实际问题与一元二次方程教案
- 格式:doc
- 大小:36.00 KB
- 文档页数:4
21.3 实际问题与一元二次方程教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.2. 掌握建立数学模型以解决增长率与降低率问题.3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排3课时.1教案A第1课时教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、新课教学探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.分析:设每轮传染中平均一个人传染了x个人.开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.列方程1+x+x(x+1)=121,整理,得x2+2x-120=0.解方程,得x1=10,x2=-12(不合题意,舍去)2答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?121+121×10=1331(人)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?后一轮被传染的人数是前一轮患病人数的x倍.三、巩固练习某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.四、课堂小结本节课应掌握:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标掌握建立数学模型以解决增长率与降低率问题.教学重点如何解决增长率与降低率问题.教学难点解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.教学过程一、导入新课同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.二、新课教学探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 0003元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有5 000(1-x)2=3 000.解方程,得x1≈0.225,x2≈1.775.根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有6 000(1-x)2=3 600.解方程,得x1≈0.225,x2≈1.775.同理,乙种药品成本的年平均下降率约为22.5%.甲、乙两种药品成本的年平均下降率相同,均约为22.5%.思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).三、巩固练习某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.解:设这种存款方式的年利率为x,则1 000+2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.整理,得1 280x2+800x+1 600x=320,即8x2+15x-2=0.解得4。
21.3实际问题与一元二次方程教案篇一:21.3实际问题与一元二次方程教学设计教案教学准备1.教学目标知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.过程方法经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
情感态度与价值观通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2.教学重点/难点教学重点:列一元二次方程解有关传播问题的应用题教学难点:发现传播问题中的等量关系3.教学用具制作课件,精选习题4.标签教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、探索新知【问题情境】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?(4)能否把方程列得更简单,怎样理解?(5)解方程并得出结论,对比几种方法各有什么特点?【解答】设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。
于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.【思考】如果按这样的传播速度,三轮传染后有多少人患了流感?【活动方略】教师提出问题学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.【设计意图】使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.三、例题分析例1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.例2、参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?例3、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?【分析】(1)两题中有哪些数量关系?(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?(3)对比两题,它们有什么联系与区别?【活动方略】教师活动:操作投影,将例题显示,组织学生讨论.学生活动:合作交流,讨论解答。
课题:21.3实际问题与一元二次方程(3)科目:数学教学对象:九年级学生课时:一个课时一、教学内容分析生活中不少实际问题的解决都要用到方程的知识,在学习本节课之前,学生已经学会了用一元一次方程、二元一次方程(组)解决实际问题,所以本节课对学生来说并不陌生。
本节内容是运用一元二次方程分析解决生活中的实际问题:面积与面积之间的关系建立一元二次方程的数学模型解决几何图形问题。
通过本节课的学习,可以对一元二次方程的解法加以巩固,问题的解更多要考虑问题的实际意义,同时本节课的学习又是后面继续学习列方程解决实际问题、用二次函数解决实际问题的基础,因此,它具有承上启下的作用。
二、教学目标一、知识技能1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型。
2、能根据具体问题的实际意义,检验结果是否合理。
二、过程与方法1、通过解决封面设计与草坪规划的实际问题,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展实践应用意识;2、经历将实际问题抽象数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
三、情感态度通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
三、学习者特征分析我教两个班,一共有121人,有一班女生居多,成绩是全校最好的班,纪律较好;另一班纪律较差,成绩也较差,男生居多。
总体来看大部分学生愿意动脑筋,对数学课还比较喜欢,学习热情也较高,课堂气氛比较活跃,但有极少部分学生较懒,学习习惯差,不愿思考问题。
四、教学策略选择与设计采用自主学习,合作探究交流的方式。
五、教学重点及难点重点:据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题。
难点:根据面积与面积之间的等量关系建立一元二次方程的数学模型。
边衬的宽度为xcm,据四周的边衬所占面积是封面面积的四分之一,可知正中央矩形的面积是封面面积的四分之三,从而得方程。
6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.作业布置教材第21-22页习题21.3第2-7题.课堂总结.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际..传播问题解决的关键是传播源的确定和等量关系的建立..若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2)..成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小..利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系..根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.。
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
实质问题与一元二次方程(1)学习目标:1.能依据详细问题中的数目关系,列出一元二次方程,领会方程是刻画现实世界的一个有效的数学模型.并能依据详细问题的实质意义,查验结果能否合理.2.经历将实质问题抽象为代数问题的过程,探究问题中的数目关系,并能运用一元二次方程对之进行描绘。
3.经过解决流传问题,学会将实质应用问题转变为数学识题,体验解决问题策略的多样性,发展实践应意图识.4.经过用一元二次方程解决身旁的问题,领会数学知识应用的价值,认识数学对促使社会进步和发展人类理性精神的作用.要点、难点要点:列一元二次方程解相关流传问题、均匀变化率问题的应用题难点:发现流传问题、均匀变化率问题中的等量关系【课前预习】(阅读教材 P45 — 46 ,达成课前预习)探究:问题 1:有一人患了流感,经过两轮传染后共有121 人患了流感,每轮传染中均匀一个人传染了几个人?剖析: 1、设每轮传染中均匀一个人传染了 x 个人,那么患流感的这一个人在第一轮中传染了 _______人,第一轮后共有 ______人患了流感;2、第二轮传染中,这些人中的每一个人又传染了_______人,第二轮后共有_______人患了流感。
则:列方程,解得即均匀一个人传染了个人。
再思虑:假如依据这样的传染速度,三轮后有多少人患流感?问题2:两年前生产 1 吨甲种药品的成本是5000 元,生产 1 吨乙种药品的成本是6000元,跟着生产技术的进步,此刻生产 1 吨甲种药品的成本是3000元,生产 1 吨乙种药品的成本是3600 元,哪一种药品成本的年均匀降落率较大?(精准到 0.001 )绝对量:甲种药品成本的年均匀降落额为( 5000-3000)÷ 2=1000 元, ?乙种药品成本的年均匀降落额为( 6000-3000)÷ 2=1200 元,明显, ?乙种药品成本的年均匀降落额较大.相对量:从上边的绝对量的大小可否说明相对量的大小呢?也就是可否说明乙种药品成本的年均匀降落率大呢?下边我们经过计算来说明这个问题.剖析:①设甲种药品成本的年均匀降落率为x ,则一年后甲种药品成本为元,两年后甲种药品成本为元.依题意,得解得: x1≈,x2≈。
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
数学《实际问题与一元二次方程》教案
一、教学目标
1. 了解实际问题如何转化成一元二次方程。
2. 学会解决实际问题,运用一元二次方程进行计算。
3. 培养学生分析问题和解决问题的能力。
二、教学重难点
1. 学生如何把实际问题转化成一元二次方程。
2. 立法方程及解题。
三、教学方法
1. 教师讲授。
2. 板书法。
3. 案例分析法。
四、教学过程
1. 导入
教师通过几个生活中的实际问题,引导学生思考问题的解决方法,以及如何把问题转化成一元二次方程。
2. 观察示范
教师可以通过板书或者投影展示一道实际问题,并演示如何通
过分析问题、列出方程解决问题的过程。
3. 实际操作
让学生自己动手尝试解决一些实际问题,引导学生分析问题、列出方程,进行计算。
4. 案例解析
通过一些实际案例的解析,让学生进一步理解如何把问题转化成方程,如何解决问题。
五、教学建议
1. 教师可以提前准备一些生活中的实际问题,作为教学案例。
2. 学生需要掌握一些常见的一元二次方程解法,例如配方法、因式分解、公式法等,以便更好地解决实际问题。
3. 学生需要注意实际问题中的一些条件限制,例如时间、空间限制,以免影响问题的解决。
4. 教师需要鼓励学生多思考,多尝试,提高解决问题的能力和思维水平。
21.3 实际问题与一元二次方程第1课时实际问题与一元二次方程(1)【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.一、情境导入,初步认识问题在上一节的习题21.2中,我们遇见过一些用列方程来求解的实际应用问题,你能说说列方程解应用问题的步骤是怎样的?学生在相互讨论交流中可得出结论为:①审题;②设未知数;③列方程;④解方程;⑤答.【教学说明】让学生在回顾解实际问题过程中的思路方法,为进一步学习新的问题作好铺垫,导入新课.二、思考探究,获取新知探究1 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均1个人传染了几个人?【教学说明】教师展示出问题后,先让学生仔细分析题意,尝试着寻求解决问题的方法.为了让学生更好地理解题意,不妨设置如下几个问题:(1)若设平均每轮传染中一个人可传染x个人,则第一轮传染后共有人患了流感;(2)第二轮传染后,被传染的人数为人,故第二轮传染后共人患了流感.最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,则第一轮传染后共有(1+x)人患了流感,第二轮传染后共[1+x+(1+x)·x]人患流感,依题意可列方程为1+x+(1+x)·x=121方程可整理为(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.想一想(1)照上述传染速度,三轮传染后患流感的人数共有多少人?(2)通过对上述问题的探究,你对类似的传播问题中的数量关系,有新认识吗?【教学说明】(1)的问题学生可通过前面的分析获得结论,进一步加深对传播问题中数量关系的理解和认识;(2)中问题应让学生相互交流,总结规律.探究2两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本为6000元.随着生产技术的进步,现在生产1t甲种药品的成本为3000元,生产1t乙种药品的成本为3600元.哪种药品成本的年平均下降率较大?思考(1)甲种药品成本的年平均下降额与乙种药品的年平均下降额分别是多少?它与年平均下降率是否是一回事?(2)若设甲种药品的年平均下降率为x,则第一年后的成本为元,第二年后的成本为元,你能列出相应的方程并求出问题的解吗?对于乙种药品呢?【教学说明】思考(1)旨在让学生感受成本下降问题中,成本下降额和成本下降率这两个接近而不同的概念,前者表示绝对变化量,单位是元,后者表示相对变化量,是表示比率的数字,从而全面比较对象的变化状况;思考(2)则进一步让学生感受到两个时间段的平均变化率,如经济增长率、人口增长率等,设平均变化率为x,则有变化前数量×(1+x)2=两年后的数量,由此可得到一元二次方程的数学模型,并确定方程和问题的解,教学过程中,教师应引导学生积极思考,寻求出实际问题中所蕴含的等量关系,让学生体会到寻找等量关系是解决问题的关键,最后师生共同完成解答过程.三、典例精析,掌握新知例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少个小分支?解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,解得x1=9,x2=-10(不合题意,应舍去),即每个支干长出9个小分支.例2某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.98%,平均每次降息的百分率是多少?解:设平均每次降息的百分率为a%,依题意可列方程为:2.25%(1-a%)2=1.98%解得a1≈6.19,a2≈193.81(不合题意,应舍去).即平均每次降息的百分率约为6.19%.【教学说明】让学生独立思考,自主探究,找出题目中的等量关系,并能构建合适的一元二次方程来解决问题,加深对知识的领悟,其中例2可借助计算器来帮助解决问题.教学时,教师在学生探究期间应巡视全场,帮助困难学生找出解决问题的思路方法,最后给出完整解答过程,培养学生良好的解题习惯.四、运用新知,深化理解1.一台电视机的成本价为a元,原销售价比成本价增加25%,因库存积压,两次降价处理,若每次降价的百分率为x%,则最后销售价应为.2.某养鸡场一只患禽流感的小鸡经过两天的传染后,使养鸡场共有169只小鸡感染禽流感,那么在每一天的传染中平均一只小鸡传染了几只小鸡?3.某校坚持对学生进行近视眼的防治,近视眼人数逐年减少.据统计,2013年和2012年的近视眼人数只占2011年人数的75%,这两年平均每年近视眼人数下降的百分率是多少?【教学说明】设置这几道题有利于学生进一步掌握一元二次方程应用题的解法,题目稍难,老师应巡视给予指导,然后共同完成.【答案】1.(1+25%)a·(1-x%)2元2.设每一天的传染中平均一只小鸡传染了x只小鸡,由题意,得(1+x)+(1+x)·x=169,解得x1=12,x2=-14(不合题意,舍去),故每一天平均一只小鸡传染了12只小鸡.3.设平均每年的近视眼人数下降的百分率为x,2011年的近视眼人数为a人,由题意有(1-x)a+(1-x)2·a=75%a,解得x1=0.5,x2=2.5,显然x=2.5不合题意,应舍去,即平均每年近视眼人数下降的百分率为50%.五、师生互动,课堂小结通过这节课的学习,你对传播类和增长率(下降率)的应用问题的处理有哪些体会和收获?谈谈你的看法.【教学说明】教师可向学生提问,以进一步巩固列方程解应用题的方法和解题步骤,为后续学习作好铺垫.1.布置作业:从教材“习题21.3”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。
21.3 实际问题与一元二次方程【本节分析】本单元主要是在具体问题中加深对一元二次方程的综合应用,培养学生对方程的建模意识,同时让学生明确应用题的关键在于(1)弄清题意(2)根据题意,找出等量,列出方程(3)正确求解方程并检验解的合理性.主要有以下四类问题:流感传播问题、增长率问题、营销问题、面积问题.对于数量关系较多学生在思考时可能会有一定的难度,引导学生用图像、表格等不同的形式分析题意,提炼数学信息,并将相关语言翻译为数学语言,进而确定相关量之间的数量关系,最终建立一元二次方程的数学模型.【学情分析】此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题.本节是讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展.用一元二次方程解决实际问题有一定的难度,解决这问题要以多练为主.【课时安排】3课时21.3 实际问题与一元二次方程【教学目标】1.能根据具体问题中的数量关系,列出一元二次方程并求解,体会方程是刻画现实世界某些问题的一个有效的数学模型.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.【教学重难点】重点:正确列出一元二次方程并根据实际意义检验结果的合理性.难点:准确判断实际问题中的数量关系,并找到相等关系.【课前准备】多媒体课件教学设计(一)【教学过程设计】一、设计问题,创设情境(一)前期回顾1.课件出示一个简单的实际问题让学生解决,最快的方法是用一元一次方程来解决这个问题,起到与本节课的类比效果.2.学生解决完这个实际问题后,提出问题“用一元一次方程解决实际问题需要哪些步骤?”让学生来回顾总结用一元一次方程来解决实际问题所用的步骤.3.课件出示问题:简单回顾一元二次方程的解法有哪些?(二)探究活动1.课件出示实际问题:有一个人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?2.教师提出探究活动的问题引导:1. 问题中有哪些数量关系?2. 如何理解“经过两轮传染后共有……”?3. 问题中有怎样的相等关系?4. 如何选取未知数并根据相等关系列出方程?3.学生活动:根据提出的问题引导进行小组讨论,并把讨论的结果进行记录设计意图:前期回顾环节是通过解决一个简单的用一元一次方程解决的实际问题,让学生回顾用方程解决实际问题的步骤,达到温故知新,为这节课用一元二次方程解决问题做好铺垫.复习一元二次方程的解法也是本节课的学习需要.对于探究活动,为了让学生有的放矢,设置了几个问题引导,让小组交流更有成效.二、信息交流,揭示规律1.学生交流共享:学生将小组交流成果展示,课件展示分析过程,学生填写(1)设每轮传染中平均一个人传染了x个人(2)则第一轮的传染源有______人,有________ 人被传染(3)第二轮的传染源有______人,有__________ 人被传染(4)两轮过后共有_____________人患了流感?(5)你能根据问题中的数量关系列出方程并解答吗?2.学生活动:尝试写出探究一的解答过程,并由一名学生板演.3.师生出示解答过程,并与学生一起共同定义解题步骤.4.师生共同归纳总结用一元二次方程解决实际问题的一般步骤,并比较与一元一次方程解决实际问题的异同.设计意图:本环节注重学生的探究与小组交流活动,为了更高效的完成探究任务,教师设计了几个问题引导,师生共完成问题解决并归纳所需步骤,养成学生边学习边归纳的习惯,掌握好这种数学模型的应用.三、运用规律,解决问题1.学生根据上一环节的解题规律乘胜追击,解决问题“如果按照这样的传染速度,三轮传染后有多少人患流感?”2.对于传播问题,教师引导学生进行规律的探索“对类似的传播问题的数量关系你有新的认识吗?”学生交流讨论.3.应用新知:某种植物的主干长出若干树木的支干,每个支干又长出同样数目的小分支,主干、支干、和小分支的总数是91,每个支干长出多少小分支?4. 教师引导学生找到“枝干”的问题与前面的“传播问题”有何异同?教导学生针对不同的实际问题,找到不同的解决思路,学会具体问题具体分析.设计意图:对于探究一“传播问题”的一个延伸问题,目的是检验学生是否对这一类问题的数量关系理解透彻,熟练掌握.解决“枝干”问题的过程中提示学生相似问题的解题思路不一定相同,学会具体问题具体分析,而不是简单套公式.四、变练演编,深化提高应用:1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,全组有多少名同学?2.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排15场比赛,应邀请多少个球队参加比赛?3.一个两位数,十位上的数字与个位上的数字之和为5,把这个数的个位数字与十位数字对调后,所得的新数与原数的积为736,求原数.设计意图:通过这几个不同类型实际问题的解决,让学生熟练掌握用一元二次方程解决实际问题的步骤,并在解决问题的过程中进行总结和反思.五、反思小结,观点提高1.用一元二次方程解决实际问题你认为要经过那些过程?2.比较以前的用一元一次方程解决实际问题,你认为我们这节课更要注意什么问题?谈谈你的感想?3.本节课我们主要针对解决了一类实际问题,你们能形象的定义一下吗?解决这类问题你们掌握了什么方法或者窍门吗?设计意图:通过归纳,进一步让学生理解并掌握用一元二次方程解决实际问题的步骤,并对其中的验根环节加以强调.通过对本节课的传播类的问题的研究,帮助学生养成归类总结的好习惯,在学习过程中善于找规律,找捷径.六、课后作业,分层提升必做课本第21页习题21.3第2、3、5、6题七、板书设计:21.3 实际问题与一元二次方程解:设每轮传染中平均一个人传染了x 个人列方程1+x+x(1+x)=121解方程,得x1=10,x2= -12根据题意,舍去x2= -12答:每轮传染中平均一个人传染了10个人八、教学反思、本节课通过引入一个实际问题,让学生掌握了用一元二次方程解决问题的数学模型,学生能够在之前学习的基础上总结出解决问题的一般步骤.难点还是在于由实际问题向数学模型的转化,应该对熟悉问题中的数量关系,找到相等关系这一环节进行大量的练习,以提高学生正确列出一元二次方程来解决实际问题的能力.设计者:张颖。
运用一元二次方程解决实际问题教案一元二次方程是初中数学中比较重要和常见的一种形式。
它可以用来解决许多实际问题,如抛物线运动、图像对称等。
在初中数学的教学中,学习及掌握一元二次方程的解法方法和应用至关重要。
本文将围绕运用一元二次方程解决实际问题这一主题,探讨初中数学教师如何设计一份科学合理、具有可操作性的教案,帮助学生更好地理解和应用这个知识点。
一、教学目的1. 知道一元二次方程的定义和特征。
2. 熟练掌握一元二次方程的解法方法,包括因式分解法和配方法。
3. 学会运用一元二次方程解决实际问题,如抛物线问题、图像对称等。
二、教学内容1. 一元二次方程的定义和特征(1)什么是一元二次方程?(2)一元二次方程的一般形式:ax² + bx + c = 0。
(3)一元二次方程的特征:二次项系数a ≠ 0;方程的解可以是实数、复数或无解。
2. 一元二次方程的解法方法(1)因式分解法:将一元二次方程左右两边因式分解得到结果。
(2)配方法:通过变形使一元二次方程成为一个完全平方三项式。
3. 运用一元二次方程解决实际问题(1)抛物线问题:使用一元二次方程的解法方法,求出抛物线的顶点、对称轴、焦点等信息。
(2)图像对称问题:使用一元二次方程的特征和解法方法,求出图像关于哪条线对称。
三、教学过程1. 前置知识引入通过提问和讨论的方式,引入一元二次方程的概念和特征,激发学生对该知识点的兴趣。
2. 一元二次方程的解法方法(1)因式分解法利用例题的方式,详细讲解因式分解法的步骤和注意事项。
并鼓励学生举一些实例,熟悉这个解法方法。
(2)配方法与因式分解法一样,我们也可以通过例题的方式来详细介绍配方法的使用步骤和注意事项。
3. 运用一元二次方程解决实际问题(1)抛物线问题通过一些抛物线的例题来具体让学生掌握如何运用一元二次方程解决实际问题,如求出抛物线的顶点、对称轴、焦点等信息。
(2)图像对称问题同样的,我们可以利用例题,让学生通过运用一元二次方程的特征和解法方法,解决一些图像对称问题。
《实际问题与一元二次方程》的说课稿〔通用15篇〕篇1:《实际问题与一元二次方程》说课稿今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。
它是继传播问题、百分率问题、长宽比例问题这几个根本问题的学习后的探究活动课,对于本节课我将从教材分析^p 与学生现实分析^p 、教学目的分析^p ,教法确实定与学法指导,教学过程这四个方面加以阐述。
(一)教材分析^p 与学生现实分析^p一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的根底,它是研究现实世界数量关系和变化规律的重要模型。
本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究表达数学建模的过程帮助学生增强应用认识。
一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。
这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐,本节课主要侧重于一元二次方程在几何方面的应用大量事实说明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。
对于初中学生来说他们比拟缺乏社会生活经历,搜集信息处理信息的才能较弱,这就构成了本节课的难点。
〔二〕数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的开展。
我根据新课标对方程的详细要求和初三学生的认知的特点,确定了如下教学目的的:1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
以一元二次方程解决实际问题为载体,加强学生对数学建模的根本方法的掌握。
2、过程与方法:经历将实际问题抽象为数学问题的过程,探究问题中的数量关系,并能运用一元二次方程对之进展描绘。
22.3实际问题与一元二次方程教案
阿荣旗复兴中学 王金刚
教学目标:
1.能根据具体问题中的数量关系,列出一元二次方程,并求解检验。
2.让学生经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对其进行描述。
培养学生将实际问题转化为数学问题的能力。
3.通过主动探究用一元二次方程解决身边的问题,体会数学知识的应用价值,激发学生学习数学的兴趣。
教学重难点:
教学重点:列出一元二次方程解应用题。
教学难点:发现问题中的等量关系。
关键点:引导 学生感受“实际问题----数学问题”建模意识。
教学手段:电脑多媒体、黑板、粉笔
教学过程
一、复习旧知,导入新课
1.提出问题:列方程解应用题的一般步骤有几步?哪几步?
(设计意图:这样设计既回顾旧知,又为后面运用知识作好了准备。
)
2、“一传十、十传百、百传千千万” 这句话当中包含有怎样的数学知识? (展开讨论,充分拓展发挥学生的想象力)
3、(1)若一人患流感每轮能传染3人,则第一轮传染过后共有几个人患流感,第二轮过后共有几个人患流感。
(2)若一人患流感每轮能传染X 人,则第一轮传染过后共有几个人患流感,第二轮过后共有几个人患流感。
(设计意图:目的在于建立台阶让学生体验从数字到代数式的建模过程,从而解决了探究1方程的右边的代数式)
二、探究新知
探究1: 有一人患了流感,经过两轮传染后共有121人患了流感,平均一个人传染了几个人?
回答下列问题:
分析:(1)设每轮传染中平均一个人传染x 个人,那么患流感的这个人在第一轮传染中传染了x 人;第一轮传染后,共有(x+1)人患了流感。
(2)在第二轮传染中,传染源是(x+1) 人,这些人中每一个人又传染了x 人,那么第二轮传染了x(1+x) 人,第二轮传染后,共有1+x+x(1+x)人患流感。
(3)根据等量关系列方程1+x+x(1+x)=121
并求解得1x ,10==2x 12-
(4)为什么要舍去一解?
(5)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?
(6)完成教材思考:如果按照这样的传播速度,三轮传染后,有多少人患流感?
121+121×10=1331
(通过追问的方式,学生进一步感受应用题的解题过程,理解解题过程的关键是相等关系的确定,以及验根的必要性。
)
巩固练习:某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?
(学生独立完成教师指导)
思维训练:某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.
探究2:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(师生共同分析解决问题)
三、巩固练习:
1、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共().A.12人 B.18人 C.9人 D.10人
2、某农场粮食产量是:2003年为1200万千克,2005年为1452万千克,如果平均每年的增长率为x,则x需满足的方程是()
A.1200(1+x)2=1452 B. 1200(1+2x)=1452 C.1200(1+x%)2=1452 D.1200(1+x%)=1452
3、上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大?
(学生独立完成,请一名学生上黑板解答,教师点评。
)
(设计意图:以上练习的题型与例题完全相同,主要是为了通过课堂跟踪反馈,达到巩固提高的目的,进一步渗透建模思想。
也遵循了巩固与发展相结合的原则。
上述问题能更好的帮助学生理解题意,为后面的解题进行铺垫。
)
四、课时小结:
1、列一元二次方程解应用题的步骤:审、设、找、列、解、答。
最后要检验根是否符合实际意义。
2、解应用题的关键在于找好相等关系。
五、作业:
1.必做题习题2
2.3 4题、7题
2.选做题
1、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
2、某化肥厂去年四月份生产化肥500t,因管理不善,五月份的产量减少了10%,从六月份起强化管理,产量逐月上升,七月份产量达到648t,那么该厂六、七月份两月产量平均增长的百分率是多少?。