的顺序.解:(1)sin A=0.7,得∠A≈44.4°;sin B=0.01得∠B≈0.6°;(2)cos A=0.15,得∠A≈81.4°;cos B=0.8,得∠B≈36.9°;(3)由tan A=2.4,得∠A≈67.4°;由tan B=0.5,得∠B≈26.6°.方法总结:解决此类问题的关键是熟练使用计算器,在使用计算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】利用计算器验证结论(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°________2sin15°cos15°;②sin36°________2sin18°cos18°;③sin45°________2sin22.5°cos22.5°;④sin60°________2sin30°cos30°;⑤sin80°________2sin40°cos40°.猜想:已知0°<α<45°,则sin2α________2sin αcos α.(2)如图,在△ABC 中,AB =AC =1,∠BAC =2α,请根据提示,利用面积方法验证结论.解析:(1)利用计算器分别计算①至⑤各式中左边与右边,比较大小;(2)通过计算△ABC 的面积来验证.解:(1)通过计算可知:①sin30°=2sin15°cos15°;②sin36°=2sin18°cos18°;③sin45°=2sin22.5°cos22.5°;④sin60°=2sin30°cos30°;⑤sin80°=2sin40°cos40°;sin2α=2sin αcos α.(2)∵S △ABC =12AB ·sin2α·AC =12sin2α,S △ABC =12×2AB sin α·AC cos α=sin α·cos α,∴sin2α=2sin αcos α.方法总结:本题主要运用了面积法,通过用不同的方法表示同一个三角形的面积,来得到三角函数的关系,此种方法在后面的学习中会经常用到.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型四】 用计算器比较三角函数值的大小用计算器比较大小:20sin87°________tan87°.解析:20sin87°≈20×0.9986=19.974,tan87°≈19.081,∵19.974>19.081,∴20sin87°>tan87°.方法总结:利用计算器求值时,要注意计算器的按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第8题探究点二:用计算器求三角函数值解决实际问题如图,从A 地到B 地的公路需经过C 地,图中AC =20km ,∠CAB =25°,∠CBA=37°,因城市规划的需要,将在A 、B 两地之间修建一条笔直的公路.(1)求改直的公路AB 的长;(2)公路改直后比原来缩短了多少千米?解析:(1)作CH ⊥AB 于H .在Rt △ACH 中根据CH =AC ·sin ∠CAB 求出CH 的长,由AH =AC ·cos ∠CAB 求出AH 的长,同理可求出BH 的长,根据AB =AH +BH 可求得AB 的长;(2)在Rt △BCH 中,由BC =CH sin ∠CBA可求出BC 的长,由AC +BC -AB 即可得出结论. 解:(1)作CH ⊥AB 于H .在Rt △ACH 中,CH =AC ·sin ∠CAB =AC ·sin25°≈20×0.42=8.4km ,AH =AC ·cos ∠CAB =AC ·cos25°≈20×0.91=18.2km.在Rt △BCH 中,BH =CHtan ∠CBA ≈8.4tan37°=11.1km ,∴AB =AH +BH =18.2+11.1=29.3km.故改直的公路AB 的长为29.3km ;(2)在Rt △BCH 中,BC =CH sin ∠CBA =CH sin37°≈8.40.6=14km ,则AC +BC -AB =20+14-29.3=4.7km.答:公路改直后比原来缩短了4.7km.方法总结:根据题意作出辅助线,构造出直角三角形是解答此类问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计1.已知角度,用计算器求函数值;2.已知三角函数值,用计算器求锐角的度数;3.用计算器求三角函数值解决实际问题.备课时尽可能站在学生的角度思考问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折.舍得把课堂让给学生,尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,真正提高课堂教学效率,提高成绩.。
《用科学计算器求锐角的三角函数值》教案教学目标(一)教学知识点1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数的意义.2.能够用计算器进行有关三角函数值的计算.(二)能力训练要求1.经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义.2.能够利用计算器进行有关三角函数值的计算.(三)情感与价值观要求1.形成实事求是的态度.教学重难点1.用计算器由已知锐角求三角函数值.2.用计算器由己知三角函数值求锐角.教学过程一.提出问题,引入新课[师]200sinl6°米屮的"sin 16°”是多少呢?我们知道,三角函数屮,当角的大小确定时,三角函数值与直角三角形的大小无关,随着角度的确定而确定.对于特殊角30°、45°、60°可以根据勾股定理和含这些特殊角的直角三角形的性质,求出它们的三角函数值,而对于一般锐角的三角函数值,我们需借助于科学计算器求出这些锐角的三角函数值.怎样用科学计算器求三角函数值呢?二.讲授新课1.用科学计算器求一般锐角的三角函数值.[师]用科学计算器求三角函数值,要用到丽|cos|和画键.例如sinl6° , cos42° , tan 85°和sin72°38z 25"的按键顺序如下表所示.(多媒体演示)sin72° 38’ 25"=0. 954450312同学们可用自己的计算器按上述按键顺序计算sinl6° , cos42° , tan85° , sin72° 38' 25〃,看显示的结果是否和表中显示的结果相同.(教学时应注意不同的计算器按键方式可能不同,可引导学生利用自己所使用的计算器 探索计算三角函数值的具体步骤,也可以鼓励同学们互相交流用计算器计算三角函数值的方 法)[师]很好,同学们都能用自己的计算器计算出三角函数值.大家可能注意到用计算器求 三角函数值吋,结果--般有10个数位.我们的教材中有一个约定,如无特别说明,计算结果 一般精确到万分位.下而就请同学们利用计算器求出200sinl6° .[生]用计算器求得200sinl6°心55・12(m).[师]下面请同学们用计算器计算下列各式的值(多媒体演示).(l) sin56° ; (2) sin 15° 49z ;(3)cos20° ; (4)tan29° ;(5)tan44° 59’ 59" ; (6)sin 15° +cos61° +tan76° .(以小组为单位,展开竞赛,看哪一组既快又准确)[生](l)sin56° 5.8290;(2) sin 15° 49' ^0. 2726;(3) cos20° Q O.9397;(4) tan29° =0.5543;(5) tan44° 59' 59" ^1.0000;(6) sin 15° +cos61° +tan76° ^0. 2588+0. 4848+4. 0108=4. 7544・[师]我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个 锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?[生]我们曾学习过两个直角三角形的判定定理一一皿定理.在上图中,斜边/C 和直角 边BC 是定值,根据皿定理可知这样的直角三角形形状和大小是唯一确定的,当然Z/的大 小也是唯一确定的.[师]这位同学能将前后知识联系起来很有条理地解释此问题,很不简单.我们知道了si 心咏锐角滤唯一确定的.现在我要告诉大家的是要解决这个问题,我们可以借助于 科学计-算器来完成.这节课,我们就来学习如何用科学计算器由锐角三角函数值求相应锐角 的大小.2. 用计算器由锐角三角函数值求相应锐角的大小.sin72° 38’ 25"[师]己知三角函数求角度,耍用到丽、丽、區|键的第二功能“sir|T, cos-1, tanT” 和丽键.例如:已知sinJ=0.9816,求锐角/;已知cosA=0. 8607,求锐角力;已知tan4=0. 1890,求锐角/;己知tarU=56. 78,求锐角按键顺序如下表.(多媒体演示)上表的显示结果是以“度”为单位的.再按國' DMS键即可显示以“度、分、秒”为单位的结果.(教学时,给学生以充分交流的时间和空间,教师要引导学生根据自己使用的计算器,探索具体操作步骤)[师]你能求出上图中Z/的大小吗?[生]sin/ = *=0.25・按键顺序为画區| ©日回目目,显示结果为14. 47751219° , 再按丽•键可显示14° 28 39〃 .所以厶= 14° 28' 39".[师]很好.我们以后在用汁算器求角度时如果无特别说明,结果精确到1〃即可. 你还能完成下列已知三角函数值求角度的题吗?(多媒体演示)根据下列条件求锐角&的大小:(l)tan6>=2. 9888; (2)sin&=0. 3957;(3) cos〃=0・ 7850; (4) tan&=0. 8972;(5) sin&= - ; (6) cos&= -;2 2(7)tan〃=22.3; (8)tan〃=J^;(9)sin&=0. 6; (10)cos&=0. 2.例题解析例1用科学计算器求下列各三角函数的值(结果精确到0.0001):(l)sin40°⑻;(2)cos63° 52z 41" ;(2)tan52° 6'.例2已知°的三角函数值,用科学计算器求a.(1) sina=0.5512;(2)cosa 二0.2559;(3)tancc=0.2755.教学小结本节课主要内容如下:运用计算器计算由已知锐角求它的三角函数值.运用计算器计算由已知三角函数值求它的角度.。
28.1锐角三角函数第4课时用计算器求锐角三角函数值及锐角1.初步掌握用计算器求三角函数值的方法;(重点)2.熟练运用计算器求三角函数值解决实际问题.(难点)一、情境导入教师讲解:通过上面几节课的学习我们知道,当锐角∠A是30°、45°或60°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角∠A不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.二、合作探究探究点一:用计算器求锐角三角函数值及锐角【类型一】已知角度,用计算器求函数值用计算器求下列各式的值(精确到0.0001):(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)sin18°+cos55°-tan59°.解析:熟练使用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.解:根据题意用计算器求出:(1)sin47°≈0.7314;(2)sin12°30′≈0.2164;(3)cos25°18′≈0.9041;(4)sin18°+cos55°-tan59°≈-0.7817.方法总结:解决此类问题的关键是熟练使用计算器,使用计算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】已知三角函数值,用计算器求锐角的度数已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数(结果精确到0.1°):(1)sin A=0.7,sin B=0.01;(2)cos A=0.15,cos B=0.8;(3)tan A=2.4,tan B=0.5.解析:由三角函数值求角的度数时,用到sin,cos,tan键的第二功能键,要注意按键的顺序.解:(1)sin A=0.7,得∠A≈44.4°;sin B=0.01得∠B≈0.6°;(2)cos A=0.15,得∠A≈81.4°;cos B=0.8,得∠B≈36.9°;(3)由tan A=2.4,得∠A≈67.4°;由tan B=0.5,得∠B≈26.6°.方法总结:解决此类问题的关键是熟练使用计算器,在使用计算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】利用计算器验证结论(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°________2sin15°cos15°;②sin36°________2sin18°cos18°;③sin45°________2sin22.5°cos22.5°;④sin60°________2sin30°cos30°;⑤sin80°________2sin40°cos40°.猜想:已知0°<α<45°,则sin2α________2sinαcosα.(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请根据提示,利用面积方法验证结论.解析:(1)利用计算器分别计算①至⑤各式中左边与右边,比较大小;(2)通过计算△ABC的面积来验证.解:(1)通过计算可知:①sin30°=2sin15°cos15°;②sin36°=2sin18°cos18°;③sin45°=2sin22.5°cos22.5°;④sin60°=2sin30°cos30°;⑤sin80°=2sin40°cos40°;sin2α=2sinαcosα.(2)∵S△ABC=12AB·sin2α·AC=12sin2α,S△ABC=12×2AB sinα·AC cosα=sinα·cosα,∴sin2α=2sinαcosα.方法总结:本题主要运用了面积法,通过用不同的方法表示同一个三角形的面积,来得到三角函数的关系,此种方法在后面的学习中会经常用到.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型四】用计算器比较三角函数值的大小用计算器比较大小:20sin87°________tan87°.解析:20sin87°≈20×0.9986=19.974,tan87°≈19.081,∵19.974>19.081,∴20sin87°>tan87°.方法总结:利用计算器求值时,要注意计算器的按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第8题探究点二:用计算器求三角函数值解决实际问题如图,从A地到B地的公路需经过C地,图中AC=20km,∠CAB =25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?解析:(1)作CH⊥AB于H.在Rt△ACH中根据CH=AC·sin∠CAB 求出CH的长,由AH=AC·cos∠CAB求出AH的长,同理可求出BH的长,根据AB=AH+BH可求得AB的长;(2)在Rt△BCH中,由BC=CH可求出BC的长,由AC+BC-AB即可得出结论.sin∠CBA解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC ·sin25°≈20×0.42=8.4km ,AH =AC ·cos ∠CAB =AC ·cos25°≈20×0.91=18.2km.在Rt △BCH 中,BH =CH tan ∠CBA ≈8.4tan37°=11.1km ,∴AB =AH +BH =18.2+11.1=29.3km.故改直的公路AB 的长为29.3km ;(2)在Rt △BCH 中,BC =CH sin ∠CBA =CH sin37°≈8.40.6=14km ,则AC +BC -AB =20+14-29.3=4.7km.答:公路改直后比原来缩短了4.7km.方法总结:根据题意作出辅助线,构造出直角三角形是解答此类问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计1.已知角度,用计算器求函数值;2.已知三角函数值,用计算器求锐角的度数;3.用计算器求三角函数值解决实际问题.备课时尽可能站在学生的角度思考问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折.舍得把课堂让给学生,尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,真正提高课堂教学效率,提高成绩.。
《用计算器求锐角三角函数值及锐角》教案教案:用计算器求锐角三角函数值及锐角一、教学目标:1.知识目标:了解计算器如何求解锐角三角函数值,并能运用计算器求解给定锐角的三角函数值。
2.技能目标:掌握计算器的基本操作,能够运用计算器求解任意给定锐角的三角函数值。
3.情感目标:激发学生对数学学习的兴趣,提高计算器在数学学习中的应用能力。
二、教学重点和难点1.教学重点:计算器的基本操作,利用计算器求解锐角三角函数值。
2.教学难点:掌握计算器的基本操作,善于灵活运用计算器求解任意给定锐角的三角函数值。
三、教学过程1.预习活动引导学生回顾三角函数的概念和性质,并让学生解释三角函数值的含义和计算方法。
2.导入新课通过实例引出课题,如:已知三角函数值,如何求解对应的角度?引导学生思考,并提醒学生可以通过计算器来求解。
3.播放教学视频播放教学视频,介绍如何操作计算器求解锐角三角函数值。
视频中应包括以下内容:(1)计算器的基本操作介绍,包括开机、关机、调整屏幕亮度等。
(2)计算器上三角函数按钮的位置和功能介绍。
(3)如何输入角度值。
(4)如何输出三角函数值。
4.教师示范和学生实践教师示范如何使用计算器求解锐角三角函数值,并解释操作过程中的注意事项和常见问题。
5.小组合作探究将学生分为小组,让每个小组成员在计算器上模拟操作,并互相交流、讨论,解决操作中遇到的问题。
6.指导讨论让学生将自己的操作过程和结果分享给全班,并根据学生的情况进行讨论和指导。
7.拓展练习出示一些锐角三角函数值,让学生独立使用计算器求解对应的角度,并核对答案。
8.归纳总结让学生归纳总结如何使用计算器求解锐角三角函数值的方法和技巧。
9.巩固作业让学生完成一些相关的计算器操作题,以巩固所学知识。
四、教学反思本节课以计算器求解锐角三角函数值为主题,通过播放教学视频和小组合作探究等多种教学方法,提高学生的计算器操作能力,使他们在解题时能够善于利用计算器。
在教学过程中,为了加强学生的互动和思维能力,教师还进行了指导讨论和归纳总结,以保证学生的学习效果。
28.1锐角三角函数第4课时用计算器求锐角三角函数值及锐角1.初步掌握用计算器求三角函数值的方法;(重点)2.熟练运用计算器求三角函数值解决实际问题.(难点)一、情境导入教师讲解:通过上面几节课的学习我们知道,当锐角∠A是30°、45°或60°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角∠A不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.二、合作探究探究点一:用计算器求锐角三角函数值及锐角【类型一】已知角度,用计算器求函数值用计算器求下列各式的值(精确到0.0001):(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)sin18°+cos55°-tan59°.解析:熟练使用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.解:根据题意用计算器求出:(1)sin47°≈0.7314;(2)sin12°30′≈0.2164;(3)cos25°18′≈0.9041;(4)sin18°+cos55°-tan59°≈-0.7817.方法总结:解决此类问题的关键是熟练使用计算器,使用计算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型二】已知三角函数值,用计算器求锐角的度数已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数(结果精确到0.1°):(1)sin A=0.7,sin B=0.01;(2)cos A=0.15,cos B=0.8;(3)tan A=2.4,tan B=0.5.解析:由三角函数值求角的度数时,用到sin,cos,tan键的第二功能键,要注意按键的顺序.解:(1)sin A=0.7,得∠A≈44.4°;sin B=0.01得∠B≈0.6°;(2)cos A=0.15,得∠A≈81.4°;cos B=0.8,得∠B≈36.9°;(3)由tan A=2.4,得∠A≈67.4°;由tan B=0.5,得∠B≈26.6°.方法总结:解决此类问题的关键是熟练使用计算器,在使用计算器时要注意按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】利用计算器验证结论(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°________2sin15°cos15°;②sin36°________2sin18°cos18°;③sin45°________2sin22.5°cos22.5°;④sin60°________2sin30°cos30°;⑤sin80°________2sin40°cos40°.猜想:已知0°<α<45°,则sin2α________2sinαcosα.(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请根据提示,利用面积方法验证结论.解析:(1)利用计算器分别计算①至⑤各式中左边与右边,比较大小;(2)通过计算△ABC 的面积来验证.解:(1)通过计算可知:①sin30°=2sin15°cos15°;②sin36°=2sin18°cos18°;③sin45°=2sin22.5°cos22.5°;④sin60°=2sin30°cos30°;⑤sin80°=2sin40°cos40°;sin2α=2sinαcosα.(2)∵S△ABC=12AB·sin2α·AC=12sin2α,S△ABC=12×2AB sinα·AC cosα=sinα·cos α,∴sin2α=2sinαcosα.方法总结:本题主要运用了面积法,通过用不同的方法表示同一个三角形的面积,来得到三角函数的关系,此种方法在后面的学习中会经常用到.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型四】用计算器比较三角函数值的大小用计算器比较大小:20sin87°________tan87°.解析:20sin87°≈20×0.9986=19.974,tan87°≈19.081,∵19.974>19.081,∴20sin87°>tan87°.方法总结:利用计算器求值时,要注意计算器的按键顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第8题探究点二:用计算器求三角函数值解决实际问题如图,从A地到B地的公路需经过C地,图中AC=20km,∠CAB=25°,∠CBA =37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)公路改直后比原来缩短了多少千米?解析:(1)作CH⊥AB于H.在Rt△ACH中根据CH=AC·sin∠CAB求出CH的长,由AH=AC·cos∠CAB求出AH的长,同理可求出BH的长,根据AB=AH+BH可求得AB的长;(2)在Rt△BCH中,由BC=CHsin∠CBA可求出BC的长,由AC+BC-AB即可得出结论.解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC·sin∠CAB=AC·sin25°≈20×0.42=8.4km,AH=AC·cos∠CAB=AC·cos25°≈20×0.91=18.2km.在Rt△BCH中,BH=CHtan∠CBA ≈8.4tan37°=11.1km,∴AB=AH+BH=18.2+11.1=29.3km.故改直的公路AB的长为29.3km;(2)在Rt△BCH中,BC=CHsin∠CBA=CHsin37°≈8.40.6=14km,则AC+BC-AB=20+14-29.3=4.7km.答:公路改直后比原来缩短了4.7km.方法总结:根据题意作出辅助线,构造出直角三角形是解答此类问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第4题三、板书设计1.已知角度,用计算器求函数值;2.已知三角函数值,用计算器求锐角的度数;3.用计算器求三角函数值解决实际问题.备课时尽可能站在学生的角度思考问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折.舍得把课堂让给学生,尽最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,真正提高课堂教学效率,提高成绩.数学选择题解题技巧1、排除法。
用计算器求锐角三角函数值和锐角度数典案一教学设计(续表)(续表)典案二导学设计学习目标: 会根据锐角的三角函数值,利用科学计算器求锐角的大小。
一、知识回顾:1.锐角三角函数的定义。
2.特殊角的三角函数值。
3.利用计算器求下列各角的正弦、余弦值、正切值。
(精确到0.01)(1)15°(2)72°(3)55°12′(4)22.5°(5)65°32ˊ51〞4.在Rt△ABC中,∠C=90°,AC=BC。
求:(1)cosA ;(2)当AB=4时,求BC的长。
二、情境引入:问题:如图,小明沿斜坡AB行走了13cm。
他的相对位置升高了5cm,你能知道这个斜坡的倾斜角A的大小吗?根据已知条件,有:sinA=利用计算器,可以由一个锐角的三角函数值求这个角的大小。
依次按键为:结果显示为,得∠A≈(精确到0.01)三、自主学习:1.求满足下列条件的锐角.(1) (2) (3) tan(100-)=12.求满足下列条件的锐角A(如果是近似值,精确到0.01°)(1)(2)tan A=2解:(1)依次按键,结果显示为,得∠A≈。
(2)四、精讲释疑:已知△ABC中,AC=9,BC=12,AB=15.求∠A ,∠B , ∠C 的度数.(精确到0.01°)五、当堂检测1.求满足下列条件的锐角∠A(精确到0.01°).(1)(2)(3)2.如图,已知秋千吊绳的长度3.5m,求秋千升高1m时,秋千吊绳与竖直方向所成的角度(精确到0.01°)3.已知,如图,AD是△ABC的高,CD=16,BD=12,∠C=35°求∠B(精确到0.01°).。
初中数学人教版九年级下册实用资料
第4课时用计算器求锐角三角函数值
1.能利用计算器求锐角三角函数值.
2.已知锐角三角函数值,能用计算器求相应的锐角.
3.能用计算器辅助解决含三角函数的实际问题.
阅读教材P67-68的内容,完成练习题.
自学反馈学生独立完成后集体订正
①用计算器求sin28°、cos27°、tan26°的值,它们的大小关系是.
②用计算器求sin24°37′18″的值,以下按键顺序正确的是( )
③已知tanA=0.3249,则角A约为.
运用计算器求出已知角的锐角三角函数,或求出已知锐角三角函数值的角的度数.
活动1 独立完成后小组交流
例升国旗时,某同学站在离国旗20 m处行注目礼,当国旗升至顶端时,该同学视线的仰角为42°,若双眼离地面1.6 m,求旗杆AB的高度.(精确到0.01 m)
解:过D作DC⊥AB于C,DC=EB=20 m.
∵tan∠ADC=AC DC
,
∴AC=DC·tan∠ADC=20×tan42°≈18(m),
∴AB=AC+CB=18+1.6=19.6(m).
即旗杆AB的高度为19.6 m.
利用矩形的定义和三角函数的有关知识求AB,其中42°角的三角函数值需要用计算器来算.
活动2 跟踪训练(小组讨论完成)
1.如图,一名患者体内某器官后面有一肿瘤,在接受放射性治疗时,为了最大限度地保证疗效,并且防止伤害器官,射线必须从侧面照射肿瘤,已知肿瘤在皮下6.3 cm的A处,射线从肿瘤右侧9.8 cm 的B处进入身体,求∠CBA的度数.
在直角三角形ABC中,直接用正切函数描述∠CBA的关系式,再用计算器求出它的度数.
2.(1)如图①②,锐角的正弦值和余弦值都随着锐角的确定而确定、变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律: ;
(2)根据你探索得到的规律,试比较18°、34°、50°、62°、88°这些锐角的正弦值和余弦值大小:①;②;
(3)比较大小(在空格处填写“<”“=”或“>”),若α=45°,则sinαcosα;若α<45°,则sinαcosα;若α>45°,则sinαcosα;
(4)利用互为余角的两个角的正弦和余弦的关系,试比较下列大小:sin10°,cos30°,sin50°,cos70°.
活动3 课堂小结
1.本节学习的数学知识:利用计算器求锐角的三角函数值或锐角的度数.
2.本节学习的数学方法:培养学生一般化意识,认识特殊和一般都是事物属性的一个方面.
3.求锐角的三角函数时,不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清楚输入顺序.
教学至此,敬请使用学案当堂训练部分.
【预习导学】
自学反馈
①sin28°<tan26°<cos27°
②A
③略
【合作探究】
活动2 跟踪训练
1.32°44′7″
2.(1)一个锐角的正弦值随角的度数的增大而增大;其余弦值随角的度数的增大而减小
(2)略
(3)= < >
(4)sin10°<cos70°<sin50°<cos30°。