第三章《动量和角动量》习题
- 格式:doc
- 大小:83.00 KB
- 文档页数:2
《大学物理I 》作业 No.03 角动量 角动量守恒定律 (A 卷)班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题[ ]1、一质点沿直线做匀速率运动时,(A) 其动量一定守恒,角动量一定为零。
(B) 其动量一定守恒,角动量不一定为零。
(C) 其动量不一定守恒,角动量一定为零。
(D) 其动量不一定守恒,角动量不一定为零。
答案:B答案解析:质点作匀速直线运动,很显然运动过程中其速度不变,动量不变,即动量守恒;根据角动量的定义v m r L⨯=,质点的角动量因参考点(轴)而异。
本题中,只要参考点(轴)位于质点运动轨迹上,质点对其的角动量即为零,其余位置均不会为零。
故(B)是正确答案。
[ ]2. 两个均质圆盘A 和B 密度分别为A ρ和B ρ,若A ρ>B ρ,两圆盘质量与厚度相同,如两盘对通过盘心且垂直于盘面的轴的转动惯量各为A J 和B J ,则 (A) A J >B J(B) B J >A J(C) A J =B J(D) A J 、B J 哪个大,不能确定答案:B答案解析:设A 、B 联盘厚度为d ,半径分别为A R 和B R ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>,所以22B A R R <,由转动惯量221mR J =,则B A J J <。
[ ]3.对于绕定轴转动的刚体,如果它的角速度很大,则 (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小答案:D 答案解析:由刚体质心运动定律和刚体定轴转动定律知:物体所受的合外力和合外力矩只影响物体运动的加速度和角加速度,因此无法通过刚体运动的角速度来判断外力矩的大小,正如无法通过速度来判断物体所受外力的大小一样。
第三章 练习题一、填空题3-1 一根长度为L 的轻杆AB (其质量可忽略),两端分别固定质量为m 1和m 2的两个小球,此系统绕通过其中心O 并垂直AB 连线的轴转动时,其转动惯量为 。
3-2 一质量为M ,半径为R 的转台,以角速度ω1转动,转动摩擦不计,有一质量为m 的蜘蛛垂直落在转台边缘(转台的转动惯量221MR J =)。
此时转台的角速度ω2为___ _____;若蜘蛛慢慢爬向转台中心,至离转台中心的距离为r 时,转台的角速度ω3为___ ______。
3-3 一转速为1200r/min 的飞轮,因制动而均匀的减速,经10s 停止转动,则飞轮的角加速度为 ,从开始制动到停止转动飞轮转过的圈数为___ __ _;开始制动后5s 时飞轮的角速度为___ ______。
设飞轮转动惯量为J ,其制动力矩为__ _______。
3-4 自由刚体共有6个自由度,其中3个 自由度,3个 自由度。
3-5 一均匀细杆AB ,长为l ,质量为m 。
A 端挂在一光滑的固定水平轴上,它可以在竖直平面内自由摆动。
杆从水平位置由静止开始下摆,当下摆至θ角时,B 端速度的大小B V = 。
3-6 一质量为M ,长为L 的均匀细棒绕通过中心与棒垂直的转轴转动,其转动惯量等于 ;若细棒绕通过一个端点与棒垂直的转轴转动,其转动惯量等于 。
3-7 一飞轮的转动惯量为20.125kg m ⋅,其角动量在1.5s 内从213.0kg m s -⋅⋅减到212.0kg m s -⋅⋅ 在此期间作用于飞轮上的平均力矩M = ,飞轮作功为A = 。
3-8 一质量为m 的小球固定在一质量不计、长为l 的轻杆一端,并绕通过杆另一端的水平固定轴在竖直平面内旋转。
若小球恰好能通过最高点而作圆周运动,则在该圆周的最高点处小球的速度=v ;如果将轻杆换成等长的轻绳,则为使小球能恰好在竖直平面内作圆周运动,小球在圆周最高点处的速度=v 。
3-9 长为L 质量为m 的均匀细棒可绕通过其一端并与棒垂直的光滑水平轴O 转动.设棒从水平静止位置开始释放,则它摆到竖直位置时的角加速度为 ;角速度为 。
角动量复习题角动量复习题角动量是物体运动的一个重要物理量,它描述了物体围绕某一轴心旋转的性质。
在物理学中,角动量的计算涉及到物体的质量、速度以及旋转半径等因素。
下面将介绍一些与角动量相关的复习题,帮助大家巩固对角动量的理解。
1. 一个半径为2米的旋转木马上,有一个质量为100kg的小孩坐在边缘处。
如果旋转木马以每秒2π弧度的角速度旋转,求小孩的角动量。
解析:角动量的计算公式为L = Iω,其中L为角动量,I为转动惯量,ω为角速度。
在此题中,旋转木马上的小孩可以视为一个质点,其转动惯量可以近似为mR^2,其中m为小孩的质量,R为旋转木马的半径。
代入数值计算可得L = 100kg × (2m)^2 × 2π rad/s = 800π kg·m^2/s。
2. 一个质量为2kg的物体以每秒4π弧度的角速度绕着一个半径为1米的圆周运动,求其角动量。
解析:同样利用角动量的计算公式L = Iω,其中I为转动惯量,ω为角速度。
在此题中,物体可以视为一个质点,转动惯量I = mR^2,其中m为物体质量,R为圆周半径。
代入数值计算可得L = 2kg × (1m)^2 × 4π rad/s = 8π kg·m^2/s。
3. 一个半径为3米的风车叶片以每秒3π弧度的角速度旋转,其转动惯量为10kg·m^2,求其角动量。
解析:根据角动量的计算公式L = Iω,其中L为角动量,I为转动惯量,ω为角速度。
代入数值计算可得L = 10kg·m^2 × 3π rad/s = 30π kg·m^2/s。
4. 一个质量为1kg的小球以每秒2π弧度的角速度绕着一个半径为2米的圆周运动,求其角动量。
解析:同样利用角动量的计算公式L = Iω,其中I为转动惯量,ω为角速度。
在此题中,小球可以视为一个质点,转动惯量I = mR^2,其中m为小球质量,R为圆周半径。
第三次作业(第三章动量与角动量)一、选择题[A]1.(基础训练2)一质量为m0的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图3-11(A) 保持静止.(B) 向右加速运动.(C) 向右匀速运动.(D) 向左加速运动.【提示】设m0相对于地面以V运动。
依题意,m静止于斜面上,跟着m0一起运动。
根据水平方向动量守恒,得:m V mV+=所以0V=,斜面保持静止。
[C]2.(基础训练3)如图3-12所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v.(B) 22)/()2(vv Rmgmπ+(C) v/Rmgπ(D) 0.【提示】22TGTI mgdt mg==⨯⎰,而vRTπ2=[C ]3.(自测提高1)质量为m的质点,以不变速率v沿图3-16正三角形ABC的水平光滑轨道运动。
质点越过A点的冲量的大小为(A) m v.(B) .(C) .(D) 2m v.【提示】根据动量定理2121ttI fdt mv mv==-⎰,如图。
得:21I mv mv∴=-=[ B] 4.(自测提高2)质量为20 g的子弹,以400 m/s的速率沿图3-17所示的方向射入一原来静止的质量为980 g的摆球中,摆线长度不可伸缩。
子弹射入后开始与摆球一起运动的速率为(A) 2 m/s.(B) 4 m/s.(C) 7 m/s .(D) 8 m/s.【提示】相对于摆线顶部所在点,系统的角动量守恒:2sin30()mv l M m lV︒=+其中m为子弹质量,M为摆球质量,l为摆线长度。
解得:V=4 m/s(解法二:系统水平方向动量守恒:2sin30()mv M m V︒=+)图3-11图3-17二、填空题1、(基础训练7)设作用在质量为1 kg 的物体上的力F =6t +3(SI ).如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I=18N s ⋅.【提示】2222(63)(33)18I Fdt t dt t t N s ==+=+=⋅⎰⎰2.(基础训练8)静水中停泊着两只质量皆为0m 的小船。
大学力学习题————-小数点的流浪整理第一章 运动的描述一、选择题:(注意:题目中可能有一个或几个正确答案)1.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻应是(A )s 4=t (B )s 2=t (C )s 8=t(D )s 5=t[ ]2.质点作半径为R 的变速圆周运动时的加速度大小应为(其中v 表示任意时刻质点的速率)(A )tv d d(B )21242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R v t v(C )Rvtv 2d d +(D )Rv2[ ]3.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间关系正确的有(A )v v v v ==, (B )v v v v =≠, (C )v v v v ≠≠,(D )v v v v ≠=,[ ]4.某物体的运动规律为t kv tv 2d d -=,式中k 为大于零的常数。
当t =0时,初速为0v ,则速度v 与t 的函数关系应是(A )0221v ktv +=(B )0221v ktv +-=(C )2121v kt v+=(D )2121v kt v+-=[ ]5.在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行使,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢量用ji、表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i22+ (B )j i22+- (C )j i22--(D )j i22-[ ]6.一刚体绕z 轴以每分种60转作匀速转动。
设某时刻刚体上一点P 的位置矢量为k j i r543++=,其单位为“m 102-”,若以“12s m 10--⋅”为速度单位,则该时刻P 点的速度为:(A )k j i v0.1576.1252.94++= (B )j i v 8.181.25+-=(C )j i v8.181.25+=(D )k v4.31=[ ]二、填空题:1.一质点的运动方程为SI)(62t t x -=,则在t 由0至4 s 的时间间隔内,质点的位移大小为 ,在t 由0到4 s 的时间间隔内质点走过的路程为 。
角动量练习题角动量是物体绕某一点旋转时所具有的物理量,它是描述物体旋转状态的重要参数。
在本篇文章中,我们将通过一些练习题来巩固对角动量的理解和应用。
练习题一:质点角动量假设一个质点的质量为m,速度为v,沿着均匀圆周运动,半径为r。
计算此质点的角动量L。
解析:质点的角动量L可以通过以下公式进行计算:L = mvr其中,m表示质量,v表示速度,r表示半径。
练习题二:刚体的角动量现考虑一个自由刚体,该刚体绕自己的一个固定轴做匀速旋转。
刚体总质量为M,刚体质量分布与距离轴的距离的平方成正比,比例常数为k。
问刚体质心的角动量与旋转轴的角动量之比是多少?解析:对于这个刚体,质心的角动量L_cm可以通过以下公式计算:L_cm = I_cm * ω_cm其中,I_cm表示刚体绕质心的转动惯量,ω_cm表示质心的角速度。
而整个刚体绕轴的角动量L_axis可以通过以下公式计算:L_axis = I_axis * ω_axis其中,I_axis表示刚体绕轴的转动惯量,ω_axis表示轴的角速度。
根据转动惯量的定义可知,I_axis = kM,I_cm = (1/2)kM。
将以上结果代入计算,可得:L_cm / L_axis = (1/2) / 1 = 1 / 2练习题三:角动量守恒现有两个质量分别为m1、m2的质点,m1的速度为v1,m2的速度为v2,m1和m2的初始位置分别为r1和r2,它们在一个封闭系统中相互作用。
求系统的总角动量L_i和最后的总角动量L_f。
解析:系统的总角动量L_i可以通过以下公式计算:L_i = L1 + L2 = m1v1r1 + m2v2r2其中,L1和L2分别为两个质点的角动量。
根据角动量守恒定律可知,L_i = L_f。
因此,总角动量在系统内部相互作用过程中保持不变。
练习题四:转动惯量计算假设一个半径为R、质量均匀分布的圆环围绕其直径做匀速转动。
计算该圆环相对于转动轴的转动惯量I。
解析:对于一个质量均匀分布的圆环,其转动惯量I可以通过以下公式计算:I = (1/2)MR^2其中,M表示圆环的质量,R表示圆环的半径。
清华出版社专项练习动量与角动量一、选择题 1、(0063A15)质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B) 2m v . (C) 3m v . (D) 2m v . [ ] 2、(0067B30)两辆小车A 、B ,可在光滑平直轨道上运动.第一次实验,B 静止,A 以0.5 m/s 的速率向右与B 碰撞,其结果A以 0.1 m/s 的速率弹回,B 以0.3 m/s 的速率向右运动;第二次实验,B 仍静止,A 装上1 kg 的物体后仍以0.5 m/s的速率与B 碰撞,结果A 静止,B 以0.5 m/s 的速率向右运动,如图.则A 和B 的质量分别为(A) m A =2 kg , m B =1 kg (B) m A =1 kg , m B =2 kg (C) m A =3 kg , m B =4 kg (D) m A =4 kg, m B =3 kg [ ]3、(0367A10)质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ ] 4、(0368A10) 质量分别为m A 和m B (m A >m B )、速度分别为A v 和B v (v A > v B )的两质点A 和B ,受到相同的冲量作用,则(A) A 的动量增量的绝对值比B 的小.(B) A 的动量增量的绝对值比B 的大.(C) A 、B 的动量增量相等.(D) A 、B 的速度增量相等. [ ] 5、(0384A20)质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线长度不可伸缩.子弹射入后开始与摆球一起运动的速率为 (A) 2 m/s . (B) 4 m/s . (C) 7 m/s . (D) 8 m/s . [ ]6、(0385B25)一质量为M 的斜面原来静止于水平光滑平面上,将一质量为m 的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A) 保持静止. (B) 向右加速运动. (C) 向右匀速运动. (D) 向左加速运动.[ ] 7、(0386A20) A 、B 两木块质量分别为m A 和m B ,且m B =2m A ,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比E KA /E KB 为C(A) 21. (B) 2/2. (C) 2. (D) 2. [ ]8、(0629C45)用一根细线吊一重物,重物质量为5 kg ,重物下面再系一根同样的细线,细线只能经受70 N 的拉力.现在突然向下拉一下下面的线.设力最大值为50 N ,则(A)下面的线先断. (B)上面的线先断.(C)两根线一起断. (D)两根线都不断. [ ] 9、(0632A10)质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) v m . (B) 0.(C) v m 2. (D) v m 2-. [ ] 10、(0633A20)机枪每分钟可射出质量为20 g 的子弹900颗,子弹射出的速率为800 m/s ,则射击时的平均反冲力大小为(A) 0.267 N . (B) 16 N .(C)240 N . (D) 14400 N . [ ] 11、(0659A15)一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ] 12、(0702B25)如图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A) 2m v . (B) 22)/()2(v v R mg m π+(C) v /Rmg π. (D) 0.[ ]13、(0703A15)如图所示,砂子从h =0.8 m 高处下落到以3 m /s 向右运动的传送带上.取重力加速度g =10 m /s 2落到传送带上的砂子的作用力的方向为(A) 与水平夹角53°向下.(B) 与水平夹角53°向上. (C) 与水平夹角37°向上. (D) 与水平夹角37°向下. [ ]14、(0706B30) 如图所示.一斜面固定在卡车上,一物块置于该斜面上.在卡车沿水平方向加速起动的过程中,物块在斜面上无相对滑动.此时斜面上摩擦力对物块的冲量的方向(A) 是水平向前的. (B) 只可能沿斜面向上. (C) 只可能沿斜面向下.(D) 沿斜面向上或向下均有可能. [ ]15、(5260A20)动能为E K 的A 物体与静止的B 物体碰撞,设A 物体的质量为B 物体的二倍,m A =2m B .若碰撞为完全非弹性的,则碰撞后两物体总动能为(A) E K (B)K E 32. (C) K E 21. (D) K E 31. [ ] 16、(0405A20)人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]17、(0406B30) 人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A 和B .用L 和E K 分别表示卫星对地心的角动量及其动能的瞬时值,则应有(A) L A >L B ,E KA >E kB . (B) L A =L B ,E KA <E KB .(C) L A =L B ,E KA >E KB . (D) L A <L B ,E KA <E KB . [ ]18、(0407C45) 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定. [ ]19、(5636A15) 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]二、填空题:1、(0055A20) 质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为 ________________________;(2)2、(0056B40) 质量m =10 kg 的木箱放在地面上,在水平拉力F 的作用下由静止开始沿直线运动,其拉力随时间的变化关系如图所示.若已知木箱与地面间的摩擦系数μ=0.2,那么在t = 4 s 时,木箱的速度大小为______________;在t =7 s 时,木箱的速度大小为______________.(g 取10 m/s 23、(0060A10) 一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为________________________,方向为____________________.4、(0061A10) y 21y有两艘停在湖上的船,它们之间用一根很轻的绳子连接.设第一艘船和人的总质量为250 kg ,第二艘船的总质量为500 kg ,水的阻力不计.现在站在第一艘船上的人用F =50 N 的水平力来拉绳子,则 5 s 后第一艘船的速度大小为_________;第二艘船的速度大小为______.5、(0062B30) 两块并排的木块A 和B ,质量分别为m 1和m 2 ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为∆t 1 和∆t 2 ,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为_________________________________,木块B 的速度大小为______________________.6、(0066A20) 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为P A =P 0-bt ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则P B 1=______________________;(2) 开始时,若B 的动量为-P 0,则P B 2=_____________.7、(0068A15) 一质量为m 的小球A ,在距离地面某一高度处以速度v 水平抛出,触地后反跳.在抛出t 秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A 与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.8、(0184A15) 设作用在质量为1 kg 的物体上的力F =6t +3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s 的时间间隔内,这个力作用在物体上的冲量大小I =__________________.9、(0222A20) 一物体质量M =2 kg ,在合外力i t F )23(+= (SI)的作用下,从静止开始运动,式中i 为方向一定的单位矢量,则当t =1 s 时物体的速度1v =__________.10、(0371A20) 一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-= (SI)子弹从枪口射出时的速率为300 m/s .假设子弹离开枪口时合力刚好为零,则(1)子弹走完枪筒全长所用的时间t =____________,(2)子弹在枪筒中所受力的冲量I =________________,(3)子弹的质量m =__________________.11、(0372A15) 水流流过一个固定的涡轮叶片,如图所示.水流流过叶片曲面前后的速率都等于v ,每单位时间流向叶片的水的质量保持不变且等于Q ,则水作用于叶片的力大小为______________,方向为_________.12、(0374B40) 图示一圆锥摆,质量为m 的小球在水平面内以角速度ω匀速转动.在小球转动一周的过程中,(1) 小球动量增量的大小等于__________________.(2) 小球所受重力的冲量的大小等于________________.(3) 小球所受绳子拉力的冲量大小等于_______________. 13、(0387B25) 质量为1 kg 的球A 以5 m/s 的速率和另一静止的、质量也为1 kg 的球B 在光滑水平面上作弹性碰撞,碰撞后球B 以2.5 m/s 的速率,沿与A 原先运动的方向成60°v的方向运动,则球A 的速率为____________,方向为______________________.14、(0393B25) 两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i 101=v cm/s ,)0.50.3(2j i v += cm/s .若碰撞后两球合为一体,则碰撞后两球速度v 的大小v =_________,v 与x 轴的夹角α=__________.15、(0630A10) 一质量m =10 g 的子弹,以速率v 0=500 m/s 沿水平方向射穿一物体.穿出时,子弹的速率为v =30 m/s ,仍是水平方向.则子弹在穿透过程中所受的冲量的大小为________,方向为_________.16、(0631A15) 一物体质量为10 kg ,受到方向不变的力F =30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于________________;若物体的初速度大小为10 m/s ,方向与力F 的方向相同,则在2s 末物体速度的大小等于___________________.17、(0707B25) 假设作用在一质量为10 kg 的物体上的力,在4秒内均匀地从零增加到50 N ,使物体沿力的方向由静止开始作直线运动.则物体最后的速率v =_______________.18、(0708B35) 一质量为1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数μ 0=0.20,滑动摩擦系数μ=0.16,现对物体施一水平拉力F =t +0.96(SI),则2秒末物体的速度大小v =______________.19、(0709A15) 质量为1500 kg 的一辆吉普车静止在一艘驳船上.驳船在缆绳拉力(方向不变)的作用下沿缆绳方向起动,在5秒内速率增加至5 m/s ,则该吉普车作用于驳船的水平方向的平均力大小为______________.20、(0710B30) 一吊车底板上放一质量为10 kg 的物体,若吊车底板加速上升,加速度大小为a =3+5t (SI),则2秒内吊车底板给物体的冲量大小I =___________;2秒内物体动量的增量大小P ∆=__________________.21、(0711A20) 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i 43+=0A v ,粒子B 的速度j i 72-=0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A 的速度变为j i 47-=A v ,则此时粒子B 的速度B v =______________.22、(0715B30)有一质量为M (含炮弹)的炮车,在一倾角为θ 的光滑斜面上下滑,当它滑到某处速率为v 0时,从炮内射出一质量为m 的炮弹沿水平方向. 欲使炮车在发射炮弹后的瞬时停止下滑,则炮弹射出时对地的速率v =__________.23、(0717A10) 如图所示,质量为m 的子弹以水平速度0v 射入静止的木 块并陷入木块内,设子弹入射过程中木块M 不反弹,则墙壁 对木块的冲量=____________________.24、(0718A15) 一质量为30 kg 的物体以10 m·s -1的速率水平向东运动,另一质量为20 kg 的物体以20m·s -1的速率水平向北运动。
第3章 动量 角动量3-1一架飞机以300m/s 的速率水平飞行,与一只身长0.20m 、质量0.50kg 的飞鸟相撞,设碰撞后飞鸟的尸体与飞机具有同样的速度,而原来飞鸟对于地面的速率很小,可以忽略不计。
试估计飞鸟对飞机的冲击力(碰撞时间可用飞鸟身长被飞机速率相除来估算)。
根据本题计算结果,谈谈高速运动的物体(如飞机、汽车)与通常情况下不足以引起危害的物体(如飞鸟、小石子)相碰撞后会产生什么后果?解 飞鸟碰撞前速度可以忽略,碰撞过程中冲量的大小为:I m Ft υ==考虑到碰撞时间可估算为 lt υ=即得飞鸟对飞机的冲击力2250.5300 2.2510(N)0.2m F l υ⨯===⨯由此可见飞机所受冲击力是相当大的,足以导致机毁人亡,后果很严重。
3-2 水力采煤,是用高压水枪喷出的强力水柱冲击煤层。
如图,设水柱直径30mm D =,水速56m/s υ=,水柱垂直射在煤层表面上,冲击煤层后的速度为零,求水柱对煤的平均冲力。
解 △t 时间内射向煤层的水柱质量为21π4m V D x ρρ∆=∆=∆ 煤层对水柱的平均冲击力(如图以向右为正方向)为211x x x m m m F t t υυυ∆-∆∆==-∆∆211π4x xD t ρυ∆=-∆3322311.010π(3010)562.2210(N)4-=-⨯⨯⨯⨯⨯⨯=-⨯水柱对煤层的平均冲力为'32.2210N F F =-=⨯,方向向右。
习题3-2图3-3 质量10kg m =的物体沿x 轴无摩擦地运动,设0t =时,物体位于原点,速率为零。
如果物体在作用力()34N Ft =+的作用下运动了3秒,计算3秒末物体的速度和加速度各为多少?(题中F 作用线沿着x 轴方向)解 力F 在3秒内的冲量33d (34)d 27N s I F t t t ==+=⋅⎰⎰根据质点的动量定理 ()30m I υ-=得()3 2.7m/s Imυ== 加速度()()223153m/s 1.5m/s 10F a m === 3-4 质量为m 的物体,开始时静止,在时间间隔T t 20≤≤内,受力()2021t T F F T ⎡⎤-=-⎢⎥⎢⎥⎣⎦作用,试证明,在2t T =时物体的速率为043F Tm。
第三章《动量和角动量》习题
动量守恒和角动量守恒是物理学中各种运动所遵循的普遍规律,本章的主要内容有质点和质点系的动量定理、角动量定理,及动量守恒定律和角动量守恒定律。
基本要求:
掌握动量定理和动量守恒定律,并能分析、解决简单的力学问题。
掌握运用守恒定律分析问题的思想和方法,能分析简单系统在平面内运动的力学问题。
理解质心的概念和质心运动定律。
作业题:
1 质量为m 的铁锤竖直从高度h 处自由下落,打在桩上而静止,设打击时间为t ∆,则铁锤所受的平均冲力大小为( )
(A )mg (B )t gh m ∆2 (C )
mg t gh
m +∆2 (D )mg t gh m -∆2 2 一个质量为m 的物体以初速为
0v 、抛射角为o 30=θ从地面斜上抛出。
若不计空气阻力,当物体落地时,
其动量增量的大小和方向为( ) (A )增量为零,动量保持不变 (B )增量大小等于
0mv ,方向竖直向上 (C )增量大小等于0mv ,方向竖直向下 (D )增量大小等于03mv ,方向竖直向下
3 停在空中的气球的质量为m ,另有一质量m 的人站在一竖直挂在气球的绳梯上,若不计绳梯的质量,人沿梯向上爬高1m ,则气球将( )
(A )向上移动1m (B )向下移动1m
(C )向上移动0.5m (D )向下移动0.5m
4 有两个同样的木块,从同高度自由下落,在下落中,其中一木块被水平飞来的子弹击中,并使子弹陷于其中,子弹的质量不能忽略,不计空气阻力,则( )
(A )两木块同时到达地面 (B )被击木块先到达地面
(C )被击木块后到达地面 (D )条件不足,无法确定
5 用锤压钉不易将钉压入木块内,用锤击钉则很容易将钉击入木块,这是因为( )
(A )前者遇到的阻力大,后者遇到的阻力小 (B )前者动量守恒,后者动量不守恒
(C )后者动量变化大,给钉的作用力就大 (D )后者动量变化率大,给钉的作
用冲力就大
6 质量为20×10-3kg 的子弹以4001
s m -⋅的速率沿图示方向击入一原来静止的质量为980×10-3
kg 的摆球中,摆线长为1. 0m ,不可伸缩,则子弹击入后摆球的速度大小为( ) (A )41s m -⋅ (B )81s m -⋅ (C )21s m -⋅ (D )8π1s m -⋅
7 一船浮于静水中,船长5m ,质量为m ,一个质量亦为m 的人从船尾走到船头,不计水和空气的阻力,则在此过程中船将( )
(A )静止不动 B )后退5m (C )后退2. 5m (D )后退3m
选做练习:
1 质量分别为m 和4m 的两个质点分别以k E 和4k E 的动能沿一直线相向运动,它们的总动量的大小为( )
(A )k 22mE (B )k 23mE (C )k 25mE (D )k 2)122(mE
2 有两个倾角不同、高度相同,质量相同的斜面置于光滑的水平面上,斜面也是光滑的,有两个一样的小球,从这两斜面顶点,由静止开始下滑,则( )
(A )两小球到达斜面底端时的动量相等
(B )小球和斜面组成的系统在水平方向上的动量守恒
(C )小球和斜面组成的系统的动量守恒
3 一圆锥摆的摆球在水平面上作匀速圆周运动。
如图所示,已知摆球质量为m ,
圆半径为R ,摆球速率为v ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大
小为 。
4 一个原来静止在光滑水平面上的物体,突然分裂为21 ,m m 和3m 三块,且以相同的速率沿三个方向在水
平面上运动。
各运动方向之间的夹角如图所示,则三块物体的质量之比321: :m m m = 。